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Abstract In this paper, we consider the following red-blue median problem which is a

generalization of the well-studied k-median problem. The input consists of a set of red

facilities, a set of blue facilities, and a set of clients in a metric space and two integers

kr, kb ≥ 0. The problem is to open at most kr red facilities and at most kb blue facilities

and minimize the sum of distances of clients to their respective closest open facilities.

We show, somewhat surprisingly, that the following simple local search algorithm

yields a constant factor approximation for this problem. Start by opening any kr red

and kb blue facilities. While possible, decrease the cost of the solution by closing a pair

of red and blue facilities and opening a pair of red and blue facilities.

We also show that the same algorithm yields a constant factor approximation for

the prize-collecting version of the red-blue median problem as well.

Keywords facility location · k-median · prize-collecting · local search algorithms

1 Introduction

Consider the following natural problem called the red-blue median problem which gen-

eralizes the famous metric k-median problem. The input is a set of facilities F and

a set of clients C in a metric space. The distance between two points in this metric

space i, j ∈ F ∪ C is denoted by d(i, j). The facilities are partitioned into two sets: red

facilities R and blue facilities B. The input also includes two integers kr, kb > 0. Given

a subset of open facilities, a client j gets served by the nearest open facility. The goal
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of the problem is to open a subset of red facilities R ⊆ R and a subset of blue facilities

B ⊆ B such that

– |R| ≤ kr and |B| ≤ kb,
– the total connection cost cost(R,B) :=

P
j∈C d(j, R ∪B) is minimized.

Here d(j, S) = mini∈S d(j, i) denotes the shortest distance from j to any point in S.

The special case with kb = 0 corresponds to the well-known k-median problem. Our

problem and in general the problem with arbitrary number of facility types are moti-

vated by applications to designing content distribution networks and other problems in

telecommunications where it is vital to obtain solutions that do not violate the budget

on the number of open facilities of a particular type (see e.g., [6,3]). In this paper, we

present a constant factor approximation algorithm for the red-blue median problem.

In some scenarios, each client can be satisfied by a different vendor at a cost. Indeed,

this cost is called the penalty of this client that we pay in case she is not connected to

one of our deployed facilities. See [4,10,7,16,18] for work on prize collecting problems.

More formally, in our problem formulations we can assume that each client j ∈ C has

a penalty pj ∈ Q+. The client pays the service cost, i.e., its distance to the nearest

open facility, if it is at most its penalty pj ; otherwise the client remains unserved

and pays the penalty pj . The goal then is to minimize the sum of connection costs

and paid penalties. In this paper we improve the best-known approximation for the

prize-collecting k-median problem from 4 [10] to 3 + ε.

Another related and well-motivated problem is the knapsack-median problem in

which given a non-negative opening cost wi for each facility i, we want to open a set of

facilities whose opening cost is within our budget W and minimize the total connection

cost. This budget constraint is a Knapsack constraint and for general opening costs,

we are not aware of any constant approximation algorithm that does not violate the

budget W . Similarly to Knapsack, if we are allowed to violate the budget within a

factor 1+ε, one can obtain a constant factor approximation algorithm using the filtering

method of Lin and Vitter [26]. In fact, Charikar and Guha [8] obtain a better tradeoff

between the budget violation and the approximation ratio. In addition, for polynomially

bounded opening costs (for which Knapsack is solvable), we can solve the problem on

trees without violating budget W (see Section 4). Turning to general graphs using

probabilistic embeddings of general metrics into tree metrics [5,13]), this immediately

results in an O(logn) approximation algorithm for knapsack-median in general metrics

without violating budget W when opening costs are polynomially bounded. To the best

of our knowledge, there is no known work on the red-blue median problem and some of

its natural generalizations. In the special case of the knapsack-median problem when

there are only two different facility opening costs, one can guess the number of facilities

of each type in the optimal solution. Thus this special case can be reduced to the red-

blue median problem. Our results therefore imply a constant factor approximation

algorithm for this special case of the knapsack-median problem.

1.1 Related results

As mentioned above, an important special case of the red-blue median problem is

the well-known k-median problem. The first constant factor approximation for the k-

median problem was given by Charikar et al. [9], which was subsequently improved

by Jain-Vazirani [21], Charikar-Guha [8], and Arya et al. [3]. The latter presents the
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current best approximation factor of 3 + ε for k-median via a local search heuristic.

Their analysis was recently simplified by Gupta and Tangwongsan [17]. The prob-

lem cannot be approximated within a factor strictly less than 1 + 2/e, unless NP ⊆
DTIME[nO(log logn)] [20]. It is known that the integrality gap of the natural LP re-

laxation of the problem is at most 3, but currently there is no algorithm that achieves

a 3-approximation in polynomial time [1]. An extension of k-median to the case in

which we can open at most k facilities, but also have to pay their facility opening cost

was studied by [12], who gave a 5-approximation. The k-median problem with penalties

was also considered; the current best approximation factor for prize-collecting k-median

is 4 due to Charikar et al. [10]. The problem in which the underlying metric is Eu-

clidean, although NP-hard [28], admits a PTAS due to the results of Arora, Raghavan,

and Rao [2], and then Kolliopoulos and Rao [22] (who provided an almost-linear time

algorithm).

The Lagrangian relaxation approach was used by Jain and Vazirani [21] for the

k-median problem. When we apply this approach to the red-blue median problem, we

can get two solutions whose convex combination has cost at most a constant factor

times the optimum cost. These two solutions have k1
r (resp. k2

r) red and k1
b (resp. k2

b )

blue facilities where k1
r + k1

b = k2
r + k2

b = kr + kb. It may happen, for example, that

k1
r > kr and k2

b > kb, i.e., the bound on red facilities is violated in the first solution

and the bound on blue facilities is violated in the second solution. Unlike the case for

the k-median, both of these solutions may be infeasible. Therefore, it seems very hard

to combine them to get a solution that has no violation while having cost within a

constant factor of the optimum cost. The observation that the Lagrangian relaxation

approach fails for the red-blue median problem was also shared and verified by Jain [19].

Subsequent to our work, Krishnaswamy et al. [24] considered a substantially more

general matroid median problem in which there is a matroid structure on the set of

facilities and one is allowed to open a set of facilities that is an independent set in

the matroid. This problem not only generalizes the red-blue median problem but also

the version with more than two colors and their respective budgets. They present

linear programming based constant approximation algorithms for the matroid median

problem and its prize-collecting version. They also present 16-approximation for the

knapsack-median problem while violating the budget by (1 + ε) factor for any ε > 0.

Their algorithm runs in time nO(1/ε).

Local search based approaches. From a practical point of view, a simple combinatorial

algorithm is much more desirable than one that requires solving a linear programming

relaxation. To this end, our main approach in this paper is to extend the local search

technique which is a popular heuristic for hard combinatorial optimization problems.

Relatively few instances of approximation guarantees via local search are known. Ko-

rupolu, Plaxton, and Rajaraman [23] gave the first approximation guarantees of this

type for the facility location and k-median problems based on a simple local search

heuristic proposed by Kuehn and Hamburger [25]. For the k-median problem, however,

they violate the constraint on the number of open facilities by a factor 1+ε. Later Arya

et al. [3] could approximate the problem without violating this constraint. Local search

was later used for other facility location type problems [27,31,11,30] and recently even

for maximum generalized assignment [15] and maximizing submodular functions [14].

Recently and independently of our work, Meyerson and Tagiku [29] proved that the

q-swap local search algorithm yields (3 + 2/q)-approximation for the prize-collection

version of the k-median problem as well.
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1.2 Our results

The main result of this paper is a constant factor approximation algorithm for the

red-blue median problem via novel analysis of a natural local search algorithm. More

formally, we analyze the following local search algorithm.

1. Let R ⊂ R and B ⊂ B be arbitrary subsets with |R| = kr and |B| = kb.

2. While there exist r ∈ R, r′ ∈ R and b ∈ B, b′ ∈ B such that

cost(R− r + r′, B − b+ b′) < cost(R,B)

do: R← R− r + r′ and B ← B − b+ b′.
3. Output R and B.

Here S − s1 + s2 denotes (S \ {s1}) ∪ {s2}. Since r and r′ (or b and b′) may be

identical, our algorithm outputs a locally optimal solution w.r.t. three local operations:

(1) delete a red facility and add a red facility, (2) delete a blue facility and add blue

facility, and (3) delete a red facility and a blue facility and add a red facility and a blue

facility. In Section 2, we prove the following theorem.

Theorem 1 The above local search algorithm yields a constant factor approximation

to the red-blue median problem.

It is somewhat surprising that this natural local search algorithm works. We point

out why in the next section by explaining the main challenges in the analysis. We omit

the standard details regarding how to make this algorithm run in polynomial time.

Our techniques improve the best known result for the standard k-median problem. The

previous approximation is factor 4 of the LP-rounding algorithm for prize-collecting

k-median due to Charikar et al. [10]. We prove the following theorem in Section 3.

Theorem 2 The multi-swap local search algorithm of Arya et al. [3] yields (3 + ε)-

approximation for the prize-collecting k-median problem.

1.3 An overview of our techniques

The local search analyses [3,17] for the k-median problem begin by considering a locally

optimal solution, and show that since a carefully chosen set of test swaps are non-

improving, one can infer some relationship between our cost and the optimal cost.

Gupta and Tangwongsan [17] define this set of test swaps based on distance information

about which of the optimal facilities O are close to which of our facilities S. The

intuition is simple: consider each of the optimal facilities in O, and look at the closest

facility to it in S. If some facility s ∈ S is the closest to only one facility o ∈ O, then

we should try swapping s with o. However, if there is some facility s ∈ S that is the

closest facility to many facilities in O, then swapping s might be bad for our solution,

and hence we do not want to close this facility in any potential move.

Let us now understand why this standard local search analysis does not extend

easily to the red-blue median problem. For the red-blue median problem, the choice

of test swaps needed for the analysis to work may conflict with the budget constraints

on the number of red and blue facilities allowed. For example, after deleting, say, a
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red facility, to keep the cost bounded, one may need to add a blue facility to serve the

clients previously served by the dropped red facility. This happens, for example, when

there is no other red facility close-by. In such a case, we are forced to delete another

blue facility and possibly add another red facility in order to balance the number of

red and blue facilities. As a result, bounding the cost of the solution after the swap

becomes much trickier.

Our analysis begins by partitioning the solutions S and O into blocks (see Sec-

tion 2.1) with some useful structural properties. Intuitively speaking, a block is a subset

of S∪O for which the test swaps can be analyzed “independently” of other blocks, even

when a test swap involves rerouting clients served by facilities from multiple blocks.

These blocks are defined based on the distances and the colors of the facilities. For

example, if a facility s ∈ S is the closest facility in S for exactly one facility o ∈ O

and furthermore s and o have the same color, the pair {s, o} defines a block. Another

example of a block is as follows. Let si ∈ S be the closest facility in S for exactly one

facility oi ∈ O for i = 1, 2. If si has the same color as oi, then {si, oi} defines a block.

On the other hand if s1 has the same color as o2, s2 has the same color as o1 and

the two colors are different, the set {s1, s2, o1, o2} defines a block. In general, a block

contains an equal number of red facilities and an equal number of blue facilities from

the two solutions S and O such that for any facility o ∈ O in a block, the closest facility

to it in S is also in the same block. A typical block also satisfies a key property: it

contains a large number of facilities in S that are not the closest facilities in S to any

facility in O. It turns out that such facilities, called very good facilities, are compatible

to be swapped with any facility in O [17] and their abundance is crucial to the overall

analysis. We use a careful counting argument to show that a partitioning into blocks

satisfying these properties exists.

In Section 2.2, we describe the test swaps for any single block. If si and oi described

above have the same color, we can consider the swap: add oi and delete si. However,

if s = si is the closest one to several facilities {o1, . . . , ol} in the optimal solution, then

deleting s may be bad for our solution. The previous k-median analyses, therefore,

avoided swaps in which s is deleted.

Unfortunately, it turns out that we do not have the luxury of avoiding such swaps.

Consider, for example, the case where kr = 1 and s is the only red facility in S. Suppose

that o is the unique red facility in O. To bound the cost of clients served by o in solution

O, we need to consider a test swap in which o is added. Note however that if o is added,

s must be deleted to satisfy the budget kr = 1. Our analysis considers a test swap in

which we delete s and open the facility oi ∈ {o1, . . . , ol} that is closest to s. If s and

oi are of different colors, we combine this swap with another carefully chosen red-blue

swap to balance the number of red and blue facilities. The cost after such a swap may

potentially be significantly higher than that of the optimal solution. To “cancel” this

high cost, we consider several other test swaps in which facilities {o1, . . . , ol} are added

one-by-one. Using the properties of a block mentioned above, we show how to bound

the overall cost for all the swaps considered.

In our opinion, these new swaps and a method to bound their costs is the main

technical contribution of our paper. We encourage the reader to read the exposition

in paragraphs titled ‘Intuition’ and ‘Example in Figure 1’ in Section 2.3 for further

intuition behind our approach.

The prize-collecting version. We show that the multi-swap local search algorithm of

the k-median problem [3] yields (3+ε)-approximation for the prize-collecting k-median
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problem. The proof is based on the techniques of Arya et al. [3] or Gupta and Tang-

wongsan [17] applied to the clients that do not pay penalty in either solution S or O.

The other clients contribute the same amount to either solutions and thus are easy to

handle. Essentially the same line of argument holds for the prize-collecting version of

red-blue problem.

1.4 Future work

As mentioned before, Krishnaswamy et al. [24] present a linear programming based

approximation algorithm for a substantially more general matroid median problem

which includes the case of multiple types of facilities. It will be interesting to see if the

local search techniques generalize to multiple types of facilities.

By combining the techniques of Theorems 1 and 2, we believe that local search

based algorithms could be obtained for the prize-collecting version of the red-blue

median problem as well.

2 Proof of Theorem 1

We begin with some notation and preliminaries. We call the local search operations

that our algorithm tests as valid swaps. A test swap may or may not improve the cost

of the current solution. Let O = R∗ ∪ B∗ denote the optimal solution where R∗ ⊂ R
and B∗ ⊂ B and let S = R ∪B denote the locally optimal (also called local) solution.

For a facility o ∈ O, let N∗(o) denote the clients that are served by o in solution

O, i.e., these clients have o as the closest facility among facilities in O. Similarly, for

s ∈ S, let N(s) denote the clients that are served by s in solution S. For A ⊂ O, let

N∗(A) = ∪o∈AN∗(o) and for A ⊂ S, let N(A) = ∪s∈AN(s). For a client j ∈ C, let

Oj = d(j, O) and Sj = d(j, S) be its contribution to the optimal and local solutions

respectively.

Roadmap. To bound the cost of a local solution S relative to that of optimal solution

O, we consider several test swaps, which we know are non-improving. To bound the

contribution Sj of a client j, we would ideally like to delete the facility s that serves j

in S, add a facility o that serves j in O and reroute j from s to o. The increase in the

contribution of client j after this swap is Oj − Sj and the overall increase in the cost

is non-negative. The −Sj terms can then be used to bound
P
j Sj in terms of

P
j Oj .

There are several hurdles however. First of all s and o may have different colors and

thus the above swap is not even valid. To make it valid we have to delete another

facility from S and add another facility from O to balance the colors. Furthermore,

there are clients that are not always served by the added facilities in the solution O.

The rerouting of such clients may incur additional +Sj terms. In such cases, we may

have to consider more test swaps to obtain −Sj terms to cancel the +Sj terms. The

overall set of swaps needs to be carefully chosen so that we obtain at least one −Sj
term and at most a constant number of +Oj terms for each client j. Below, we define

the notion of very good, good and bad facilities depending on their ability to obtain −Sj
terms for various clients. But to do so, we first define functions η and µ capturing the

proximity of the facilities in S and O.
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Definition 1 (functions η and µ) Define a function η : O → S as follows. For o ∈ O,

let η(o) be the facility in S that it closest to o, where ties are broken arbitrarily. Thus

we have d(o, η(o)) = d(o, S).

For a facility s ∈ S with η−1(s) 6= ∅, define µ(s) to be the facility in η−1(s) that it

closest to s where ties are broken arbitrarily, i.e., we have d(s, µ(s)) = d(s, η−1(s)).

See Figure 1 for an example. Note that if o ∈ O ∩ S, then we have η(o) = o. The

definition of function η is motivated by the paper of Gupta and Tangwongsan [17] who

offer a simplified proof of the k-median local search algorithm of Arya et al. [3].

Fig. 1: On the left is an example of block-1: the facilities R∗1, B
∗
1 ⊂ O are shown at

the top while R1, B1 ⊂ S are shown at the bottom. We draw an edge between each

o ∈ R∗1∪B∗1 and η(o) ∈ R1∪B1. A single bad facility in R1∪B1, called leader, is r5. The

facilities r1, . . . , r4, b3 are very good while the facilities b1, b2 are good. Here case 4(a)

holds. On the right is an example of functions η and µ. We have µ(r5) = b∗1 ∈ η−1(r5).

Definition 2 (very good, good, and bad facilities) We call a facility s ∈ S very

good, if η−1(s) = ∅; good, if η−1(s) 6= ∅ and no facility in η−1(s) has the same color as

s; and bad, if some facility in η−1(s) has the same color as s.

2.1 The blocks

We now present a procedure (see Figure 2) to partition the set R∗ into R∗1, . . . , R
∗
t , the

set B∗ into B∗1 , . . . , B
∗
t , the set R into R1, . . . , Rt, and the set B into B1, . . . , Bt for

some integer t. The parts R∗i , B
∗
i , Ri, Bi are said to form block-i for i = 1, . . . , t. Note

that this procedure is used only for the sake of analysis. It shows how to first compute

block-1 and then recursively compute block-i for i = 2, . . . , t.

Lemma 1 The partitions of R∗, B∗, R, and B computed in Figure 2 satisfy the fol-

lowing properties. For all i = 1, . . . , t, we have

1. |R∗i | = |Ri| and |B∗i | = |Bi|.
2. For each o ∈ R∗i ∪B

∗
i , we have η(o) ∈ Ri ∪Bi.

3. At most one facility in Ri ∪Bi is bad. We call such a facility leader.

4. If there is a leader in Ri ∪Bi, we have

(a) either all facilities in Ri, except the leader, are very good,

(b) or all facilities in Bi, except the leader, are very good.
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Compute block-i, i.e., R∗i , B∗i , Ri, and Bi for i ≥ 1.

0. Let i = 1.
1. Start with R∗i = B∗i = Ri = Bi = ∅.
2. If there is a bad facility r ∈ R such that |η−1(r)| = 1, then let Ri = {r}, Bi = ∅,

R∗i = η−1(r), B∗i = ∅, and go to step 9. If there is a bad facility b ∈ B such that

|η−1(b)| = 1, then let Ri = ∅, Bi = {b}, R∗i = ∅, B∗i = η−1(b), and go to step 9.

3. If there are good facilities r ∈ R and b ∈ B such that |η−1(r)| = |η−1(b)| = 1, then
let Ri = {r}, Bi = {b}, R∗i = η−1(b), B∗i = η−1(r), and go to step 9.

4. If there is no bad facility in S, let R∗i = R∗, B∗i = B∗, Ri = R, Bi = B, and go to

step 9. Otherwise let s ∈ S be a bad facility such that |η−1(s)| is maximum.
5. Add s to either Ri or Bi according to whether it is a red or a blue facility. Add

facilities in η−1(s) to R∗i and B∗i according to their colors.
6. If |R∗i | > |Ri|, then add |R∗i | − |Ri| very good or good red facilities from R to Ri.

While doing so, give a preference to very good red facilities. For each facility s thus
added to Ri, add facilities in η−1(s) to B∗i .

7. If |B∗i | > |Bi|, then add |B∗i | − |Bi| very good or good blue facilities from B to Bi.
While doing so, give a preference to very good blue facilities. For each facility s thus
added to Bi, add facilities in η−1(s) to R∗i .

8. If |R∗i | 6= |Ri| or |B∗i | 6= |Bi|, go to step 6.
9. R∗ ← R∗ \R∗i , B∗ ← B∗ \B∗i , R← R \Ri, B ← B \Bi.

10. If R 6= ∅, let i← i+ 1 and go to step 1.

Fig. 2: A procedure to compute partitions of R∗, B∗, R, and B

Proof We prove this lemma only for i = 1; a similar argument holds for i > 1. It is

easy to argue by induction that during the procedure in Figure 2, we maintain the

following invariants: |R∗1| ≥ |R1| and |B∗1 | ≥ |B1|. Note that property 2 above holds

since we add a facility o to R∗1 ∪B∗1 only if η(o) ∈ R1 ∪B1. Also property 3 hold since

we add at most one bad facility in the beginning of the procedure.

We argue that in steps 6 or 7, we do not get stuck, i.e., there always exist a desired

number of very good or good facilities to add. Suppose that at some point in the

procedure, the condition p := |R∗1| − |R1| > 0 for step 6 holds. Since |R∗| = |R|, we

have |R \ R1| − |R∗ \ R∗1| = p. Now for each o ∈ R∗1, we have η(o) ∈ R1 ∪ B1, i.e.,

η(o) 6∈ R \ R1. Therefore by a simple counting argument, there must exist at least

p = |R∗1| − |R1| very good or good facilities in R \ R1, as desired. A similar argument

holds also for step 7. Now since the procedure terminates, it is easy to see that property

1 holds from the termination condition and the fact that |R∗| = |R| and |B∗| = |B|.

Now in order to prove property 4, we assume that both 4(a) and 4(b) do not hold

and get a contradiction. Note that in steps 6 and 7, while adding new facilities, we give

preference to very good facilities. Recall also that the procedure always maintains the

invariant |R∗1| ≥ |R1| and |B∗1 | ≥ |B1|. Now assume that both 4(a) and 4(b) do not hold

at some point. Assume without loss of generality that the first good facility added to R1

was added before the first good facility was added to B1. Consider the time just before

the first good facility was added to B1. Since we are trying to add a facility to B1, it

must hold that |R∗1∪B∗1 | > |R1∪B1|, i.e., |(R∗∪B∗)\(R∗1∪B∗1)| < |(R∪B)\(R1∪B1)|.
Furthermore, there are no very good facilities left in R\R1 or B\B1. Note now that each

facility s ∈ (R∪B)\(R1∪B1), being either good or bad, has |η−1(s)| ≥ 1 and η−1(s) ⊂
(R∗ ∪B∗) \ (R∗1 ∪B∗1) implying that |(R∗ ∪B∗) \ (R∗1 ∪B∗1)| ≥ |(R ∪B) \ (R1 ∪B1)|.
This is a contradiction. ut



9

2.2 The swaps

Since S = R ∪ B is a local solution, any swap of a red facility and a blue facility

does not decrease the cost of the solution, i.e., cost(R − r− + r+, B − b− + b+) ≥
cost(R,B). We use swap(r−, r+ | b−, b+) to denote this swap. When r− = r+, we

also use swap(b−, b+) to denote this swap. Similarly, when b− = b+, we also use

swap(r−, r+) to denote this swap. We now consider several inequalities of this type

and add them to get the desired result. For each such swap considered below, we upper

bound cost(R − r− + r+, B − b− + b+)− cost(R,B) by giving a feasible assignment

of clients to facilities.

Recall the definition of valid swaps; we call a swap valid if it does not change the

number of red and blue facilities in the solution.

Lemma 2 For all i = 1, . . . , t, the following holds.

1. Let s ∈ Ri (resp. s ∈ Bi) be a very good facility and o ∈ R∗i (resp. o ∈ B∗i ) be any

facility. Then X
j∈N∗(o)

(Oj − Sj) +
X

j∈N(s)\N∗(o)
2Oj ≥ 0. (1)

2. Let s ∈ Ri (resp. s ∈ Bi) be either good or bad facility with o = µ(s) ∈ R∗i (resp.

o ∈ B∗i ). ThenX
j∈N∗(o)

(Oj − Sj) +
X

j∈N(s)∩N∗(η−1(s)\{o})
(Oj + Sj) +

X
j∈N(s)\N∗(η−1(s))

2Oj ≥ 0. (2)

3. Let s1 ∈ Ri ∪Bi be either good or bad facility, s2 ∈ Ri ∪Bi be a very good facility,

and o2 ∈ R∗i ∪B
∗
i be any facility such that deleting s1, s2 and adding o1 = µ(s1), o2

is a valid swap. ThenX
j∈N∗(o1)
∪N∗(o2)

(Oj − Sj) +
X

j∈[N(s1)∪N(s2)]∩
[N∗(η−1(s1)\{o1,o2})]

(3Oj + Sj) +
X

j∈[N(s1)∪N(s2)]\
[N∗(η−1(s1)∪{o2})]

2Oj ≥ 0. (3)

4. Let s1, s2 ∈ Ri ∪ Bi be either good or bad facilities such that deleting s1, s2 and

adding o1 = µ(s1), o2 = µ(s2) is a valid swap. ThenX
j∈N∗(o1)
∪N∗(o2)

(Oj −Sj) +
X

j∈[N(s1)∪N(s2)]∩
[N∗(η−1(s1)\{o1})∪N∗(η−1(s2)\{o2})]

(3Oj +Sj) +
X

j∈[N(s1)∪N(s2)]\
[N∗(η−1(s1))∪N∗(η−1(s2))]

2Oj ≥ 0. (4)

Proof For a client j, let s(j) denote the facility that serves j in solution S and let o(j)

denote the facility that serves j in solution O.

For item 1, consider swap(s, o). We reroute clients as follows. A client j ∈ N∗(o) is

rerouted to o and thus the increase in its service cost is Oj−Sj . A client j ∈ N(s)\N∗(o)
is rerouted to η(o(j)). Note that η(o(j)) 6= s since s is very good. The increase in its

service cost is thus d(j, η(o(j)))−Sj ≤ Oj +d(o(j), η(o(j)))−Sj ≤ Oj +d(o(j), s(j))−
Sj ≤ Oj +Oj +Sj −Sj = 2Oj . This sequence of inequalities follows from repeated use

of triangle inequality. The clients not in N∗(o) ∪ N(s) are not rerouted. This proves

item 1.

For item 2, consider swap(s, o). A client j ∈ N∗(o) is rerouted to o and thus the

increase in its service cost is Oj − Sj . Consider a client j ∈ N(s) \N∗(η−1(s)). Since

o(j) 6∈ η−1(s), we have η(o(j)) 6= s. Such a client is therefore rerouted to η(o(j)) and
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thus the increase in its service cost is d(j, η(o(j))) − Sj ≤ 2Oj as shown in item 1. A

client j ∈ N(s) ∩N∗(η−1(s) \ {o}) is rerouted to o and thus the increase in its service

cost is d(j, o) − Sj ≤ d(j, s(j)) + d(s(j), o) − Sj ≤ Sj + d(s(j), o(j)) − Sj ≤ Oj + Sj .

Here d(s(j), o) ≤ d(s(j), o(j)) follows from o(j) ∈ η−1(s), o = µ(s), and the definition

of µ. The clients not in N∗(o) ∪N(s) are not rerouted. This proves item 2.

The proofs of items 3 and 4 are very similar. Therefore we prove item 4 and omit

the proof of item 3. For item 4, consider the swap: delete s1, s2 and add o1, o2. In

this swap, we reroute the clients as shown in Figure 3 and described follows. A client

j ∈ N∗(o1) is rerouted to o1 and a client j ∈ N∗(o2) is rerouted to o2. Clearly the

increase in service cost of clients j ∈ N∗(o1) ∪N∗(o2) is Oj − Sj .

s2 s1 

o o1=µ(s1) 

j is rerouted to 
•  o1 if η(o) = s1 
•  o2 if η(o) = s2 
•  η(o) otherwise 

N*(o1) N*(o2) 
N*(o) 

j 

o2=µ(s2) 

Fig. 3: Rerouting of clients after the swap: delete s1, s2 and add o1 = µ(s1), o2 = µ(s2).

The dotted and solid lines represent the assignment of clients before and after the swap

respectively. A client j ∈ N∗(o) ∩ [N(s1) ∪ N(s2)] is routed as mentioned depending

on the value of η(o).

Now consider a client j ∈ [N(s1)∪N(s2)]\ [N∗(o1)∪N∗(o2)]. Assume without loss

of generality that j ∈ N(s1); a similar argument also holds for the case j ∈ N(s2). Let

o(j) be the facility that serves j in O. If η(o(j)) = s1, then j is rerouted to o1 and the

increase in service cost is d(j, o1) − d(j, s1) ≤ d(s1, o1) ≤ d(s1, o(j)) ≤ Sj + Oj . This

sequence of inequalities follows from repeated use of triangle inequality and from the

fact o1 = µ(s1). If η(o(j)) = s2, then it is rerouted to o2 and the increase in service

cost is d(j, o2)−Sj ≤ d(j, o(j)) +d(o(j), s2) +d(s2, o2)−Sj ≤ d(j, o(j)) +d(o(j), s2) +

d(s2, o(j))− Sj ≤ d(j, o(j)) + d(o(j), s1) + d(s1, o(j))− Sj ≤ Oj + 2(Oj + Sj)− Sj =

3Oj +Sj . This sequence of inequalities follows from repeated use of triangle inequality

and from the fact o2 = µ(s2) and η(o(j)) = s2. Now consider the case that η(o(j)) is

neither s1 or s2. Let s(j) denote the facility that serves j in S. We reroute j to η(o(j))

and the increase in service cost is thus d(j, η(o(j)))−Sj ≤ Oj +d(o(j), η(o(j)))−Sj ≤
Oj + d(o(j), s(j))− Sj ≤ Oj +Oj + Sj − Sj = 2Oj . This proves item 4. ut

2.3 Putting everything together

Intuition. Note that inequality (1) has “−Sj” terms for some clients and “+Oj”

terms for some clients. The analysis of Arya et al. [3] or Gupta and Tangwongsan [17]
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is based on adding several inequalities of this type so that the “−Sj” term is included

for each client j once and “+Oj” term is included for each client j at most 5 times.

Thus overall, they get −
P
j Sj + 5

P
j Oj ≥ 0. This directly gives a 5-approximation.

Unfortunately, such an analysis does not work in our setting. We also have to add

several inequalities (2)-(4), thus incurring “+Sj” terms for some clients. We then use

inequality (1) repeatedly to “cancel” the “+Sj” terms in order to prove a constant

approximation. All the swaps to be considered are contained in a block. For block-i,

we prove the following inequality:

X
j∈N∗(R∗i∪B∗i )

Sj ≤ O(1) ·

24 X
j∈N∗(R∗i∪B∗i )

Oj +
X

j∈N(Ri∪Bi)
Oj

35 . (5)

Adding these inequalities over all the blocks, we get a constant approximation.

cost(S) =

tX
i=1

X
j∈N∗(R∗i∪B∗i )

Sj ≤ O(1) ·
tX
i=1

24 X
j∈N∗(R∗i∪B∗i )

Oj +
X

j∈N(Ri∪Bi)
Oj

35
≤ O(1) · 2 · cost(O).

We start by an example to illustrate how to prove it using the example in Figure 1.

We start with some notation. If R1 has at least one good or very good facility, we

fix a function g : R∗1 → R1 such that each facility in g(R∗1) is either good or very good

and |g−1(r)| ≤ 2 for all r ∈ R1. It is easy to see that such a function exists. Similarly,

if B1 has at least one good or very good facility, we fix a function g : B∗1 → B1 such

that each facility in g(B∗1) is either good or very good and |g−1(b)| ≤ 2 for all b ∈ B1.

These functions g are used to decide which facilities in R∗1 ∪ B∗1 are swapped with

which facilities in R1∪B1. A facility r∗ ∈ R∗1 will be swapped with g(r∗) and a facility

b∗ ∈ B∗1 will be swapped with g(b∗).

Example in Figure 1. To convey our intuition, we prove inequality (5) for the ex-

ample of block-1 in Figure 1. For concreteness, assume that the function µ is given

by r5 7→ b∗1, b1 7→ r∗4 , b2 7→ r∗5 . Also assume that g is given by r∗1 7→ r1, r
∗
2 7→ r2, r

∗
3 7→

r3, r
∗
4 7→ r4, r

∗
5 7→ r4, b

∗
1 7→ b1, b

∗
2 7→ b2, b

∗
3 7→ b3. To obtain “−Sj” terms for clients in

N∗(B∗1), we consider the following swaps and the corresponding inequalities:

– swap(g(µ(g(b∗1))), µ(g(b∗1)) | g(b∗1), b∗1) which is same as swap(r4, r
∗
4 | b1, b∗1) (con-

sider inequality (3)),

– swap(g(µ(g(b∗2))), µ(g(b∗2)) | g(b∗2), b∗2) which is same as swap(r4, r
∗
5 | b2, b∗2) (con-

sider inequality (3)),

– swap(g(b∗3), b∗3) which is same as swap(b3, b
∗
3) (consider inequality (1)).

If we add these three inequalities, we getX
j∈N∗({r∗4 ,b∗1 ,r∗5 ,b∗2 ,b∗3})

(Oj −Sj) +
X

j∈N∗(r∗3 )

(3Oj +Sj) +
X

j∈N({b3,r4,b1})
2Oj +

X
j∈N({r4,b2})

2Oj ≥ 0. (6)

We next consider the following swaps and the corresponding inequalities:

– swap(g(r∗1), r∗1) which is same as swap(r1, r
∗
1) (consider inequality (1)),

– swap(g(r∗2), r∗2) which is same as swap(r2, r
∗
2) (consider inequality (1)),
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– swap(g(r∗3), r∗3) which is same as swap(r3, r
∗
3) (consider inequality (1)). We in fact

multiply this inequality by factor 2 in order to cancel the “+Sj” term in the second

term of (6) above.

Note that the leader r5 is not involved in any of the considered swaps. Adding these

three inequalities, we getX
j∈N∗({r∗1 ,r∗2})

(Oj − Sj) + 2
X

j∈N∗(r∗3 )

(Oj − Sj) +
X

j∈N({r1,r2})
2Oj + 2

X
j∈N(r3)

2Oj ≥ 0. (7)

Adding (6) and (7), we get our desired inequalityX
j∈N∗(R∗1∪B∗1 )

Sj ≤ 5
X

j∈N∗(R∗1∪B∗1 )

Oj + 4
X

j∈N(R1∪B1)

Oj .

Proof of Theorem 1. We now discuss the general case and prove Theorem 1 for

block-1. Similar swaps are defined for all the other blocks. We handle the following

four cases separately.

1. |R1| ≤ 1 and |B1| ≤ 1.

2. (|R1| ≥ 2 or |B1| ≥ 2) and there is a red leader ` ∈ R1 and condition 4(a) in

Lemma 1 holds (or there is a blue leader l ∈ B1 and condition 4(b) in Lemma 1

holds).

3. (|R1| ≥ 2 or |B1| ≥ 2) and there is a blue leader ` ∈ B1 and condition 4(a) in

Lemma 1 holds (or there is a red leader l ∈ R1 and condition 4(b) in Lemma 1

holds).

4. (|R1| ≥ 2 or |B1| ≥ 2) and there is no leader in R1 ∪B1.

Case 1. |R1| ≤ 1 and |B1| ≤ 1. If |R1∪B1| = 1, we consider swap(s, o) where s ∈ R1∪
B1 and o ∈ R∗1∪B∗1 and consider inequality (2). Since η−1(s)\{o} = ∅, we do not incur

+Sj term for any client j. Thus we have
P
j∈N∗(o)(Oj−Sj)+

P
j∈N(s)\N∗(o) 2Oj ≥ 0.

If |R1 ∪ B1| = 2, we consider swap(r, µ(b) | b, µ(r)) where r ∈ R1 and b ∈ B1 and

consider inequality (4). Again we do not incur +Sj term for any client j. Thus we haveP
j∈N∗({µ(r),µ(b)})(Oj − Sj) +

P
j∈N({r,b})\N∗({µ(r),µ(b)}) 2Oj ≥ 0.

Case 2. There is a red leader ` ∈ R1 and condition 4(a) in Lemma 1 holds. We consider

two subcases: case (a) |R∗1| = |R1| = 1, and case (b) |R∗1| = |R1| > 1. See Figures 4(a)

and 4(b) for examples of subcases (a) and (b) respectively.

In case (a), we have |B∗1 | = |B1| ≥ 2. In this case, all the facilities in B1 are

very good. Indeed if we had included a good blue facility in B1, then |R1| would

have been more than 1. If ` and µ(`) have the same color (say, red), we consider swap

swap(`, µ(`)) and add inequality (2). Thus we get one −Sj term for clients j ∈ N∗(µ(`))

and one +Sj term for clients j ∈ N(`) ∩ N∗(B∗1). We also get at most two +Oj
terms for clients j ∈ N(`). If ` and µ(`) have different colors, however, we consider

swap(`, r∗ | g(µ(`)), µ(`)) where r∗ ∈ R∗1. Note that g(µ(`)) is very good. We can

therefore pick r∗ ∈ R∗1 arbitrarily and add the corresponding inequality (3). Thus

we get one −Sj term for clients j ∈ N∗({r∗, µ(`)}) and one +Sj term for clients

j ∈ N(`) ∩ N∗(B∗1 \ {µ(`)}). We also get at most three +Oj terms for clients j ∈
N({`, b}). We next consider swap(g(b∗), b∗) for all b∗ ∈ B∗1 , and add corresponding

inequalities (1), each multiplied by 2. Thus we get two −Sj terms for clients j ∈ N∗(B∗1)

and at most constant number of +Oj terms for clients j ∈ N(B1). Overall, by adding
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bad 
(leader)‏ 

very 
good 

R1 

B*1 

B1 

R*1 

b1 
r1 b3 b2 

r*1 b*1 b*3 b*2 

(a) Case 2(a): there is a red
leader r1 ∈ R1, condition 4(a)
in Lemma 1 holds and |R∗1 | =
|R1| = 1.

bad 
(leader)‏ 

very good very 
good 

good 

R1 

B*1 

B1 

R*1 

b1 
r5 r4 r3 r2 r1 b3 b2 

r*5 r*4 r*3 r*2 r*1 b*1 b*3 b*2 

(b) Case 2(b): there is a red leader r5 ∈ R1, condi-
tion 4(a) in Lemma 1 holds and |R∗1 | = |R1| > 1.

bad 
(leader)‏ 

very good very 
good 

R1 

B*1 

B1 

R*1 

b1 
r3 r2 r1 b3 b2 

r*3 r*2 r*1 b*1 b*3 b*2 

(c) Case 3: there is a blue leader b1 ∈ B1

and condition 4(a) in Lemma 1 holds.

good very 
good 

very 
good 

R1 

B*1 

B1 

R*1 

b1 
r3 r2 r1 b3 b2 

r*3 r*2 r*1 b*1 b*3 b*2 

good 

(d) Case 4: there is no bad leader in R1∪
B1 and |R1| ≥ 2 or |B1| ≥ 2.

Fig. 4: Examples of different cases considered in the Proof of Theorem 1.

these inequalities, we get −Sj terms for all j ∈ N∗(R∗1 ∪B∗1) and constant number of

terms +Oj for all j ∈ N∗(R∗1 ∪B∗1) ∪N(R1 ∪B1).

Now consider case (b). Similar to case (a) above, if ` and µ(`) have the same color

(say, red), we consider swap(`, µ(`)) and add the corresponding inequality (2). If ` and

µ(`) have different colors, however, we consider swap(`, r∗ | g(µ(`)), µ(`)) where r∗ ∈
R∗1. If g(µ(`)) is good, we let r∗ = µ(g(µ(`))) and add inequality (4), else we pick r∗ ∈
R∗1 arbitrarily and add the corresponding inequality (3). For each b∗ ∈ B∗1 , we consider

the following. If g(b∗) is very good, we consider swap(g(b∗), b∗) and add corresponding

inequality (1). If g(b∗) is good, we consider swap(g(µ(g(b∗))), µ(g(b∗)) | g(b∗), b∗) and

add corresponding inequality (3). For each r∗ ∈ R∗1, since g(r∗) is very good, we

consider swap(g(r∗), r∗) and add corresponding inequalities (1), each multiplied by 2.

Overall, by adding these inequalities, we get −Sj terms for all j ∈ N∗(R∗1 ∪ B∗1) and

constant number of terms +Oj for all j ∈ N∗(R∗1 ∪B∗1) ∪N(R1 ∪B1).

The case when there is a blue leader ` ∈ B1 and condition 4(b) in Lemma 1 holds

is similar (by interchanging the roles of red and blue).

Case 3. There is a blue leader ` ∈ B1 and condition 4(a) in Lemma 1 holds. See

Figure 4(c) for an example this case. Similar to case 2(a) above, depending on whether

` and µ(`) have the same or different colors, we consider swaps involving ` and µ(`) and

add the corresponding inequalities. If |B∗1 | = |B1| > 1, we also consider the following

swaps. For each b∗ ∈ B∗1 , we consider the following. If g(b∗) is very good, we consider

swap(g(b∗), b∗) and add corresponding inequality (1). If g(b∗) is good, we consider

swap(g(µ(g(b∗))), µ(g(b∗)) | g(b∗), b∗) and add corresponding inequalities (3). For each
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r∗ ∈ R∗1, since g(r∗) is very good, we consider swap(g(r∗), r∗) and add corresponding

inequalities (1), each multiplied by 2. Overall, by adding these inequalities, we get

−Sj term for all j ∈ N∗(R∗1 ∪ B∗1) and constant number of terms +Oj for all j ∈
N∗(R∗1 ∪B∗1) ∪N(R1 ∪B1).

The case when there is a red leader ` ∈ R1 and condition 4(b) in Lemma 1 holds

is similar (by interchanging the roles of red and blue).

Case 4. There is no bad leader in R1 ∪B1 and |R1| ≥ 2 or |B1| ≥ 2. See Figure 4(d)

for an example this case. We first argue that there cannot exist good facilities r ∈ R1

and b ∈ B1 such that |η−1(r)| = |η−1(b)| = 1. If this condition was true, this block

would have formed in step 3 of the Procedure in Figure 2 and this case would not arise.

Without loss of generality we assume that there is no good facility r ∈ R1 such that

|η−1(r)| = 1. We now prove the following claim that there is a significant fraction of

very good facilities in either R1 or B1.

Claim Either the number of very good facilities in R1 is at least |R1|/4 or the number

of very good facilities in B1 is at least |B1|/3.

Proof Since each good facility r ∈ R1 has η−1(r) ⊆ B∗1 and |η−1(r)| ≥ 2, the number

of good facilities in R1 is at most |B∗1 |/2 = |B1|/2. Now if the number of very good

facilities in R1 is less than |R1|/4, then the number of good facilities in R1 is more

than 3|R1|/4. Thus we get |B1|/2 > 3|R1|/4, which implies |B1| > 3|R1|/2. Since each

good facility s ∈ B1 has η−1(s) ⊆ R∗1 and |η−1(s)| ≥ 1, the maximum number of good

facilities in B1 is at most |R∗1| = |R1| < 2|B1|/3. Therefore the number of very good

facilities in B1 is at least |B1|/3. ut

Let us consider the case when the number of very good facilities in R1 is at least

|R1|/4. The argument for the other case is very similar and is omitted. We now modify

the function g : R∗1 → R1 so that each facility in g(R∗1) is very good and |g−1(r)| ≤ 4

for any r ∈ R1. There exists such a function since there are enough number of very

good facilities in R1. Now the swaps considered for this case are very similar to those

in case 2(b).

For each good facility r ∈ R1, we consider swap(r, r∗ | g(µ(r)), µ(r)) where r∗ ∈ R∗1.

If g(µ(r)) is good, we let r∗ = µ(g(µ(r))) and add inequality (4), else we pick r∗ ∈ R∗1
arbitrarily and add the corresponding inequality (3). For each b∗ ∈ B∗1 , we consider

the following. If g(b∗) is very good, we consider swap(g(b∗), b∗) and add corresponding

inequality (1). If g(b∗) is good, we consider swap(g(µ(g(b∗))), µ(g(b∗)) | g(b∗), b∗) and

add corresponding inequality (3). For each r∗ ∈ R∗1, since g(r∗) is very good from

our modification to the function g, we consider swap(g(r∗), r∗) and add corresponding

inequalities (1). Note that since |g−1(r)| ≤ 4 for all r ∈ R1, we incur a constant

number +Oj terms for j ∈ N(r) for r ∈ R1. Overall, by adding these inequalities, with

appropriate O(1) multipliers, we get −Sj term for all j ∈ N∗(R∗1 ∪ B∗1) and constant

number of terms +Oj for all j ∈ N∗(R∗1 ∪B∗1) ∪N(R1 ∪B1).

This ends the proof of Theorem 1.

3 Proof of Theorem 2

In this section, we outline the proof of Theorem 2. We consider the multi-swap local

search algorithm of Arya et al. [3]: start with any k facilities in the solution S and

output a local optimal solution w.r.t. the following q-swap operation: delete q facilities
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from S and add q facilities in F \ S to S. We use a notation similar to the previous

section. In addition, let P ⊆ C denote the set of clients that pay penalty in the locally

optimal solution S and let P ∗ ⊆ C denote the set of clients that pay penalty in the

optimal solution O. We prove the following theorem which implies that S is a (3+2/q)-

approximation.

Theorem 3

X
j 6∈P

Sj +
X
j∈P

pj ≤
„

3 +
2

q

« X
j 6∈P∗

Oj +

„
1 +

1

q

« X
j∈P∗

pj .

Our proof is based on the simplified proof, given by Gupta and Tangwongsan [17], of

the multi-swap k-median algorithm. We partition the set S (resp. O) into Si (resp. Oi)

for i = 1, . . . , t as follows. Let s1 ∈ S any facility with η−1(s1) 6= ∅. Let O1 = η−1(s1)

and let S1 be s1 along with arbitrary |η−1(s1)|−1 facilities s ∈ S such that η−1(s) = ∅.
Recurse on S \ S1 and O \ O1 for i > 1. Note that even if the multiplier of

P
j∈P∗ pj

on the right is (1 + 1/q) instead of 1, one may use the above result, as a subroutine, in

the algorithm for the robust k-median problem [10]. This is a version of the k-median

problem in which at most l clients may be left unserved. We obtain a solution which

has number of outliers at most l(1 + ε)(1 + γ) and has cost at most (3 + ε)(1 + 1/γ)

for any fixed ε, γ > 0.

We now prove Theorem 3 using the following two lemmas.

Lemma 3 Fix i such that |Si| = |Oi| ≤ q. We have

X
j∈N∗(Oi)\P

(Oj−Sj)+
X

j∈N∗(Oi)∩P
(Oj−pj)+

X
j∈N(Si)∩P∗

(pj−Sj)+
X

j∈N(Si)\P∗
2Oj ≥ 0.

Proof Since |Si| = |Oi| ≤ q, we can consider the swap: delete facilities in Si and

add facilities in Oi. Since S is a locally optimal solution, we have cost((S \ Si) ∪
Oi) − cost(S) ≥ 0. We now given an upper bound on the LHS of this inequality by

giving a rerouting of the clients. A client j ∈ N∗(Oi) is rerouted to the facility that

serves j in solution O. The increase in its cost contribution is (Oj − Sj) if j 6∈ P or

(Oj − pj) if j ∈ P . A client j ∈ N(Si) ∩ P ∗ now pays penalty. Thus the increase

in its cost contribution is (pj − Sj). A client j ∈ N(Si) \ P ∗ is rerouted to η(o(j))

where o(j) denotes the facility that serves j in solution O. Thus the increase in its cost

contribution is d(j, η(o(j)))−Sj ≤ Oj+d(o(j), η(o(j)))−Sj ≤ Oj+d(o(j), s(j))−Sj ≤
Oj +Oj + Sj − Sj = 2Oj . The remaining clients are not rerouted. This completes the

proof. ut

Lemma 4 Fix i such that |Si| = |Oi| > q. We have

X
j∈N∗(Oi)\P

(Oj − Sj) +
X

j∈N∗(Oi)∩P
(Oj − pj)

+

„
1 +

1

q

«24 X
j∈N(Si)∩P∗

(pj − Sj) +
X

j∈N(Si)\P∗
2Oj

35 ≥ 0.
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Proof The proof is similar to that of Lemma 3. Let S′i = Si \ {si}. Note that |S′i| =

|Oi| − 1 ≥ q. For all A ⊆ S′i and all B ⊆ Oi such that |A| = |B| = q, we consider swap:

delete A and add B and associate a weight of  
|Oi| − 1

q − 1

!
·

 
|Oi| − 1

q

!!−1

(8)

to this swap. Now for each of these swaps, the inequalityX
j∈N∗(B)\P

(Oj − Sj) +
X

j∈N∗(B)∩P
(Oj − pj) +

X
j∈N(A)∩P∗

(pj − Sj) +
X

j∈N(A)\P∗
2Oj ≥ 0 (9)

holds. The proof of this is identical to that of Lemma 3.

We next argue that if we add the inequalities (9) multiplied by their weights, given

by (8), over all such swaps, we exactly get the desired inequality. We first make two

observations. For any fixed o ∈ Oi, the number of swaps (delete A, add B) such that

A ⊆ S′i, |A| = q, B ⊆ Oi, |B| = q and o ∈ B is 
|Oi| − 1

q

!
·

 
|Oi| − 1

q − 1

!
.

Therefore the total weight, given by (8), of these swaps is 1. Similarly, for any fixed

s ∈ S′i, the number of swaps (delete A, add B) such that A ⊆ S′i, |A| = q, s ∈ A,

B ⊆ Oi and |B| = q is  
|Oi| − 2

q − 1

!
·

 
|Oi|
q

!
.

Therefore the total weight, given by (8), of these swaps is
|Oi|
|Oi|−1

.

Now consider all the swaps (delete A, add B) such that A ⊆ S′i, |A| = q, B ⊆ Oi
and |B| = q. From the two observations made above, we can conclude the following. If

we sum the inequalities (9) of these swaps, each multiplied by its weight (8), we getX
j∈N∗(Oi)\P

(Oj − Sj) +
X

j∈N∗(Oi)∩P
(Oj − pj)

+

„
|Oi|
|Oi| − 1

«24 X
j∈N(Si)∩P∗

(pj − Sj) +
X

j∈N(Si)\P∗
2Oj

35 ≥ 0.

Noting that
|Oi|
|Oi|−1

≤ 1+ 1
q and that pj ≥ Sj for all j ∈ N(Si)∩P ∗, we get the desired

inequality in Lemma 4. ut

By adding inequalities in Lemmas 3 and 4 for all i = 1, . . . , t and again using the

fact that pj ≥ Sj for all j ∈ N(S), we getX
j∈N∗(O)\P

(Oj − Sj) +
X

j∈N∗(O)∩P
(Oj − pj)

+

„
1 +

1

q

«24 X
j∈N(S)∩P∗

(pj − Sj) +
X

j∈N(S)\P∗
2Oj

35 ≥ 0.
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Simplifying the above inequality, we getX
j∈(N∗(O)\P )
∪(N(S)∩P∗)

Sj +
X

j∈N∗(O)∩P
pj

≤
X

j∈(N∗(O)\P )
∪(N∗(O)∩P )

Oj +

„
1 +

1

q

«24 X
j∈N(S)∩P∗

pj +
X

j∈N(S)\P∗
2Oj

35 .
Adding

P
j∈P∩P∗ pj to both the sides and simplifying, we get the desired inequality

in Theorem 3.

4 The knapsack-median on trees and general graphs

In this section, we sketch how we can solve knapsack-median on trees when open-

ing costs of facilities are polynomially bounded. Without loss of generality by adding

dummy nodes and dummy edges of connection costs zero, we can assume that our tree

is a binary tree rooted at r, there is no facility or client at r and there is no facility

at any leaves. We denote by Tt the subtree of T rooted at node t. Now for each node

t, we fill in a table Tt[W ′, f,D′] which keeps the minimum total cost of serving all

clients in Tt except D′ of them that we bring up to the root t (and thus we pay the

partial connection costs to t for these clients) while the total opening cost of facili-

ties in Tt is W ′ and the nearest opened facility to t in Tt is f (f = ⊥ if there is no

open facility in Tt). First it is clear that as long as W ≥ W ′ is polynomially bounded

the size of table T and thus our running time is polynomial. The final solution is

minW ′≤W,f∈V (T ) Tr[W ′, f, 0]. For a leaf `, table T` is filled in with ∞, except when `

has D clients in which case T`[0,⊥, D] = 0 and the rest of the table is filled in with ∞.

We compute entries in Tt from those in Tt′ and Tt′′ where t′ and t′′ are the children

of t as follows. First we choose the number of clients in Tt that we want to serve later

by bringing them up to t (and thus compute this cost in our final cost). The rest of

the clients in Tt′ (resp., Tt′′) should be satisfied either in Tt′ (resp., Tt′′), or by the

facility in Tt′′ (resp., Tt′) nearest to t′′ (resp., t′′), or the facility at t if there exists

one. Finally, when we open a facility of opening cost w at t, the total opening cost of

facilities in T ′t and Tt′′ should be w less than the budget. We pick the best solution

among all possible ways of doing this.
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