Minimum Color Sum of Bipartite Graphs*

Amotz Bar-Noy
Department of Electrical Engineering,
Tel-Aviv University, Tel-Aviv 69978, Israel.
E-mail: amotz@eng.tau.ac.il.

Guy Kortsarz
Department of Computer Science,
The Open University of Israel, Tel Aviv, Israel.
E-mail: guyk@tavor.openu.ac.il.

February 2, 1999

*An abstract of this paper appeared in ICALP-97.

Proposed running head: Minimum Color Sum of Bipartite Graphs.

Contact Author: Prof. Amotz Bar-Noy,

Address: Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
Phone: ++972-3-6407766

Fax : ++972-3-6407095

Email: amotzQeng.tau.ac.il

WWW: http://www.eng.tau.ac.il/ amotz/

Abstract

The problem of minimum color sum of a graph is to color the vertices of the graph
such that the sum (average) of all assigned colors is minimum. Recently, in [BBHT96],
it was shown that in general graphs this problem cannot be approximated within n'~¢,
for any € > 0, unless NP = ZPP. In the same paper, a 9/8-approximation algorithm
was presented for bipartite graphs. The hardness question for this problem on bipartite
graphs was left open.

In this paper we show that the minimum color sum problem for bipartite graphs ad-
mits no polynomial approximation scheme, unless P = N P. The proof is by L-reducing
the problem of finding the maximum independent set in a graph whose maximum de-
gree is four to this problem. This result indicates clearly that the minimum color sum
problem is much harder than the traditional coloring problem which is trivially solvable
in bipartite graphs.

As for the approximation ratio, we make a further step towards finding the precise
threshold. We present a polynomial 10/9-approximation algorithm. Our algorithm
uses a flow procedure in addition to the maximum independent set procedure used in

previous solutions.

1 Introduction

One of the most fundamental problems in scheduling theory is scheduling efficiently (under some
optimization goals) dependent tasks on a single machine. At any given time, the machine is capable
to perform (serve) any number of tasks as long as these tasks are independent. When the serving
time of each task is the same, this problem is identical to the well known coloring problem of
graphs. The vertices of the graph represent the tasks and an edge in the graph between vertices v
and u represents the dependency between the two corresponding tasks. That is, the machine cannot
perform the tasks corresponding to vertices w and v concurrently. A similar important application
arises in the context of distributed resource allocation. Here, the vertices represent processors each
has one job to execute. An edge between two vertices indicates that the jobs belonging to the
corresponding processors cannot be executed concurrently since they require the usage of the same
common resource. This problem is known in the literature as the dining (drinking) philosophers
problem ([LYN81, CM84, AS90, BP92]).

More formally, the coloring problem can be defined as follows. Let G = (V, E) be an undirected
simple graph with n vertices where V' denotes the set of n vertices and E denotes the set of edges.
A coloring of the vertices of GG is a mapping into the set of positive integers, f : V — Z7, such that

adjacent vertices are assigned different colors. We refer to f(v) as the color of v.

The traditional optimization goal is to minimize the number of different assigned colors. We call
this problem the minimum coloring (MC) problem. In the setting of tasks system, this is equivalent
to finding a schedule in which the machine finishes performing all the tasks as early as possible.
In the setting of resource allocation, this is equivalent to finding a schedule in which the last
processor finishes executing its job the earliest. This is an optimization goal that favors the system.
However, from the point of view of the tasks (or processors) themselves, we might wish to find the
best coloring such that the average waiting time to be served (or to execute the job) is minimized.

Clearly, minimizing the average waiting time is equivalent to minimizing the sum of all assigned
colors. The minimum color sum (MCS) problem is defined as follows. Let G = (V,E) be an
undirected simple graph with n vertices. We are looking for a coloring in which the sum of the
assigned colors of all the vertices of G is minimized. That is, the value of >, cy, f(v) is minimized.

The minimum color sum problem was introduced by Kubicka in [K89]. In [KS89] it was shown
that computing the MCS of a given graph is NP-hard. A polynomial time algorithm was given for
the case where G is a tree. In [KKK89] it was shown that approximating the MCS problem within
an additive constant factor is NP-hard. There, it was also shown that a first-fit algorithm yields a
(d/2 + 1)-approximation for graphs of average degree d. Lower and upper bounds on the value of

the sum coloring in general graphs were given in [TEA189].

In a recent paper, [BBHT96]!, it was proven that the MCS problem cannot be approximated
within n'~¢, for any € > 0, unless NP = ZPP. On the other hand, this paper showed that an

!This paper is a combination of the papers [HR93] and [BST96].

algorithm based on finding iteratively a maximum independent set is a 4-approximation to the
MCS problem. This bound yields a 4p-approximation polynomial algorithm for the MCS problem
for classes of graphs for which the maximum independent set problem can be polynomially ap-
proximated within a factor of p. Finally, surprisingly, in [EKS] it was shown that using optimal
traditional coloring as a sub-procedure yields an unbounded approximation although coloring is
“harder” than finding maximum independent set.

A special and important sub-class of graphs is the class of bipartite graphs. In a bipartite
graph the set of vertices V' is partitioned into two disjoint sets V; and V, such that both sets are
independent. That is, all the edges of F connect two vertices one from V; and one from V,.. Coloring
Vi by 1 and V, by 2 yields a 2-coloring of any bipartite graph. Obviously this is the best possible
solution for the MC problem. However, for the MCS problem the answer is not straightforward.
Denote by MBCS the MCS problem on bipartite graphs.

Coloring the largest set between V; and V. by 1 and the other set by 2 yields a solution to the
MBCS problem the value of which is at most 3n/2. Obviously the value of the optimal solution is
at least n, and therefore this solution is at least a 3/2-approximation to the optimal solution. The
paper [BBH'96] presents a better approximation of 9/8 using as a sub-procedure the algorithm for
finding a maximum independent set. In bipartite graphs, finding maximum independent set can be
done in polynomial time. Therefore, their approximation algorithm is also polynomial.

New results: The contributions of this paper are the following two results:

e We prove the first hardness result for MBCS. We show that the MBCS problem admits no
polynomial approximation scheme, unless P = N P. The proof is by L-reducing the problem
of finding the maximum independent set in a graph whose maximum degree is four to the
MBCS problem which implies that MBCS is MAXSNP-hard [PY88]. This result indicates clearly
that the MCS problem is much harder than the traditional coloring problem.

e We improve the approximation ratio for the MBCS problem by presenting a 10/9-approximation
algorithm. Our algorithm introduces a new technique. It employs a flow procedure in addition

to the maximum independent set procedure used in [BBH'96].

Max-type vs. sum-type problems: Our impossibility result raises the general question of the
connection between “max-type” and “sum-type” problems. The MC problem is a max-type problem
whereas the MCS problem is a sum-type problem. The input and the feasible solutions for both
problems are the same, the difference lies in the optimization goal. We now examine another pair

of problems which relate to each other in a same manner.

The Traveling Salesperson problem (TSP) is defined on a set of n points with a given symmetric
distance metric (d;;). A feasible solution is a tour that visits each point exactly once. The traditional
optimization goal is to minimize the length of the tour. Thus, the TSP problem is a max-type

problem. The paper [BCCT94] deals with the Minimum Latency Problem (MLT). The inputs and
the feasible solutions for this problem are as in the TSP problem. Let the latency of a point p be
the length of the tour from the starting point to p. Let the total latency of the tour be the sum
of latencies of all its points. The optimization goal of the MLT problem is to find a tour which
minimizes the total latency. Thus, the MLT problem is a sum-type problem. Both the TSP and
the MLT problems admit no bounded ratio approximation algorithm, when the distance function
is arbitrary. However, both problems become easier in the metric case when the distances obey
the triangle inequality. In the metric version of the problem, there exist polynomial constant-ratio
approximation algorithms for both problems. The approximation ratio for the metric-TSP problem
is 3/2([Chr76]). Whereas the approximation ratio for the metric-MLT problem is constant but not
as small as 3/2 ([BCCt94]).

For the two coloring problems the story is different. Both the MC and the MCS problems cannot
be approximated within n!~¢ for any € > 0 unless NP = ZPP [FK96, BBHT96]. However, a
big distinction exists in perhaps the easiest case of the coloring problem, namely for bipartite
graphs. The remarkable property found in this paper is that, although the max-type problem, the
MC problem, is trivially solvable on bipartite graphs, the sum-type problem, the MBCS problem, is
MAXSNP—hard.

The above discussion raises the interesting question of classifying problems according to the
relationship between their max-type version with the sum-type version. The coloring problem and
the traveling salesperson problem each belongs to a different class.

2 Preliminaries

2.1 Notations

Given a graph G(V, E) we use the following notations. For any set S C V', let N(S) be the set of
neighbors of S, i.e., the set of vertices outside S that are adjacent to at least one vertex of S. We

also use the term S to denote the size of S.

For any graph G let MIS(G) denote the largest independent set in G. That is, the largest subset
S C V such that no two vertices of S share an edge. Given a subset X C V' we denote by MIS(X)
the maximum independent set in the graph induced by X.

Given any coloring f of a graph, we denote by SC(f) the sum of colors in f, i.e., SC(f) =
Ywey f(v). When SC(f) = s, we say that f has color sum s (or sum coloring s). When all the
vertices in a set S C V are colored by the same color ¢, we say that S is colored by c.

2.2 Polynomial approximation schemes

We define approximation schemes for minimization problems, a similar definition follows for max-
imization problems. Let P be a minimization problem. For any instance z of P, let copr(x) be
the value of a minimum solution for . We say that a polynomial algorithm A has approximation
ratio r if for any instance x of P, algorithm A computes a feasible solution A(z) with cost c4(z)

such that:
ca(r)

copr(z)

We say that problem P admits a polynomial approximation scheme, if for any ¢ > 0 there exists a

<r.

polynomial time approximation algorithm for P, whose approximation ratio is bounded by (1 +¢).

2.3 L—reduction

The L-reduction ([PY88]) is a tool that helps proving hardness results. Unlike the usual NP-
hardness reductions, it “preserves” approximation ratios (in a sense to be described). Therefore, it

can be used in showing that a given problem admits no polynomial approximation scheme.

In order to define L-reduction we need the following notations. Let P be an optimization (either
minimization or maximization) problem. Denote by I(P) the set of instances for problem P, by
sol(P) the set of feasible solutions of problem P, and by cp(s) the cost function of any feasible
solution s for P.

Suppose now that P and @) are two optimization problems. In order to construct an L—reduction
we need to define two (polynomially computable) functions R : I(P) — I(Q) and S : sol(Q) —
sol(P). For any instance x € I(P) let copr(z) be the value of the optimal solution for = and let
copr(R(z)) be the value of the optimal solution for R(z). The two functions R and S are an
L—reduction from problem P to problem @), if there exist two constants « and § such that the two

following properties hold:

1. copr(R(z)) < a-copr(x).

2. For any feasible solution s € sol(Q) of R(z), S(s) is a feasible solution for x and

lcorr(z) —cp(S(s))| < B+ |coprr(R(z)) — cq(s)] -

The following theorem is shown in [PY88].

Theorem 2.1 Suppose that Problem P admits no polynomial approximation scheme and that Prob-
lem P can be L—reduced to problem Q. Then Problem @Q admits no polynomial approzimation

scheme. |

2.4 The MIS and 4-MIS problems

The Mazimum Independent Set (MIS) problem is the following. Given an undirected graph G(V, E)
with n vertices, the goal is to find a maximum independent set. L.e., a maximum sized set S C V
such that no two vertices of S share an edge. In a recent paper ([Has96]), it was shown that, unless
P = NP, the MIS problem has no n¢-approximation algorithm for any fixed 0 < e < 1.

The A-MIS problem is the MIS problem restricted to graphs with maximum degree A. For this
problem there exists a simple greedy algorithm with approximation ratio (A +1). In any iteration,
pick a vertex v not yet removed, add it to S, and remove v and its neighbors from the graph. This
greedy algorithm also indicates that a graph of maximum degree A always contains an independent
set of size at least n/(A+1). In fact, it was shown by Turan [T41] and Erdés [E70], that the greedy
algorithm produces an independent set of size at least n/(d + 1), where 0 is the average degree of
the graph. In [HR94] it is shown that the approximation ratio of the greedy algorithm is in fact
(A+2)/3.

The first approximation algorithm for the A-MIS problem, that extended and improved the
greedy algorithm, is due to Hochbaum [H83] and has (A + 1)/2 approximation ratio. Better
approximation algorithms for the A-MIS problem were shown in [BF94, HR94]. The best currently
known algorithm for this problem has approximation ratio roughly A/6 ([HR94]).

We need the following theorem from [ALM™T92].

Theorem 2.2 There exists some € > 0 such that the 4-MIS admits no (1 + €)-approzimation

algorithm, unless P = NP (and hence 4-MIS admits no polynomial approzimation scheme). |

Remark: This result is true for any MAXSNP—hard (or complete) problem such as vertex cover,

max-2sat, and max-cut. (see Theorem 2.1).

2.5 Known algorithms for the MBCS problem

We recall the approximation algorithm presented in [BBH'96]. For a given bipartite graph G,
denote by I; the maximum independent set in G, by I the maximum independent set in G \ I,
by I3 the maximum independent set in G\ ({3 U I5), and so on. The algorithm of [BBH96] is best
explained by the definition of a sequence of (roughly) logn possible algorithms.

Let A(2) be the algorithm that colors the vertices of G with two colors, the larger side of V' by
1 and the smaller side by 2. Let A(3) be the following algorithm: color the vertices of I; by 1, and
then color the vertices of G \ I} by 2 and 3 (i.e., color the larger side in the remaining graph by 2
and the smaller side by 3). In general, for 7 > 3 and for 1 < j < — 2, algorithm A(i) colors the
sets I; with color j, and then colors the larger side of the remaining graph by ¢ — 1 and the smaller
side by . All together, algorithm A(i) uses i colors. Note that we have defined at most |[logn]|

algorithms, because the maximum independent set in any bipartite graph with n vertices contains

Figure 1: The sets of vertices and edges in the gadget corresponding to the edge (z,y).

at least n/2 vertices. Let A’ be the last possible algorithm in this family of algorithms.

Since G is a bipartite graph, it follows that I; > n/2. Therefore, algorithm A(2) is a 3/2-
approximation algorithm. Consider now the following algorithm, denoted by B, that runs algo-
rithms A(2) and A(3) and picks the best solution. The following theorem is proved in [BBH96].

Theorem 2.3 Algorithm B is a 9/8-approzimation algorithm to the MBCS problem. 1

Remark: We can prove some further results (details are omitted). Algorithm A’ (when taken
alone) has an approximation ratio 4/3. Also, it does not help to pick the best of the first 4
algorithms, since it is possible to show that the 9/8 ratio still holds. Thus some new ideas are in

order.

3 A hardness result for the MBCS problem

In this section, we prove that (unless P = N P) the MBCS problem has no polynomial approximation
scheme. We do that by proving an L—reduction from the 4-MIS problem to the MBCS problem (hence
showing that the MBCS problem is MAXSNP—hard). By Theorems 2.1 and 2.2 the hardness result is
implied.

3.1 The construction — the function R

Let G(V, E) be an instance of the 4-MIS problem. Thus, the maximum degree in G is bounded by
4. The R function should map @ into a graph G which is an instance of the MBCS problem. In this

subsection we describe G.

The graph G contains a vertex corresponding to each vertex in V and these vertices form an
independent set. We assume an order on the vertices of G. Whenever we consider an edge (z,y) € £
we assume that < y. The construction involves adding a gadget for each edge e = (x,y) € E.
Each gadget is composed of twelve independent sets of vertices containing no internal edges (edges
only cross from one different set to the other). The sets of vertices corresponding to different edges

are disjoint.

Before describing the sets of vertices and the edges of any gadget we need some definitions. We
say that two (independent) sets A and B are cliqued, if every vertex in A is connected to every
vertex in B that is, the sets A and B induce a complete bipartite graph. We say that the two sets
are matched if |A| = |B| and every vertex x in A has a single neighbor m(z) in B, that is, the sets
A and B induce a perfect matching. The sets and edges in the gadget corresponding to the edge

e = (z,y) are as follows.

Main and matched sets:

1. A set XY X of 3 vertices and a matched set m(XY X) of 3 vertices.
The sets XY X and m(XY X) are matched.

2. A set XYY of 3 vertices and a matched set m(XYY') of 3 vertices.
The sets XYY and m(XYY) are matched.

3. A set XY of 6 vertices and a matched set m(XY') of 6 vertices.
The sets XY and m(XY') are matched.

Imposing sets:

1. A set I; (XY X) of 18 vertices and a set I5(XY X) of 9 vertices.
The two sets I1(XY X) and I1(XY X) are cliqued.

2. A set I1(m(XY X)) of 6 vertices and a set Io(m(XY X)) of 3 vertices.
The sets [;(m(XY X)) and I,(m(XY X)) are cliqued.

3. Two sets I;(XY) of 24 vertices and I;(m(XY')) of 12 vertices.

Additional edges between the sets:

1. The vertex z is connected to all 3 vertices of XY X.
The vertex y is connected to all 3 vertices of XYY

2. The sets XY X and XY are cliqued.
The sets of XYY and XY are cliqued.

10

3. The sets XY X and I,(XY X) are cliqued.
The sets m(XY X) and Iy(m(XY X)) are cliqued.

4. The sets XY and [;(XY) are cliqued.
The sets m(XY') and I;(m(XY)) are cliqued.

This completes the description of the gadget corresponding to each edge e = (z,y) and the
description of the R—function. The above sets depend on e, that is, there is such a gadget for
every edge e € E. We avoid adding e as a subscript in these sets, for the simplicity of notation. In
order for the R function to be valid we demonstrate a 2 coloring for G proving that the graph G
is a bipartite graph.

Claim 3.1 The graph G is bipartite.

Proof: Color the independent set corresponding to V', and the six sets m(XY X), m(XYY), XY,
L(m(XY X)), I;(m(XY)) and I,(XY X) by 1. Color the rest of the vertices in G by 2. Since all
the edges defined above connect vertices colored by 1 with vertices colored by 2, it follows that this

is a legal 2—coloring for G. |

3.2 The intuition behind the construction

The goal of the construction is to enable us to define the right function S. This will be explain in

the next subsection. Here we give some intuition.

The role of the imposing sets is to force a situation in which some sets cannot be colored by a
specific color. For example, it will be shown that in an optimal coloring the imposing set I5(XY X)
is colored by 2. Counsequently, the set XY X cannot be colored by 2. In general, in an optimal
solution, all the sets of type I are colored by 1 and all the sets of type I are colored by 2.

The role of the matched sets is to assure that the sum coloring of two matched sets is fixed in
any optimal coloring. For example, if a vertex in XY X is colored by 1, then its matched vertex
is colored by 3, and vice versa (recalling that these two sets can not be colored by 2 because of
the two imposing sets Io(XY X) and Io(m(XY X))). Thus every pair in XY X and m(XY X) adds
exactly 4 to the sum coloring in an optimal coloring and the contribution of XY X and m (XY X)
is fixed.

Now let us explain the main idea in the construction. Let z and y be two vertices adjacent in
G (i-e., (z,y) € E). We will show that we lose in the sum coloring if both x and y are colored by 1.
Indeed, say that both z and y are colored 1, and consider the colors of XY, XY X, XYY. In the
best coloring XY X is colored by 3 and XYY by 2. Therefore, since the set I1(XY") is colored by
1, it follows that XY is colored by at least 4. On the other hand, if one of # and y is not colored
by 1, we may gain by assigning XY a color less then 4. This follows since XY X and XYY will

“waste” only one of the colors 2 and 3. Hence, it is possible to color XY with either 2 or 3.

11

Therefore, a “good” sum coloring would color by 1 an independent set in G. In addition, a
“good” sum coloring would strive to color as many vertices of G' as possible by 1. It therefore pays
to color as large as possible independent set in G by 1. Thus, a “good” approximation for the MBCS

problem implies a “good” approximation for the 4-MIS problem.

3.3 The function S

We need the following definition for the construction of S. A coloring f of the vertices in G is

proper, if the two following properties hold for every edge.

Imposing properties:

1. The sets [1(XY X), 1 (m(XY X)), [L(XY), and I; (m(XY)) are colored by 1.
2. The sets Io(XY X) and Io(m(XY X)) are colored by 2.

Independence property:
All the vertices of G that are colored by 1 in f form an independent set in G.

The process of constructing S is as follows. We start with any feasible coloring f of G. We then
show in five stages that f can be transformed to a proper coloring f such that the sum of colors
in f is no larger than the sum of colors in f (SC(f) < SC(f)). The mapping S is now defined by
choosing the set of vertices in G that are colored by 1 by f denoted by I;(f) Note, that by the

independence property, I1(f) is also an independent set in G.

In the first stage we transform f into f; such that all the vertices in any independent set in any
gadget are colored by the same color. In the second stage, we transform f; into a “locally minimal”
coloring fo. That is a coloring in which each set in the gadget is colored by no more than k£ + 1
where k is the number of neighboring sets to this set. In the third stage, we show how to transform
fo2 into a coloring f3 such that the imposing properties hold. In the forth stage, we transform f3
into a coloring f4 in which all the sets XY X and XYY in all the gadgets are colored by no more
than 3. Finally, in the fifth stage we transform fs into the desired coloring f by showing how to
achieve the independence property. In all five stages the new coloring has no worse sum coloring
then the previous one. Fix an edge e = (z,y), the five stages are stated in lemmas 3.2, 3.3, 3.4,
3.5, and 3.6.

Lemma 3.2 Let f be a legal coloring of G. Then there exists a coloring f1 of G such that

1. All the vertices in any set in the gadget are colored by the same color.

2. 8C(f1) < 8c(f).

3. The wvertices corresponding to the vertices of G are colored the same in both f and fi.

12

Proof: Let A be one of the imposing sets in the gadget. Let ¢ be the minimum color of any vertex
in the set A. Color all the vertices in A by ¢. Since all the vertices in A are connected in the
same fashion to the vertices outside of A, it follows that this coloring is legal. Let A and B be two
matched sets in the gadget. Let © € A and v € B be two matched vertices such that the sum of
their colors is minimal. Color all the vertices of A by the color of u and all the vertices of B by
the color of v. Since any pair of matched vertices in A and B are connected in the same fashion to
the vertices outside A and B, it follows that this coloring is legal. Thus the first property holds.
The second property follows since we did not increase the sum coloring of any imposing set and
any pair of matched sets. The third property follows since we did not touch the vertices of G. 1

Lemma 3.3 Let f1 be the coloring of G constructed from f as implied by Lemma 3.2. Let A be
one of the sets in the gadget. Let k be the number of neighboring sets of A. (For that purpose, we
consider x and y as sets of size 1. For example, if A = XY X then k = 4). Then there ezists a
coloring fa of G such that

1. The color of A is at most k + 1.

2. 8C(f2) < 8C(f).

3. All the properties of f1 remain.

Proof: The neighboring sets of A can occupy at most k different colors. Hence, one color less than
or equal k£ + 1 is legal for A. If A is colored by a color larger than k + 1, re-color it by this free
color. Thus the first property holds. The second property follows since we did not increase the sum

coloring of any set. The third property follows since we did not touch the vertices of G. |

Lemma 3.4 Let fy be the coloring of G constructed from f as implied by Lemma 3.2 and Lemma 3.3.
Then there exists a coloring fs of G such that

1. The imposing properties hold for fs.

2. 8C(f3) < 8C(f).

3. All the properties of fo remain.

Proof: We first show how to color the I;-type sets by 1 without increasing the sum coloring. By
Lemma 3.3, we get that the color of I,(XY X) is at most 3 and the color of I; (XY X) is at most 2.
If I, (XY X) is not colored by 1, then re-color it by 1. In case I5(XY X) was colored by 1, re-color it
by the smallest legal color. This smallest color is at most 3. This results in a legal coloring in which
I,(XYX) is colored by 1. Since |[1(XY X)| > 2|I5(XY X)| and since we gained |I; (XY X)| and
lost at most 2|Io(XY X)|, it follows that the new coloring has a sum coloring which is no worse than
the previous sum coloring. Similar reasoning shows how to color the sets I (m(XY X)), I, (XY),
and I)(m(XY)) by 1.

13

We now show how to color the I-type sets by 2 without increasing the sum coloring. If
I,(XY X) is not colored by 2 then it is colored by 3 (by Lemma 3.3). If this is the case, re-color
I,(XY X) by 2. As a consequence, we might need to change the color of XY X from 2 to 5. Since
|Ix(XY X)| > 3|XY X], it follows that the new coloring has a sum coloring which is no worse than
the previous sum coloring. By similar reasoning, we can re-color I5(m(XY X)) by 2 if it is not
colored by 2. This is because |Io(m(XY X))| > |m(XY X)| and re-coloring Io(m(XY X)) by 2

would increase the color of m(XY X) from 2 to 3 at most.

We use the above two transformations to get a coloring f3 for which the imposing properties

hold without increasing the sum coloring and without changing the color of any vertex in G. |

Lemma 3.5 Let f3 be the coloring of G constructed from f as implied by Lemma 3.2, Lemma 3.3,
and Lemma 3.4. Then there exists a coloring fy 0fC~1Y such that

1. The sets XY X and XYY 1in are colored by at most 3.

2. 8C(fs) < SC(f).

3. The set of vertices colored 1 fy is a subset of the vertices colored 1 in f3.

Proof: Assume that there exist sets XY X or XYY that are colored by 4 or more. Re-color
(simultaneously in all gadgets) all these XY X and XYY sets by 1, the corresponding m (XY X)
sets by 3, and the corresponding m(XYY) sets by 2. Note that the color of XY X and XYY does
not conflict with the color of XY: XY is not colored by 1 because of I;(XY). Now, re-color by
4 any vertex x or y that is colored by 1 such that its corresponding set XY X or XYY is colored
by 1 as well. We claim that the sum coloring of the new coloring is no more than the sum coloring
of the previous coloring. This follows since for any vertex x that was re-colored from 1 to 4, its
corresponding XY X was re-colored from 4 to 1, and m(XY X) from (at least) 1 to 3. Thus we
gain 3XY X =9 and lose at most 2m (XY X) + 3 = 9. The analysis for a vertex y is similar. |

We are now ready to describe the fifth stage. For a coloring g, Let I1(g) be the set of vertices
in G colored by 1 in g.

Lemma 3.6 Let f, be the coloring of G constructed from f as implied by Lemma 3.2, Lemma 3.3,
Lemma 3.4, Lemma 3.5 and Lemma 3.6. Then there exists a coloring f Ofé such that

1. The independence property holds for f Moreover, if Il(f) 1s the set of vertices in G colored
by 1 by f, then I,(f) C I (f).

2. The imposing property holds for f

3. 8C(f) < sc(f).

Proof: For the independence property, we need to change colors so that no two vertices z and y
that are adjacent in G are colored by 1. Recall that by Lemma 3.2 all the vertices in any set are

14

colored by the same color and that this color is locally minimal by Lemma 3.3 (that is the color
of each set is no more than k + 1, if the set have k£ neighboring sets). We perform the following

changes (iteratively) for every pair of vertices z and y that are colored by 1 and are adjacent in G.

First note that XY X is colored by 3. This follows since XY X is not colored by 1 due to z, is
not colored by 2 due to Io(XY X), and is not colored by 4 or more due to Lemma 3.5. We now
show how to color XYY by 2, without increasing the sum coloring. Supposed that XYY is not
colored by 2. Re-color XYY by 2, m(XYY) by 1, XY by 3, m(XY) by 2, XY X by 1, m(XY X)
by 3, and z by 4. Note that we gain at least 3 in the sum coloring for the re-coloring of the vertices
in XYY and lose only 3 for re-coloring . Thus, x is not colored by 1 anymore. Assume now that
all the vertices in XYY are colored by 2. It is now necessarily the case that XY is colored by at
least 4. This is because XY is not colored by 1 due to I1(XY), is not colored by 3 due to XY X,
and is not colored by 2 due to XYY. Our final re-coloring is as follows. We re-color XY by 3,
m(XY) by 2, XY X by 1, m(XYX) by 3, XYY by 1, m(XYY) by 2, and both z and y by 4. We
gain at least 6 for the re-coloring of the vertices in XY and lose at most 6 for the re-coloring of x

and y.

In the transformations described above we did not increase the sum coloring. Moreover, the
only changes in the colors of vertices in G are from color 1 to color 4 proving the first claim of the

lemma. |

The function S on any legal coloring f of G is defined as follows. Let f be the proper coloring

constructed from f as implied by Lemmas 3.2, 3.3, 3.4, 3.5, and 3.6. Let I (f) be the set of vertices
colored by 1 in f . By Lemma 3.5, this is a feasible independent set. Then

S(f)=1L(f)

3.4 The L—reduction properties

We now turn to prove the two L—reduction properties. Let OPT be the minimum sum coloring in
G and let MIC = SC(OPT). The next lemma proves the first property of the L-reduction.

Lemma 3.7 There exists a constant o such that MIC < « - MIS(G).

Proof: First note that the degrees in the graph G are at most 4. Consequently, MIS(G) > n/5.
Also note that G has O(n) vertices. This is because G has O(n) edges, and G has O(1) additional
vertices per any edge in G. Now since G is a bipartite graph and therefore can be colored by 1 and
2, it follows that MIC = O(n). These two facts imply the first property. |

For the second property of the L-reduction, we need to show the existence of a constant § such
that for any legal coloring f of G the following holds: MIS(G) — S(f) < B(SC(f) — MIC). We prove
this inequality with # = 1. The proof uses the following two claims. Let I; be the maximum

independent set in G.

Claim 3.8 MIC< 135-FE +2n — I;.

15

Proof: Color I1 by 1 and the rest of the vertices in G by 2. Let (x,y) € E, note that = and y are
not both colored by 1 since [; is an independent set. We first color the imposing sets of type I; by
1 and the imposing sets of type Is by 2. The contribution of the imposing sets to the sum coloring
peredgeis18-14+9-246-1+3-24+24-1412-1 = 84. Now counsider the following three possible

cases.

1. Vertex x is colored by 1 and vertex y is colored by 2. Color XY X by 3, m(XY X) by 1, XYY
by 1, m(XYY) by 2, XY by 2, and m(XY') by 3.

2. Vertex z is colored by 2 and vertex y is colored by 1. Color XY X by 1, m(XY X) by 3, XYY
by 2, m(XYY) by 1, XY by 3, and m(XY) by 2.

3. Both vertices z and y are colored by 2. Color XY X by 3, m(XYX) by 1, XYY by 1,
m(XYY) by 2, XY by 2, and m(XY') by 3.

The contribution of all the matched sets to the sum coloring in all three cases is 3(1 4+ 3) + 3(1 +
2) + 6(2 + 3) = 51. All together, each gadget in G contributes 135 to the sum coloring. Since the
vertices of G contribute 2n — I 1 to the sum, the claim follows. |

Now let f be an arbitrary coloring of G and let f be its corresponding proper coloring. Let
I,(f) be the set of vertices colored by 1 in f, and thus S(f) = I,(f).

Claim 3.9 SC(f) > 135 E + 2n — L,(f).

Proof: Since f is a proper coloring, the contribution of the imposing sets to the sum coloring per
edge is 84 as was shown in the previous claim. Now fix an edge and consider the three pairs of

matched sets.

1. The sets XY X and m(XY X) contribute at least 3 - (1 + 3) to the sum coloring. This is

because both sets can not be colored by 2.

2. The sets XYY and m(XYY) contribute at least 3 - (1 + 2) to the sum coloring. This is
because one set must be colored by 2.

3. The sets XY and m(XY') contribute at least 6 - (2 4+ 3) to the sum coloring. This is because
both sets cannot be colored by 1.

All together the contribution of the matched sets to the sum coloring per edge is at least 51. The

lower bound derived so far is 135 - E. The claim follows since the set G'\ I;(f) contributes at least

2n — 2I1(f) to the sum coloring. |

Lemma 3.10 MIS(G) — S(f) < SC(f) — MIC.

16

Proof: The following inequalities are implied by Lemma 3.6 Claim 3.8, and Claim 3.9.

SC(f) —MIC > SC(f)—MIC
> (135-E+2n—I1,(f)) — (135- E+2n — 1))
MIS(G) — S(f) .

We completed constructing a valid L-reduction from the 4-MIS problem to the MBCS problem.

The following theorem follows from Theorems 2.1 and 2.2.

Theorem 3.11 There ezists an € > 0 such that there is no (1 + €)—ratio approzimation algorithm
for the MBCS problem unless P = NP. |

4 Improved approximation algorithm for MBCS

In the previous section we have shown that there exists some € > 0 such that the MBCS problem has
no (1+ €)-approximation algorithm. However, the precise threshold for the approximation is yet to
be determined. We take a further step in this direction. In this section, we present a new algorithm
C that utilizes a new procedure Neig. We prove that this procedure, combined with algorithms
A(2), A(3), and A(4) (see section 2.5) yield a 10/9-approximation algorithm for the MBCS problem.
This improves the previous 9/8-approximation algorithm of [BBH™96].

4.1 Some intuition

In this subsection, we reveal some of the intuition behind our algorithms. For that end, we relay
on Figure 2. Indeed, let I; be a maximum independent set in G, and let [ll and I! be its respective
sides. Let Z (resp. W) be the larger (resp. smaller) of the two sides in V' \ I;.

In the 9/8—ratio approximation algorithm of [BBH"96] the following lower bound was used
for the optimum sum coloring. At best, the optimum algorithm can pick a “good” maximum
independent set I7 in G, so that all the remaining vertices of the graph will form an independent

set I3 =V \ I;. This gives a 2-n — I =2 -n — I; lower bound for the optimum sum.

Let I3 be the maximum independent set in ZUW . Our aim is to prove that either (Z+ W) —1I,
is “large”, or one of the algorithms A(2) or A(3) or A(4) has approximation ratio better than 9/8.
This is done as follows.

1. We may assume that (the size of) Z roughly equals (the size of) W, for otherwise, A(3) has
good ratio (for example, if W = (), then A(3) is optimal.)

2. Next, we may assume that Is, the maximum independent set in W U Z, is not very large.
For example, if I, = ZU W, clearly A(3) is again optimal. Even if I is slightly smaller than

17

Z UW, coloring G with 4 colors using Algorithm A(4), gives a good approximation, because

the sets colored 3 and 4 are very small.

3. Finally, we may assume that W is not too small (and therefore Z is not very small either).
To understand that consider the case where W and Z are almost empty. Clearly, in this case

we have colored almost all the vertices with color 1, thus resulting in a “good” coloring.

Note by 2 and 3 above, that we get that (Z + W) — I is large, as required. This means that
there is no “large” independent set in the graph induced by Z U W. Now, if the optimum wants to
match the lower bound of 2 - n — I;, this means that many vertices of Z U W should be colored 1
in the optimum coloring. Thus, the main idea is to define a new procedure, Neig, that starts with
the coloring of A(3), using some arbitrary maximum independent set I; with some corresponding
Z and W, and tries to find a good candidate subset S C Z U W, to be recolored by 1. Note that

automatically, all the neighbors of S need to be colored by some color different than 1.

If such a good set S does not exist, it means that we can increase (and therefore improve) the
lower bound 2 - n — I for the optimum coloring. The main difficulty hence, is choosing a good S.
Although we are not able to compute the best set S to be recolored by 1, we can find a good “half”
of S. Namely, we can find the best set Sy C W, or Sz C Z to be recolored 1, so as to reduce the
sum as much as possible. Thus, we do not choose the best S to move from colors 2 and 3 to color
1, but we can choose a subset Sy or Sz, that reduces the sum by at least “half” of the reduction
in the best choice of S.

4.2 An algorithmic tool

We now describe the new tool used in our approximation algorithm. Define the 2-Neighborhood
problem as follows. Given a bipartite graph G(V},V;, E) we look for a set S; C V; such that
ds, = 25, — N(S5;) is maximum. Recall that N(S;) is the set of vertices outside S; that have at
least one neighbor in S;. We note that the order in which V; and V, are specified in the problem-
presentation is important, that is the solution S; is a subset of V.

A generalization of this problem, called the selection problem was first discussed by Rhys and
Balinski. Note that this problem is also called “a provision problem” in Chapter 5 of [L76]. In the

selection problem, the goal is to maximize the following objective:

> aiwi — Y biyi,

where z; is 1, only if the respective vertex in the left side is included, and y; is 1 only if the respective
vertex on the right side in included. The restriction in the problem is that a vertex on the left is
included, only if all its right-side neighbors are included as well. Thus, it is not hard to see this
problem can be solved via flow methods (combined with binary search procedure). The currently

fastest algorithm for the selection problem is given in [GGT89]. For the sake of completeness, we

18

Figure 2: The sets in the bipartite graph G used by Procedure Neig.

give a brief description of the flow algorithm that solves our special case of the selection problem,
the 2-Neighborhood problem.

We construct the following directed bipartite graph with capacities, denoted by G' = (V', E').
The set of vertices V' contains V' and two additional vertices: a source s and a sink t. The set of
edges E' contains all the edges in F directed from Vj to V,. with capacity co. In addition, £ contain
V, edges with capacity 1 emanating from s to all the vertices of V; and V,. edges with capacity 1/2
emanating from all the vertices in V, to .

We now show how to deduce the solution for the 2-Neighborhood problem from a minimum cut
in G'. Let V;* and V,® be the subsets of V; and V; that are with s in the same side of the minimum
cut. Let V' and V! be the complementing sets. Note that the cut containing s alone in one side is
finite. Therefore, any vertex in V;* is not connected to any vertex in V!, since otherwise the capacity
of the cut is co. Thus, the capacity of the cut is given by the following expression: V' +V,*/2. The

chosen cut minimizes this expression, and therefore maximizes the following expression:

S

2(Vi-Vi-) =2 - v

Since the capacity of the minimum cut is finite, it follows that no vertex in V! has a neighbor in
V;*. Moreover, every vertex in V,’ has at least one neighbor in V}*, because otherwise moving this
vertex to V;! would decrease the capacity of the cut. Therefore, V;* = N(V}*) which implies that
V;? is the solution for the 2-Neighborhood problem.

19

4.3 Procedure Neig and Algorithm C

Procedure Neig utilizes the solution to the 2-Neighborhood problem described in section 4.2. We
now define subsets of the vertices of the graph G' and subgraphs of G used by procedure Neig.

1. I} — the maximum independent set in G.
I{ = I; NV, — the left side of I;
IT = I NV, — the right side of I;.

2. Z — the larger side of G'\ I.
W — the smaller side of G'\ I;.
Without loss of generality, assume that Z C V; and W C V.

3. Gz = (Z,I{, Ez) — the (bipartite) subgraph induced by Z and I7.
Gw = (W, I}, Ew) — the (bipartite) subgraph induced by W and I}.

4. Sy — the set maximizing dg, = 2Sz — N(Sz) in G 7.
Sw — the set maximizing dg,, = 2Sw — N(Sw) in Gw.
Note that W plays here the role of the left side of the 2-Neighborhood problem.

5. N1(Sz) = N(Sz) N I{ - the neighbors of Sz in I7.
N1 (Sw) = N(Sw) NI} — the neighbors of Sy in 1.
Note that N(Sz) (N(Sw)) in G can contain vertices from W (Z). Therefore, we need to
define N1(Sz) (N1(Sw))-

Procedure Neig:

If dSz > dSW: If dSZ < dSW:

1. Color It USZz U (I \ N1(Sz)) by 1. 1. Color IT U Sy U (I} \ N1(Sw)) by 1.
2. Color W U Ny(Sz) by 2. 2. Color Z U N1(Sw) by 2.

3. Color Z \ Sz by 3. 3. Color W'\ Sy by 3.

For the case ds, > dg,, , procedure Neig can be described as follows. Start with the initial
coloring of A(3), i.e., I; is colored by 1, Z (the larger of the two remaining sides) is colored by 2,
and W is colored by 3. Thus SC(A(3)) = I + I +2Z + 3W. Next, re-color Z by 3 and W by 2,
loosing Z — W in the sum coloring. Next, change the color of Sz from 3 to 1 gaining 257 in the
sum coloring. This forces all the neighbors of Z in I, N1(Sz), to be colored by a color different
than 1, thus color them by 2. Here we lose Ni(S%) in the sum coloring. The net profit in the sum
coloring is therefore 25, — N1 (Sz)+W —Z = dg, + W — Z. Similarly, it can be shown that for the
case dg,, > dg,, the net profit is dg,, . (This case is better for us since we do not need to switch

the colors of Z and W, loosing Z — W.) Thus, we proved the following proposition.

Proposition 4.1

20

(1). If ds, > dg,, then SC(Neig) = SC(A(3)) —dgs, + (Z —W).
(2). If ds,, > ds, then SC(Neig) = SC(A(3)) — ds,, .

We conclude this subsection with the description of algorithm C. It clearly follows that the
algorithm has a polynomial running time.

Algorithm C

e Run algorithms A(2), A(3), A(4), and Procedure Neig.

e Pick the solution whose sum coloring is the minimum among the four coloring solutions.

4.4 Analysis

In this subsection we analyze the approximation ratio of Algorithm C. All through the analysis, let
Z=Mn—-11)/2+¢egn and W = (n — I)/2 — eqn. The term e4n quantifies the extent in which the
graph induced by ZUW is unbalanced. This is the graph resulting once the maximum independent
set I is deleted from G.

Outline of the analysis:

o If Z — W = 2¢4qn is “large” enough, then already min {SC(A(2)),SC(A(3))} yields the 10/9-
ratio.

e Otherwise, Z — W is not too “large”. If Iy is “large” enough, then this time already
min {SC(A(2)),SC(A(4))} yields the 10/9-ratio.

o Otherwise, W is almost as “large” as Z and I is not too “large”. If W is “small” enough and
therefore Z is also “small” and I is “large” enough, then SC(A(3)) alone yields the 10/9-ratio.

e Otherwise Z — W and I» are not too “large” and W is not too “small”. If the optimal
algorithm does not deviate much from algorithm A(3), then again min {SC(A(2)),SC(A(3))}
yields the 10/9-ratio.

e Finally, if all the previous conditions do not hold, we use the new procedure Neig and show
that min {SC(A(2)),SC(Neig)} yields the 10/9-ratio.

The analysis is therefore partitioned into five cases. In each case, we make some assumption A,

proving that under this assumption, the 10/9—ratio is guaranteed. We, therefore, continue the
analysis assuming that A does not hold.

21

Case 1: ¢4 > 1/40.

In this case, consider the performance of the best of the two algorithms A(2) and A(3). Clearly
SC(A(2)) < 3n/2 (see section 2.5). Algorithm A(3) colors I} by 1, Z by 2, and W by 3. Hence,

SC(A(3)) = L1 +2Z+3W
- 5”—3[1 e
= =5 -«
-3
< %_n/gm_

On the other hand, the optimal coloring, OPT, colors at most I; vertices by 1 and the rest of the ver-
tices by at least 2. This implies that SC(OPT) > 2n — I;. It follows that SC(A(3))/SC(OPT) increases
when I; decreases. Therefore, The worst case for algorithm C is when SC(A(2)) = SC(A(3)) = 3n/2.
We get 3n/2 = (5bn —31,)/2 —n/40, which implies that I; = 13n/20. For this value of I; the lower
bound for SC(OPT) is 27n/20. The 10/9 bound follows since

SC(C) _ 3n/2 10

SC(OPT) — 27n/20 9 °

Hence, we may continue the analysis under the following assumption.

Assumption 1 ¢; <1/40. Let € = 1/40 — 4.

Case 2: IQZZ"‘%“F%TL.

We prove here, in a proof similar to case 1, that the best of Algorithms A(2) and A(4) always
has a 10/9—ratio. Algorithm A(4) has the following properties. It colors I; by 1, I, by 2, at least
half of the remaining (n — I; — I5) vertices by 3, and the rest of the vertices by 4. The worst case
for A(4) is when I is minimal, in this case it happens when Iy = Z + W/3 + (2en)/3. This gives
the following upper bound:

I - I I — I
SC(A(4)) < L +2I,+3 (%) +4 (%)

W 2en W en W en
< LH+2(Z+—+ — —_ - — 4| — — —
< 1+<+3+3>+3<3 3>+ <3 3>
= 5L +2Z+3W —en

on — 31
= %—(e—l—ed)n
- 571—311 n
N 2 40

The 10/9—ratio follows as in case 1, where again we choose the best between two algorithms one
with SC = (5n — 31;)/2 — n/40 and one with SC = 3n/2.

Assumption 2 I, < Z + % + %n

22

Case 3: W < (5en + 6eg)n.

In this case we consider only the performance of Algorithm A(3). Recall that SC(A(3)) =
I +2Z + 3W, while SC(OPT) > 2n — I;. Therefore,

SC(AG)) _ L +2Z+3W
SC(OPT) ~ on — I
w
n+Z+W
W
+—
n 4+ 2W + 2e4n
< 1+ a{ i }
max
W (n+2W + 2¢e4n
< 14 o€ + beg '
14 10e + 14eq

= 1+

The last inequality follows since the expression increases with W, and in this case W is bounded
by (5e + 6€4)n. Since e = (1/40) — eq4, it follows that

SC(A(3))< 1/8 +¢q < 6/40 10

SC(OPT) — 1+1/4+4eg — 1+14/40 9~

The last inequality follows since the expression increases with €4 and ¢4 < 1/40 by Assumption 1.
Assumption 3 W > (5e + 6eq)n.

Before dealing with the forth case, we need to prove some claims. The following corollary is

derived directly from Assumptions 2 and 3.
Corollary 4.2 Z+ W — I, > (¥ +4eg)n. 1

Note the implication of Corollary 4.2. Suppose that the number of vertices colored by 2 in OPT
roughly equals I5. Then since OPT cannot color more than I; vertices by 1, the corollary indicates
that roughly Z + W — I vertices in OPT are colored by at least 3. Taking this in mind, we make
the following definitions. Let I be the set of vertices colored by 1 in OPT. Let A be the set of
vertices from Z U W that are colored by 1 in OPT. That is, A = I} N (Z U W). Note that the set
Ni(A) = N(A)N1I; is thus not colored by 1 in OPT. More precisely, the set of vertices not colored by
1 in OPT, denoted by ALT, equals, (Z UW UN;(A)) \ A. The next claim states that the maximum
independent set, MIS(ALT), in the graph induced by ALT is “small enough”. The corollary that

follows the claim indicates that “many” of the vertices of ALT are colored by at least 3.
Claim 4.3 MIS(ALT) = MIS((ZUW UNi(A))\ 4) < Z+ W — (5 + deq) n + Ni(A).

Proof: We have: MIS((ZUW UN(A))\ A) < MIS((ZUW UN;(A)) < MIS(ZUW)+ N1(A).
Now, the desired inequality follows from Corollary 4.2, since MIS(ZUW) =1,. |

Corollary 4.4 In OPT, ezactly I; — N1(A)+ A vertices are colored by 1 and at least (8¢/3+4eq)n—A

vertices are colored by 3.

23

Proof: The first part of the claim is by definition. For proving the second part of the corollary,
note that the number of vertices outside I{ is (Z + W + Ni(A) — A) and that the bound on the
independent set of G\ I is (Z + W — (8¢/3 + 4€¢4)n + N1(A)). Subtracting these two expressions
gives (8¢/3 +4eq)n—A. 1

Thus the following bound on the optimal sum is derived.

SC(OPT) > (I — Ny(A)+ A) +2 (z LW (§ 4 4ed> n+ N (A)> (1)

3
3 ((% +4ed> n— A>
8e

= 2n-— Il — (2A— Nl(A)) + <? +46d> n .
We are now ready to deal with the forth case.

Case 4: 2A — Ni(A) < (2e + 4eg)n.
Plugging this upper bound in inequality 1 gives,

2
SC(OPT) > 2n — I + %n . 2)

Recall, that the usual lower bound on SC(OPT) is 2n — I, and thus this lower bound is an im-
provement. As in case 1, we consider the performance of the best of the two algorithms A(2)
and A(3). It turns out that the ratio A(3) increases when I; decreases. Hence the worst case
is when SC(A(2)) = SC(A(3)) = 3n/2. We get 3n/2 = (5n — 311)/2 — eg4n, which implies that
I, = (2/3 — 2¢4/3)n. By inequality 2 we get that
2en 4n 2(1/40)n 27n
SC(OPT) > 2n — I —_— == — .

(OPT) 2 2n = ht =7 = 5+ =3 20
The 10/9 bound follows as in case 1.
Assumption 4 24 — N;(A4) > (2¢€ + 4eg)n.

We are now ready to complete the analysis of algorithm C. The next case is the remaining case.

Case 5: We now show that under Assumptions 1, 2, 3, and 4 it is enough to consider the combined
performance of procedure Neig and algorithm A(2). Recall that A = I7 N (Z UW) is the subset of
Z UW that is colored by 1 in OPT. Let Ay = ZNA, Ay = WnNA, Ni(Az) = N(Az) NI, and
Ni(Aw) = N(Aw) N I;. It follows from assumption 4 that either 24z — N1(Az) > (e + 2¢4)n or

24w — N1(Aw) > (€ + 2eq)n. Consequently, either dg, or dg,, is greater or equal to (e + 2¢4)n.
This is because procedure Neig finds the sets which maximize expressions of the form 25 — N (S).

24

The worst case happens when only ds, > (e + 2¢4)n. This is because otherwise the gain of

procedure Neig over algorithm A(3) is larger (see proposition 4.1). Hence, by proposition 4.1,

SC(Neig) = SC(A(3))+(Z—-W)—ds,
5n — 31
< % — eqn + 2eqn — (€ + 2e4)n
— 31
= w — (e +eq)n
_ on—3L _n
N 2 40 -

Thus, as in Case 1, the best of Procedure Neig and Algorithm A(2) yields the 10/9—ratio. We
have completed the proof of the following theorem.

Theorem 4.5 Algorithm C is a polynomial 10/9-approzimation algorithm for the MBCS problem.
|

5 Discussion and future work

We have proven that the MBCS is N P—hard, and furthermore, admits no polynomial time approx-
imation scheme, unless P = NP. We have also given an improved 10/9—ratio approximation
algorithm for MBCS.

Some open questions to be addresed in future work.

e Determine the best constant-ratio approximation for MBCS. For example, is the 10/9-ratio
algorithm the best possible? A good direction to check is the following: is it possible to
choose a better set S to be moved away from Z U W, and be recolored 1 in Neig? Note
that we re-color by 1 a set Sy or Sz that is entirely contained in a single side (left side or
right side). It may be possible to gain by choosing to be colored 1 an (independent) set S
containing vertices of both Z and W. Choosing such a good S seams a challenging task.

e Give good approximation algorithms for MCS on other families of graphs, such as interval
graphs. An important contribution was done in that respect in [NSS94], where a ratio 2
algorithm was presented for MCS on interval graphs. Can this ratio be improved? Furthermore,

no MAXSNP-hardness result is known for MCS on interval graphs.

25

References

[ALM™92] S. Arora, C. Lund, R. Motwani, M Sudan, and M. Szegedy. Proof verification and

[AS90]

[BPY92]

[BST96]

[BBH*96]

[BF94]

[BCC+94]

[CM84]

[Chr76]

[E70]

[EKS]

[FK96]

[GGT8Y]

intractability of approximation problems. In Proc. of the 33’rd IEEE Symp. on the
Foundations of Computer Science, pages 14-23, 1992.

B. Awerbuch and M. Saks. A Dining Philosophers Algorithm with Polynomial Response
Time. In Proc. of the 381’st IEEE Symp. on the Foundation of Computer Science, pages
65-74, 1990.

J. Bar-Ilan and D. Peleg. Distributed Resource Allocation Algorithms. In Proc. of the
Sixzth International Workshop on Distributed Algorithms, pages 276-291, 1992.

A. Bar-Noy, H. Shachnai, and T. Tamir. On chromatic sums and distributed resource
allocation. In Proc. of the fourth Israel Symp. on Theory and Computing and Systems,
pages 119-128, 1996.

A. Bar-Noy, M. Bellare, M. M. Halldorsson, H. Shachnai, and T. Tamir. On chro-
matic sums and distributed resource allocation. In URL:

http://www.eng.tau.ac.il/ amotz/publications.html.

P. Berman and M. Fuier. Approximating maximum independent set in bounded degree
graphs. In Proc. of the Fifth ACM-SIAM Symp. on Discrete Algorithms, pages 365-371,
1994.

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan.
The Minimum Latency Problem. In Proc. of the 26°th IEEE Symp. on the Theory of
Computing, pages 163-171, 1994.

K. Chandy and J. Misra. The Drinking Philosophers Problem. ACM Trans. Program-
ming Languages and Systems, 6:632—-646, 1984.

N. Christofides. Worst case analysis of a new heuristic for the traveling salesman prob-
lem. Technical report GSIA, Carnegie-Mellon Univ., 1976.

P. Erdos. On the Graph-Theorem of Turdn. In Math. Lapok, 21:249-251, 1970.

P. Erdos, E. Kubicka, and A. J. Schwenk. Graphs that Require Many Colors to Achieve
their Chromatic Sum. Congressus Numerantium, 71:17-28, 1990.

U. Feige and J. Kilian. Zero Knowledge and the Chromatic number. In Proc. of the
11'th IEEE Conference on Computational Theory, pages 278-287, 1996.

G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum flow algo-
rithm and applications. SIAM J. on Comput., 18:30-55, 1989.

26

[Has96]

[H83]

[HR93]

[HR94]

[K89]

[KKKB89]

[KS89)

[L76)

[LYN81]

INSS94]

[PY88]

[T41]

[TEA*89]

J. Hastad. Clique is hard to approximate within n'~¢. In Proc. of the 37’th IEEE Symp.
on the Foundation of Computer Science, 627-639, 1996.

D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6:243-254, 1983.

M. M. Halldérsson and J. Radhakrishnan. Approximating the Chromatic Sum of a
Graph. Japan Advanced Institute of Science and Technology, IS-RR-93-0002f, 1993.

M. M. Halldo6rsson and J. Radhakrishnan. Greed is good: Approximating independent
sets in sparse and bounded-degree graphs. In Proc. of the 26’th IEEE Symp. on the
Theory of Computing, pages 439448, 1994.

E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan University,
1989.

E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms for the Chro-
matic Sum. In Proc. of the First Great Lakes Computer Science Conf., Springer LNCS
507, pages 15-21, 1989.

E. Kubicka and A. J. Schwenk. An Introduction to Chromatic Sums. In Proc. of the
ACM Computer Science Conf., pages 39-45, 1989.

E. Lawler. Combinatorial Optimization Networks and Matroids. Holt Rinehart and
Winston, 1976.

N. Lynch. Upper Bounds for Static Resource Allocation in a Distributed System. J. of
Computer and System Sciences, 23:254-278, 1981.

S. Nicoloso and M. Sarrafzadeh and X. Song. On the sum coloring problem on interval

graphs. Unpublished Manuscript.

C. H. Papadimitriou and M. Yannakakis. Optimization approximation and complexity
classes. In Proc. of the 20’th IEEE Symp. on The Theory of Computing, pages 229-234,
1988.

P. Turdn. An Extremal Problem in Graph Theory. In Mat. Fiz Lapok, 48:436-452, 1941.

C. Thomassen, P. Erdos, Y. Alavi, j. Malde, and A. J. Schwenk. Tight Bounds on the
Chromatic Sum of a Counected Graph. J. of Graph Theory, 13:353-357, 1989.

27

