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AbstractThe problem of minimum color sum of a graph is to color the vertices of the graphsuch that the sum (average) of all assigned colors is minimum. Recently, in [BBH+96],it was shown that in general graphs this problem cannot be approximated within n1��,for any � > 0, unless NP = ZPP . In the same paper, a 9=8-approximation algorithmwas presented for bipartite graphs. The hardness question for this problem on bipartitegraphs was left open.In this paper we show that the minimum color sum problem for bipartite graphs ad-mits no polynomial approximation scheme, unless P = NP . The proof is by L-reducingthe problem of �nding the maximum independent set in a graph whose maximum de-gree is four to this problem. This result indicates clearly that the minimum color sumproblem is much harder than the traditional coloring problem which is trivially solvablein bipartite graphs.As for the approximation ratio, we make a further step towards �nding the precisethreshold. We present a polynomial 10=9-approximation algorithm. Our algorithmuses a 
ow procedure in addition to the maximum independent set procedure used inprevious solutions.
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1 IntroductionOne of the most fundamental problems in scheduling theory is scheduling e�ciently (under someoptimization goals) dependent tasks on a single machine. At any given time, the machine is capableto perform (serve) any number of tasks as long as these tasks are independent. When the servingtime of each task is the same, this problem is identical to the well known coloring problem ofgraphs. The vertices of the graph represent the tasks and an edge in the graph between vertices vand u represents the dependency between the two corresponding tasks. That is, the machine cannotperform the tasks corresponding to vertices u and v concurrently. A similar important applicationarises in the context of distributed resource allocation. Here, the vertices represent processors eachhas one job to execute. An edge between two vertices indicates that the jobs belonging to thecorresponding processors cannot be executed concurrently since they require the usage of the samecommon resource. This problem is known in the literature as the dining (drinking) philosophersproblem ([LYN81, CM84, AS90, BP92]).More formally, the coloring problem can be de�ned as follows. Let G = (V;E) be an undirectedsimple graph with n vertices where V denotes the set of n vertices and E denotes the set of edges.A coloring of the vertices of G is a mapping into the set of positive integers, f : V 7! Z+, such thatadjacent vertices are assigned di�erent colors. We refer to f(v) as the color of v.The traditional optimization goal is to minimize the number of di�erent assigned colors. We callthis problem the minimum coloring (MC) problem. In the setting of tasks system, this is equivalentto �nding a schedule in which the machine �nishes performing all the tasks as early as possible.In the setting of resource allocation, this is equivalent to �nding a schedule in which the lastprocessor �nishes executing its job the earliest. This is an optimization goal that favors the system.However, from the point of view of the tasks (or processors) themselves, we might wish to �nd thebest coloring such that the average waiting time to be served (or to execute the job) is minimized.Clearly, minimizing the average waiting time is equivalent to minimizing the sum of all assignedcolors. The minimum color sum (MCS) problem is de�ned as follows. Let G = (V;E) be anundirected simple graph with n vertices. We are looking for a coloring in which the sum of theassigned colors of all the vertices of G is minimized. That is, the value of Pv2V f(v) is minimized.The minimum color sum problem was introduced by Kubicka in [K89]. In [KS89] it was shownthat computing the MCS of a given graph is NP-hard. A polynomial time algorithm was given forthe case where G is a tree. In [KKK89] it was shown that approximating the MCS problem withinan additive constant factor is NP-hard. There, it was also shown that a �rst-�t algorithm yields a(d=2 + 1)-approximation for graphs of average degree d. Lower and upper bounds on the value ofthe sum coloring in general graphs were given in [TEA+89].In a recent paper, [BBH+96]1, it was proven that the MCS problem cannot be approximatedwithin n1��, for any � > 0, unless NP = ZPP . On the other hand, this paper showed that an1This paper is a combination of the papers [HR93] and [BST96].4



algorithm based on �nding iteratively a maximum independent set is a 4-approximation to theMCS problem. This bound yields a 4�-approximation polynomial algorithm for the MCS problemfor classes of graphs for which the maximum independent set problem can be polynomially ap-proximated within a factor of �. Finally, surprisingly, in [EKS] it was shown that using optimaltraditional coloring as a sub-procedure yields an unbounded approximation although coloring is\harder" than �nding maximum independent set.A special and important sub-class of graphs is the class of bipartite graphs. In a bipartitegraph the set of vertices V is partitioned into two disjoint sets Vl and Vr such that both sets areindependent. That is, all the edges of E connect two vertices one from Vl and one from Vr. ColoringVl by 1 and Vr by 2 yields a 2-coloring of any bipartite graph. Obviously this is the best possiblesolution for the MC problem. However, for the MCS problem the answer is not straightforward.Denote by MBCS the MCS problem on bipartite graphs.Coloring the largest set between Vl and Vr by 1 and the other set by 2 yields a solution to theMBCS problem the value of which is at most 3n=2. Obviously the value of the optimal solution isat least n, and therefore this solution is at least a 3=2-approximation to the optimal solution. Thepaper [BBH+96] presents a better approximation of 9=8 using as a sub-procedure the algorithm for�nding a maximum independent set. In bipartite graphs, �nding maximum independent set can bedone in polynomial time. Therefore, their approximation algorithm is also polynomial.New results: The contributions of this paper are the following two results:� We prove the �rst hardness result for MBCS. We show that the MBCS problem admits nopolynomial approximation scheme, unless P = NP . The proof is by L-reducing the problemof �nding the maximum independent set in a graph whose maximum degree is four to theMBCS problem which implies that MBCS is MAXSNP-hard [PY88]. This result indicates clearlythat the MCS problem is much harder than the traditional coloring problem.� We improve the approximation ratio for the MBCS problem by presenting a 10=9-approximationalgorithm. Our algorithm introduces a new technique. It employs a 
ow procedure in additionto the maximum independent set procedure used in [BBH+96].Max-type vs. sum-type problems: Our impossibility result raises the general question of theconnection between \max-type" and \sum-type" problems. The MC problem is a max-type problemwhereas the MCS problem is a sum-type problem. The input and the feasible solutions for bothproblems are the same, the di�erence lies in the optimization goal. We now examine another pairof problems which relate to each other in a same manner.The Traveling Salesperson problem (TSP) is de�ned on a set of n points with a given symmetricdistance metric (dij). A feasible solution is a tour that visits each point exactly once. The traditionaloptimization goal is to minimize the length of the tour. Thus, the TSP problem is a max-type5



problem. The paper [BCC+94] deals with the Minimum Latency Problem (MLT). The inputs andthe feasible solutions for this problem are as in the TSP problem. Let the latency of a point p bethe length of the tour from the starting point to p. Let the total latency of the tour be the sumof latencies of all its points. The optimization goal of the MLT problem is to �nd a tour whichminimizes the total latency. Thus, the MLT problem is a sum-type problem. Both the TSP andthe MLT problems admit no bounded ratio approximation algorithm, when the distance functionis arbitrary. However, both problems become easier in the metric case when the distances obeythe triangle inequality. In the metric version of the problem, there exist polynomial constant-ratioapproximation algorithms for both problems. The approximation ratio for the metric-TSP problemis 3=2([Chr76]). Whereas the approximation ratio for the metric-MLT problem is constant but notas small as 3=2 ([BCC+94]).For the two coloring problems the story is di�erent. Both the MC and the MCS problems cannotbe approximated within n1�� for any � > 0 unless NP = ZPP [FK96, BBH+96]. However, abig distinction exists in perhaps the easiest case of the coloring problem, namely for bipartitegraphs. The remarkable property found in this paper is that, although the max-type problem, theMC problem, is trivially solvable on bipartite graphs, the sum-type problem, the MBCS problem, isMAXSNP�hard.The above discussion raises the interesting question of classifying problems according to therelationship between their max-type version with the sum-type version. The coloring problem andthe traveling salesperson problem each belongs to a di�erent class.2 Preliminaries2.1 NotationsGiven a graph G(V;E) we use the following notations. For any set S � V , let N(S) be the set ofneighbors of S, i.e., the set of vertices outside S that are adjacent to at least one vertex of S. Wealso use the term S to denote the size of S.For any graph G let MIS(G) denote the largest independent set in G. That is, the largest subsetS � V such that no two vertices of S share an edge. Given a subset X � V we denote by MIS(X)the maximum independent set in the graph induced by X.Given any coloring f of a graph, we denote by SC(f) the sum of colors in f , i.e., SC(f) =Pv2V f(v). When SC(f) = s, we say that f has color sum s (or sum coloring s). When all thevertices in a set S � V are colored by the same color c, we say that S is colored by c.
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2.2 Polynomial approximation schemesWe de�ne approximation schemes for minimization problems, a similar de�nition follows for max-imization problems. Let P be a minimization problem. For any instance x of P , let cOPT (x) bethe value of a minimum solution for x. We say that a polynomial algorithm A has approximationratio r if for any instance x of P , algorithm A computes a feasible solution A(x) with cost cA(x)such that: cA(x)cOPT (x) � r :We say that problem P admits a polynomial approximation scheme, if for any � > 0 there exists apolynomial time approximation algorithm for P , whose approximation ratio is bounded by (1+ �).2.3 L�reductionThe L-reduction ([PY88]) is a tool that helps proving hardness results. Unlike the usual NP -hardness reductions, it \preserves" approximation ratios (in a sense to be described). Therefore, itcan be used in showing that a given problem admits no polynomial approximation scheme.In order to de�ne L-reduction we need the following notations. Let P be an optimization (eitherminimization or maximization) problem. Denote by I(P ) the set of instances for problem P , bysol(P ) the set of feasible solutions of problem P , and by cP (s) the cost function of any feasiblesolution s for P .Suppose now that P andQ are two optimization problems. In order to construct an L�reductionwe need to de�ne two (polynomially computable) functions R : I(P ) 7! I(Q) and S : sol(Q) 7!sol(P ). For any instance x 2 I(P ) let cOPT (x) be the value of the optimal solution for x and letcOPT (R(x)) be the value of the optimal solution for R(x). The two functions R and S are anL�reduction from problem P to problem Q, if there exist two constants � and � such that the twofollowing properties hold:1. cOPT (R(x)) � � � cOPT (x).2. For any feasible solution s 2 sol(Q) of R(x), S(s) is a feasible solution for x andjcOPT (x)� cP (S(s))j � � � jcOPT (R(x))� cQ(s)j :The following theorem is shown in [PY88].Theorem 2.1 Suppose that Problem P admits no polynomial approximation scheme and that Prob-lem P can be L�reduced to problem Q. Then Problem Q admits no polynomial approximationscheme.
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2.4 The MIS and 4-MIS problemsThe Maximum Independent Set (MIS) problem is the following. Given an undirected graph G(V;E)with n vertices, the goal is to �nd a maximum independent set. I.e., a maximum sized set S � Vsuch that no two vertices of S share an edge. In a recent paper ([Has96]), it was shown that, unlessP = NP , the MIS problem has no n�-approximation algorithm for any �xed 0 < � < 1.The �-MIS problem is the MIS problem restricted to graphs with maximum degree �. For thisproblem there exists a simple greedy algorithm with approximation ratio (�+1). In any iteration,pick a vertex v not yet removed, add it to S, and remove v and its neighbors from the graph. Thisgreedy algorithm also indicates that a graph of maximum degree � always contains an independentset of size at least n=(�+1). In fact, it was shown by Turan [T41] and Erd�os [E70], that the greedyalgorithm produces an independent set of size at least n=(� + 1), where � is the average degree ofthe graph. In [HR94] it is shown that the approximation ratio of the greedy algorithm is in fact(� + 2)=3.The �rst approximation algorithm for the �-MIS problem, that extended and improved thegreedy algorithm, is due to Hochbaum [H83] and has (� + 1)=2 approximation ratio. Betterapproximation algorithms for the �-MIS problem were shown in [BF94, HR94]. The best currentlyknown algorithm for this problem has approximation ratio roughly �=6 ([HR94]).We need the following theorem from [ALM+92].Theorem 2.2 There exists some � > 0 such that the 4-MIS admits no (1 + �)-approximationalgorithm, unless P = NP (and hence 4-MIS admits no polynomial approximation scheme).Remark: This result is true for any MAXSNP�hard (or complete) problem such as vertex cover,max-2sat, and max-cut. (see Theorem 2.1).2.5 Known algorithms for the MBCS problemWe recall the approximation algorithm presented in [BBH+96]. For a given bipartite graph G,denote by I1 the maximum independent set in G, by I2 the maximum independent set in G n I1,by I3 the maximum independent set in G n (I1 [ I2), and so on. The algorithm of [BBH+96] is bestexplained by the de�nition of a sequence of (roughly) logn possible algorithms.Let A(2) be the algorithm that colors the vertices of G with two colors, the larger side of V by1 and the smaller side by 2. Let A(3) be the following algorithm: color the vertices of I1 by 1, andthen color the vertices of G n I1 by 2 and 3 (i.e., color the larger side in the remaining graph by 2and the smaller side by 3). In general, for i � 3 and for 1 � j � i � 2, algorithm A(i) colors thesets Ij with color j, and then colors the larger side of the remaining graph by i� 1 and the smallerside by i. All together, algorithm A(i) uses i colors. Note that we have de�ned at most blog ncalgorithms, because the maximum independent set in any bipartite graph with n vertices contains8
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12Figure 1: The sets of vertices and edges in the gadget corresponding to the edge (x; y).at least n=2 vertices. Let A0 be the last possible algorithm in this family of algorithms.Since G is a bipartite graph, it follows that I1 � n=2. Therefore, algorithm A(2) is a 3=2-approximation algorithm. Consider now the following algorithm, denoted by B, that runs algo-rithms A(2) and A(3) and picks the best solution. The following theorem is proved in [BBH+96].Theorem 2.3 Algorithm B is a 9=8-approximation algorithm to the MBCS problem.Remark: We can prove some further results (details are omitted). Algorithm A0 (when takenalone) has an approximation ratio 4=3. Also, it does not help to pick the best of the �rst ialgorithms, since it is possible to show that the 9=8 ratio still holds. Thus some new ideas are inorder.3 A hardness result for the MBCS problemIn this section, we prove that (unless P = NP ) the MBCS problem has no polynomial approximationscheme. We do that by proving an L�reduction from the 4-MIS problem to the MBCS problem (henceshowing that the MBCS problem is MAXSNP�hard). By Theorems 2.1 and 2.2 the hardness result isimplied.3.1 The construction { the function RLet G(V;E) be an instance of the 4-MIS problem. Thus, the maximum degree in G is bounded by4. The R function should map G into a graph ~G which is an instance of the MBCS problem. In thissubsection we describe ~G. 9



The graph ~G contains a vertex corresponding to each vertex in V and these vertices form anindependent set. We assume an order on the vertices of G. Whenever we consider an edge (x; y) 2 Ewe assume that x < y. The construction involves adding a gadget for each edge e = (x; y) 2 E.Each gadget is composed of twelve independent sets of vertices containing no internal edges (edgesonly cross from one di�erent set to the other). The sets of vertices corresponding to di�erent edgesare disjoint.Before describing the sets of vertices and the edges of any gadget we need some de�nitions. Wesay that two (independent) sets A and B are cliqued, if every vertex in A is connected to everyvertex in B that is, the sets A and B induce a complete bipartite graph. We say that the two setsare matched if jAj = jBj and every vertex x in A has a single neighbor m(x) in B, that is, the setsA and B induce a perfect matching. The sets and edges in the gadget corresponding to the edgee = (x; y) are as follows.Main and matched sets:1. A set XYX of 3 vertices and a matched set m(XYX) of 3 vertices.The sets XYX and m(XYX) are matched.2. A set XY Y of 3 vertices and a matched set m(XY Y ) of 3 vertices.The sets XY Y and m(XY Y ) are matched.3. A set XY of 6 vertices and a matched set m(XY ) of 6 vertices.The sets XY and m(XY ) are matched.Imposing sets:1. A set I1(XY X) of 18 vertices and a set I2(XYX) of 9 vertices.The two sets I1(XY X) and I2(XY X) are cliqued.2. A set I1(m(XY X)) of 6 vertices and a set I2(m(XY X)) of 3 vertices.The sets I1(m(XY X)) and I2(m(XY X)) are cliqued.3. Two sets I1(XY ) of 24 vertices and I1(m(XY )) of 12 vertices.Additional edges between the sets:1. The vertex x is connected to all 3 vertices of XY X.The vertex y is connected to all 3 vertices of XY Y .2. The sets XYX and XY are cliqued.The sets of XY Y and XY are cliqued. 10



3. The sets XYX and I2(XY X) are cliqued.The sets m(XY X) and I2(m(XY X)) are cliqued.4. The sets XY and I1(XY ) are cliqued.The sets m(XY ) and I1(m(XY )) are cliqued.This completes the description of the gadget corresponding to each edge e = (x; y) and thedescription of the R�function. The above sets depend on e, that is, there is such a gadget forevery edge e 2 E. We avoid adding e as a subscript in these sets, for the simplicity of notation. Inorder for the R function to be valid we demonstrate a 2 coloring for ~G proving that the graph ~Gis a bipartite graph.Claim 3.1 The graph ~G is bipartite.Proof: Color the independent set corresponding to V , and the six sets m(XY X), m(XY Y ), XY ,I1(m(XY X)), I1(m(XY )) and I2(XY X) by 1. Color the rest of the vertices in ~G by 2. Since allthe edges de�ned above connect vertices colored by 1 with vertices colored by 2, it follows that thisis a legal 2�coloring for ~G.3.2 The intuition behind the constructionThe goal of the construction is to enable us to de�ne the right function S. This will be explain inthe next subsection. Here we give some intuition.The role of the imposing sets is to force a situation in which some sets cannot be colored by aspeci�c color. For example, it will be shown that in an optimal coloring the imposing set I2(XY X)is colored by 2. Consequently, the set XY X cannot be colored by 2. In general, in an optimalsolution, all the sets of type I1 are colored by 1 and all the sets of type I2 are colored by 2.The role of the matched sets is to assure that the sum coloring of two matched sets is �xed inany optimal coloring. For example, if a vertex in XY X is colored by 1, then its matched vertexis colored by 3, and vice versa (recalling that these two sets can not be colored by 2 because ofthe two imposing sets I2(XY X) and I2(m(XY X))). Thus every pair in XY X and m(XYX) addsexactly 4 to the sum coloring in an optimal coloring and the contribution of XY X and m(XYX)is �xed.Now let us explain the main idea in the construction. Let x and y be two vertices adjacent inG (i.e., (x; y) 2 E). We will show that we lose in the sum coloring if both x and y are colored by 1.Indeed, say that both x and y are colored 1, and consider the colors of XY , XYX, XY Y . In thebest coloring XY X is colored by 3 and XY Y by 2. Therefore, since the set I1(XY ) is colored by1, it follows that XY is colored by at least 4. On the other hand, if one of x and y is not coloredby 1, we may gain by assigning XY a color less then 4. This follows since XYX and XY Y will\waste" only one of the colors 2 and 3. Hence, it is possible to color XY with either 2 or 3.11



Therefore, a \good" sum coloring would color by 1 an independent set in G. In addition, a\good" sum coloring would strive to color as many vertices of G as possible by 1. It therefore paysto color as large as possible independent set in G by 1. Thus, a \good" approximation for the MBCSproblem implies a \good" approximation for the 4-MIS problem.3.3 The function SWe need the following de�nition for the construction of S. A coloring ~f of the vertices in ~G isproper, if the two following properties hold for every edge.Imposing properties:1. The sets I1(XY X), I1(m(XY X)), I1(XY ), and I1(m(XY )) are colored by 1.2. The sets I2(XY X) and I2(m(XY X)) are colored by 2.Independence property:All the vertices of G that are colored by 1 in ~f form an independent set in G.The process of constructing S is as follows. We start with any feasible coloring f of ~G. We thenshow in �ve stages that f can be transformed to a proper coloring ~f such that the sum of colorsin ~f is no larger than the sum of colors in f (SC( ~f) � SC(f)). The mapping S is now de�ned bychoosing the set of vertices in G that are colored by 1 by ~f denoted by I1( ~f). Note, that by theindependence property, I1( ~f) is also an independent set in G.In the �rst stage we transform f into f1 such that all the vertices in any independent set in anygadget are colored by the same color. In the second stage, we transform f1 into a \locally minimal"coloring f2. That is a coloring in which each set in the gadget is colored by no more than k + 1where k is the number of neighboring sets to this set. In the third stage, we show how to transformf2 into a coloring f3 such that the imposing properties hold. In the forth stage, we transform f3into a coloring f4 in which all the sets XY X and XY Y in all the gadgets are colored by no morethan 3. Finally, in the �fth stage we transform f3 into the desired coloring ~f by showing how toachieve the independence property. In all �ve stages the new coloring has no worse sum coloringthen the previous one. Fix an edge e = (x; y), the �ve stages are stated in lemmas 3.2, 3.3, 3.4,3.5, and 3.6.Lemma 3.2 Let f be a legal coloring of ~G. Then there exists a coloring f1 of ~G such that1. All the vertices in any set in the gadget are colored by the same color.2. SC(f1) � SC(f).3. The vertices corresponding to the vertices of G are colored the same in both f and f1.12



Proof: Let A be one of the imposing sets in the gadget. Let c be the minimum color of any vertexin the set A. Color all the vertices in A by c. Since all the vertices in A are connected in thesame fashion to the vertices outside of A, it follows that this coloring is legal. Let A and B be twomatched sets in the gadget. Let u 2 A and v 2 B be two matched vertices such that the sum oftheir colors is minimal. Color all the vertices of A by the color of u and all the vertices of B bythe color of v. Since any pair of matched vertices in A and B are connected in the same fashion tothe vertices outside A and B, it follows that this coloring is legal. Thus the �rst property holds.The second property follows since we did not increase the sum coloring of any imposing set andany pair of matched sets. The third property follows since we did not touch the vertices of G.Lemma 3.3 Let f1 be the coloring of ~G constructed from f as implied by Lemma 3.2. Let A beone of the sets in the gadget. Let k be the number of neighboring sets of A. (For that purpose, weconsider x and y as sets of size 1. For example, if A = XYX then k = 4). Then there exists acoloring f2 of ~G such that1. The color of A is at most k + 1.2. SC(f2) � SC(f).3. All the properties of f1 remain.Proof: The neighboring sets of A can occupy at most k di�erent colors. Hence, one color less thanor equal k + 1 is legal for A. If A is colored by a color larger than k + 1, re-color it by this freecolor. Thus the �rst property holds. The second property follows since we did not increase the sumcoloring of any set. The third property follows since we did not touch the vertices of G.Lemma 3.4 Let f2 be the coloring of ~G constructed from f as implied by Lemma 3.2 and Lemma 3.3.Then there exists a coloring f3 of ~G such that1. The imposing properties hold for f3.2. SC(f3) � SC(f).3. All the properties of f2 remain.Proof: We �rst show how to color the I1-type sets by 1 without increasing the sum coloring. ByLemma 3.3, we get that the color of I2(XY X) is at most 3 and the color of I1(XYX) is at most 2.If I1(XY X) is not colored by 1, then re-color it by 1. In case I2(XY X) was colored by 1, re-color itby the smallest legal color. This smallest color is at most 3. This results in a legal coloring in whichI1(XY X) is colored by 1. Since jI1(XY X)j � 2jI2(XYX)j and since we gained jI1(XY X)j andlost at most 2jI2(XY X)j, it follows that the new coloring has a sum coloring which is no worse thanthe previous sum coloring. Similar reasoning shows how to color the sets I1(m(XY X)), I1(XY ),and I1(m(XY )) by 1. 13



We now show how to color the I2-type sets by 2 without increasing the sum coloring. IfI2(XY X) is not colored by 2 then it is colored by 3 (by Lemma 3.3). If this is the case, re-colorI2(XY X) by 2. As a consequence, we might need to change the color of XYX from 2 to 5. SincejI2(XYX)j � 3jXY Xj, it follows that the new coloring has a sum coloring which is no worse thanthe previous sum coloring. By similar reasoning, we can re-color I2(m(XY X)) by 2 if it is notcolored by 2. This is because jI2(m(XY X))j � jm(XY X)j and re-coloring I2(m(XY X)) by 2would increase the color of m(XY X) from 2 to 3 at most.We use the above two transformations to get a coloring f3 for which the imposing propertieshold without increasing the sum coloring and without changing the color of any vertex in G.Lemma 3.5 Let f3 be the coloring of ~G constructed from f as implied by Lemma 3.2, Lemma 3.3,and Lemma 3.4. Then there exists a coloring f4 of ~G such that1. The sets XYX and XY Y in are colored by at most 3.2. SC(f4) � SC(f).3. The set of vertices colored 1 f4 is a subset of the vertices colored 1 in f3.Proof: Assume that there exist sets XY X or XY Y that are colored by 4 or more. Re-color(simultaneously in all gadgets) all these XYX and XY Y sets by 1, the corresponding m(XYX)sets by 3, and the corresponding m(XY Y ) sets by 2. Note that the color of XYX and XY Y doesnot con
ict with the color of XY : XY is not colored by 1 because of I1(XY ). Now, re-color by4 any vertex x or y that is colored by 1 such that its corresponding set XYX or XY Y is coloredby 1 as well. We claim that the sum coloring of the new coloring is no more than the sum coloringof the previous coloring. This follows since for any vertex x that was re-colored from 1 to 4, itscorresponding XY X was re-colored from 4 to 1, and m(XY X) from (at least) 1 to 3. Thus wegain 3XY X = 9 and lose at most 2m(XY X) + 3 = 9. The analysis for a vertex y is similar.We are now ready to describe the �fth stage. For a coloring g, Let I1(g) be the set of verticesin G colored by 1 in g.Lemma 3.6 Let f4 be the coloring of ~G constructed from f as implied by Lemma 3.2, Lemma 3.3,Lemma 3.4, Lemma 3.5 and Lemma 3.6. Then there exists a coloring ~f of ~G such that1. The independence property holds for ~f . Moreover, if I1( ~f) is the set of vertices in G coloredby 1 by ~f , then I1( ~f) � I1(f).2. The imposing property holds for ~f .3. SC( ~f) � SC(f).Proof: For the independence property, we need to change colors so that no two vertices x and ythat are adjacent in G are colored by 1. Recall that by Lemma 3.2 all the vertices in any set are14



colored by the same color and that this color is locally minimal by Lemma 3.3 (that is the colorof each set is no more than k + 1, if the set have k neighboring sets). We perform the followingchanges (iteratively) for every pair of vertices x and y that are colored by 1 and are adjacent in G.First note that XY X is colored by 3. This follows since XY X is not colored by 1 due to x, isnot colored by 2 due to I2(XY X), and is not colored by 4 or more due to Lemma 3.5. We nowshow how to color XY Y by 2, without increasing the sum coloring. Supposed that XY Y is notcolored by 2. Re-color XY Y by 2, m(XY Y ) by 1, XY by 3, m(XY ) by 2, XY X by 1, m(XYX)by 3, and x by 4. Note that we gain at least 3 in the sum coloring for the re-coloring of the verticesin XY Y and lose only 3 for re-coloring x. Thus, x is not colored by 1 anymore. Assume now thatall the vertices in XY Y are colored by 2. It is now necessarily the case that XY is colored by atleast 4. This is because XY is not colored by 1 due to I1(XY ), is not colored by 3 due to XYX,and is not colored by 2 due to XY Y . Our �nal re-coloring is as follows. We re-color XY by 3,m(XY ) by 2, XYX by 1, m(XYX) by 3, XY Y by 1, m(XY Y ) by 2, and both x and y by 4. Wegain at least 6 for the re-coloring of the vertices in XY and lose at most 6 for the re-coloring of xand y.In the transformations described above we did not increase the sum coloring. Moreover, theonly changes in the colors of vertices in G are from color 1 to color 4 proving the �rst claim of thelemma.The function S on any legal coloring f of ~G is de�ned as follows. Let ~f be the proper coloringconstructed from f as implied by Lemmas 3.2, 3.3, 3.4, 3.5, and 3.6. Let I1( ~f) be the set of verticescolored by 1 in ~f . By Lemma 3.5, this is a feasible independent set. ThenS(f) = I1( ~f)3.4 The L�reduction propertiesWe now turn to prove the two L�reduction properties. Let OPT be the minimum sum coloring in~G and let MIC = SC(OPT). The next lemma proves the �rst property of the L-reduction.Lemma 3.7 There exists a constant � such that MIC � � � MIS(G).Proof: First note that the degrees in the graph G are at most 4. Consequently, MIS(G) � n=5.Also note that ~G has O(n) vertices. This is because G has O(n) edges, and ~G has O(1) additionalvertices per any edge in G. Now since ~G is a bipartite graph and therefore can be colored by 1 and2, it follows that MIC = O(n). These two facts imply the �rst property.For the second property of the L-reduction, we need to show the existence of a constant � suchthat for any legal coloring f of ~G the following holds: MIS(G)� S(f) � �(SC(f)� MIC). We provethis inequality with � = 1. The proof uses the following two claims. Let I1 be the maximumindependent set in G.Claim 3.8 MIC � 135 � E + 2n� I1. 15



Proof: Color I1 by 1 and the rest of the vertices in G by 2. Let (x; y) 2 E, note that x and y arenot both colored by 1 since I1 is an independent set. We �rst color the imposing sets of type I1 by1 and the imposing sets of type I2 by 2. The contribution of the imposing sets to the sum coloringper edge is 18 � 1+9 � 2+ 6 � 1+ 3 � 2+ 24 � 1+12 � 1 = 84. Now consider the following three possiblecases.1. Vertex x is colored by 1 and vertex y is colored by 2. Color XYX by 3, m(XY X) by 1, XY Yby 1, m(XY Y ) by 2, XY by 2, and m(XY ) by 3.2. Vertex x is colored by 2 and vertex y is colored by 1. Color XYX by 1, m(XY X) by 3, XY Yby 2, m(XY Y ) by 1, XY by 3, and m(XY ) by 2.3. Both vertices x and y are colored by 2. Color XY X by 3, m(XYX) by 1, XY Y by 1,m(XY Y ) by 2, XY by 2, and m(XY ) by 3.The contribution of all the matched sets to the sum coloring in all three cases is 3(1 + 3) + 3(1 +2) + 6(2 + 3) = 51. All together, each gadget in ~G contributes 135 to the sum coloring. Since thevertices of ~G contribute 2n� I1 to the sum, the claim follows.Now let f be an arbitrary coloring of ~G and let ~f be its corresponding proper coloring. LetI1( ~f) be the set of vertices colored by 1 in ~f , and thus S(f) = I1( ~f).Claim 3.9 SC( ~f) � 135 �E + 2n� I1( ~f).Proof: Since ~f is a proper coloring, the contribution of the imposing sets to the sum coloring peredge is 84 as was shown in the previous claim. Now �x an edge and consider the three pairs ofmatched sets.1. The sets XY X and m(XYX) contribute at least 3 � (1 + 3) to the sum coloring. This isbecause both sets can not be colored by 2.2. The sets XY Y and m(XY Y ) contribute at least 3 � (1 + 2) to the sum coloring. This isbecause one set must be colored by 2.3. The sets XY and m(XY ) contribute at least 6 � (2 + 3) to the sum coloring. This is becauseboth sets cannot be colored by 1.All together the contribution of the matched sets to the sum coloring per edge is at least 51. Thelower bound derived so far is 135 �E. The claim follows since the set G n I1( ~f) contributes at least2n� 2I1( ~f) to the sum coloring.Lemma 3.10 MIS(G)� S(f) � SC(f)� MIC.
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Proof: The following inequalities are implied by Lemma 3.6 Claim 3.8, and Claim 3.9.SC(f)� MIC � SC( ~f)� MIC� (135 �E + 2n� I1( ~f))� (135 �E + 2n� I1)= MIS(G)� S(f) :We completed constructing a valid L-reduction from the 4-MIS problem to the MBCS problem.The following theorem follows from Theorems 2.1 and 2.2.Theorem 3.11 There exists an � > 0 such that there is no (1 + �)�ratio approximation algorithmfor the MBCS problem unless P = NP .4 Improved approximation algorithm for MBCSIn the previous section we have shown that there exists some � > 0 such that the MBCS problem hasno (1+ �)-approximation algorithm. However, the precise threshold for the approximation is yet tobe determined. We take a further step in this direction. In this section, we present a new algorithmC that utilizes a new procedure Neig. We prove that this procedure, combined with algorithmsA(2), A(3), and A(4) (see section 2.5) yield a 10=9-approximation algorithm for the MBCS problem.This improves the previous 9=8-approximation algorithm of [BBH+96].4.1 Some intuitionIn this subsection, we reveal some of the intuition behind our algorithms. For that end, we relayon Figure 2. Indeed, let I1 be a maximum independent set in G, and let I1l and I1r be its respectivesides. Let Z (resp. W ) be the larger (resp. smaller) of the two sides in V n I1.In the 9=8�ratio approximation algorithm of [BBH+96] the following lower bound was usedfor the optimum sum coloring. At best, the optimum algorithm can pick a \good" maximumindependent set I�1 in G, so that all the remaining vertices of the graph will form an independentset I�2 = V n I1. This gives a 2 � n� I�1 = 2 � n� I1 lower bound for the optimum sum.Let I2 be the maximum independent set in Z[W . Our aim is to prove that either (Z+W )�I2is \large", or one of the algorithms A(2) or A(3) or A(4) has approximation ratio better than 9=8.This is done as follows.1. We may assume that (the size of) Z roughly equals (the size of) W , for otherwise, A(3) hasgood ratio (for example, if W = ;, then A(3) is optimal.)2. Next, we may assume that I2, the maximum independent set in W [ Z, is not very large.For example, if I2 = Z [W , clearly A(3) is again optimal. Even if I2 is slightly smaller than17



Z [W , coloring G with 4 colors using Algorithm A(4), gives a good approximation, becausethe sets colored 3 and 4 are very small.3. Finally, we may assume that W is not too small (and therefore Z is not very small either).To understand that consider the case where W and Z are almost empty. Clearly, in this casewe have colored almost all the vertices with color 1, thus resulting in a \good" coloring.Note by 2 and 3 above, that we get that (Z +W )� I2 is large, as required. This means thatthere is no \large" independent set in the graph induced by Z [W . Now, if the optimum wants tomatch the lower bound of 2 � n� I1, this means that many vertices of Z [W should be colored 1in the optimum coloring. Thus, the main idea is to de�ne a new procedure, Neig, that starts withthe coloring of A(3), using some arbitrary maximum independent set I1 with some correspondingZ and W , and tries to �nd a good candidate subset S � Z [W , to be recolored by 1. Note thatautomatically, all the neighbors of S need to be colored by some color di�erent than 1.If such a good set S does not exist, it means that we can increase (and therefore improve) thelower bound 2 � n� I1 for the optimum coloring. The main di�culty hence, is choosing a good S.Although we are not able to compute the best set S to be recolored by 1, we can �nd a good \half"of S. Namely, we can �nd the best set SW � W , or SZ � Z to be recolored 1, so as to reduce thesum as much as possible. Thus, we do not choose the best S to move from colors 2 and 3 to color1, but we can choose a subset SW or SZ , that reduces the sum by at least \half" of the reductionin the best choice of S.4.2 An algorithmic toolWe now describe the new tool used in our approximation algorithm. De�ne the 2-Neighborhoodproblem as follows. Given a bipartite graph G(Vl; Vr; E) we look for a set Sl � Vl such thatdSl = 2Sl � N(Sl) is maximum. Recall that N(Sl) is the set of vertices outside Sl that have atleast one neighbor in Sl. We note that the order in which Vl and Vr are speci�ed in the problem-presentation is important, that is the solution Sl is a subset of Vl.A generalization of this problem, called the selection problem was �rst discussed by Rhys andBalinski. Note that this problem is also called \a provision problem" in Chapter 5 of [L76]. In theselection problem, the goal is to maximize the following objective:X aixi �X biyi;where xi is 1, only if the respective vertex in the left side is included, and yi is 1 only if the respectivevertex on the right side in included. The restriction in the problem is that a vertex on the left isincluded, only if all its right-side neighbors are included as well. Thus, it is not hard to see thisproblem can be solved via 
ow methods (combined with binary search procedure). The currentlyfastest algorithm for the selection problem is given in [GGT89]. For the sake of completeness, we18
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Figure 2: The sets in the bipartite graph G used by Procedure Neig.give a brief description of the 
ow algorithm that solves our special case of the selection problem,the 2-Neighborhood problem.We construct the following directed bipartite graph with capacities, denoted by G0 = (V 0; E0).The set of vertices V 0 contains V and two additional vertices: a source s and a sink t. The set ofedges E0 contains all the edges in E directed from Vl to Vr with capacity1. In addition, E0 containVl edges with capacity 1 emanating from s to all the vertices of Vl and Vr edges with capacity 1=2emanating from all the vertices in Vr to t.We now show how to deduce the solution for the 2-Neighborhood problem from a minimum cutin G0. Let V sl and V sr be the subsets of Vl and Vr that are with s in the same side of the minimumcut. Let V tl and V tr be the complementing sets. Note that the cut containing s alone in one side is�nite. Therefore, any vertex in V sl is not connected to any vertex in V tr , since otherwise the capacityof the cut is1. Thus, the capacity of the cut is given by the following expression: V tl +V sr =2. Thechosen cut minimizes this expression, and therefore maximizes the following expression:2�Vl � V tl � V sr2 � = 2V sl � V sr :Since the capacity of the minimum cut is �nite, it follows that no vertex in V tr has a neighbor inV sl . Moreover, every vertex in V sr has at least one neighbor in V sl , because otherwise moving thisvertex to V tr would decrease the capacity of the cut. Therefore, V sr = N(V sl ) which implies thatV sl is the solution for the 2-Neighborhood problem.
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4.3 Procedure Neig and Algorithm CProcedure Neig utilizes the solution to the 2-Neighborhood problem described in section 4.2. Wenow de�ne subsets of the vertices of the graph G and subgraphs of G used by procedure Neig.1. I1 { the maximum independent set in G.I l1 = I1 \ Vl { the left side of I1Ir1 = I1 \ Vr { the right side of I1.2. Z { the larger side of G n I1.W { the smaller side of G n I1.Without loss of generality, assume that Z � Vl and W � Vr.3. GZ = (Z; Ir1 ; EZ) { the (bipartite) subgraph induced by Z and Ir1 .GW = (W; I l1; EW ) { the (bipartite) subgraph induced by W and I l1.4. SZ { the set maximizing dSZ = 2SZ �N(SZ) in GZ .SW { the set maximizing dSW = 2SW �N(SW ) in GW .Note that W plays here the role of the left side of the 2-Neighborhood problem.5. N1(SZ) = N(SZ) \ Ir1 { the neighbors of SZ in Ir1 .N1(SW ) = N(SW ) \ I l1 { the neighbors of SW in I l1.Note that N(SZ) (N(SW )) in G can contain vertices from W (Z). Therefore, we need tode�ne N1(SZ) (N1(SW )).Procedure Neig:If dSZ � dSW : If dSZ < dSW :1. Color I l1 [ SZ [ (Ir1 nN1(SZ)) by 1. 1. Color Ir1 [ SW [ (I l1 nN1(SW )) by 1.2. Color W [N1(SZ) by 2. 2. Color Z [N1(SW ) by 2.3. Color Z n SZ by 3. 3. Color W n SW by 3.For the case dSZ � dSW , procedure Neig can be described as follows. Start with the initialcoloring of A(3), i.e., I1 is colored by 1, Z (the larger of the two remaining sides) is colored by 2,and W is colored by 3. Thus SC(A(3)) = I l1 + Ir1 + 2Z + 3W . Next, re-color Z by 3 and W by 2,loosing Z �W in the sum coloring. Next, change the color of SZ from 3 to 1 gaining 2SZ in thesum coloring. This forces all the neighbors of Z in I1, N1(SZ), to be colored by a color di�erentthan 1, thus color them by 2. Here we lose N1(SZ) in the sum coloring. The net pro�t in the sumcoloring is therefore 2SZ�N1(SZ)+W �Z = dSZ +W �Z. Similarly, it can be shown that for thecase dSW > dSZ , the net pro�t is dSW . (This case is better for us since we do not need to switchthe colors of Z and W , loosing Z �W .) Thus, we proved the following proposition.Proposition 4.1 20



(1). If dSZ � dSW then SC(Neig) = SC(A(3))� dSZ + (Z �W ).(2). If dSW > dSZ then SC(Neig) = SC(A(3))� dSW .We conclude this subsection with the description of algorithm C. It clearly follows that thealgorithm has a polynomial running time.Algorithm C� Run algorithms A(2), A(3), A(4), and Procedure Neig.� Pick the solution whose sum coloring is the minimum among the four coloring solutions.4.4 AnalysisIn this subsection we analyze the approximation ratio of Algorithm C. All through the analysis, letZ = (n� I1)=2 + �dn and W = (n� I1)=2� �dn. The term �dn quanti�es the extent in which thegraph induced by Z[W is unbalanced. This is the graph resulting once the maximum independentset I1 is deleted from G.Outline of the analysis:� If Z �W = 2�dn is \large" enough, then already min fSC(A(2)); SC(A(3))g yields the 10=9-ratio.� Otherwise, Z � W is not too \large". If I2 is \large" enough, then this time alreadymin fSC(A(2)); SC(A(4))g yields the 10=9-ratio.� Otherwise, W is almost as \large" as Z and I2 is not too \large". If W is \small" enough andtherefore Z is also \small" and I1 is \large" enough, then SC(A(3)) alone yields the 10=9-ratio.� Otherwise Z � W and I2 are not too \large" and W is not too \small". If the optimalalgorithm does not deviate much from algorithm A(3), then again min fSC(A(2)); SC(A(3))gyields the 10=9-ratio.� Finally, if all the previous conditions do not hold, we use the new procedure Neig and showthat min fSC(A(2)); SC(Neig)g yields the 10=9-ratio.The analysis is therefore partitioned into �ve cases. In each case, we make some assumption A,proving that under this assumption, the 10=9�ratio is guaranteed. We, therefore, continue theanalysis assuming that A does not hold.
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Case 1: �d � 1=40.In this case, consider the performance of the best of the two algorithms A(2) and A(3). ClearlySC(A(2)) � 3n=2 (see section 2.5). Algorithm A(3) colors I1 by 1, Z by 2, and W by 3. Hence,SC(A(3)) = I1 + 2Z + 3W= 5n� 3I12 � �dn� 5n� 3I12 � n=40 :On the other hand, the optimal coloring, OPT, colors at most I1 vertices by 1 and the rest of the ver-tices by at least 2. This implies that SC(OPT) � 2n� I1. It follows that SC(A(3))=SC(OPT) increaseswhen I1 decreases. Therefore, The worst case for algorithm C is when SC(A(2)) = SC(A(3)) = 3n=2.We get 3n=2 = (5n� 3I1)=2�n=40, which implies that I1 = 13n=20. For this value of I1 the lowerbound for SC(OPT) is 27n=20. The 10=9 bound follows sinceSC(C)SC(OPT) � 3n=227n=20 = 109 :Hence, we may continue the analysis under the following assumption.Assumption 1 �d � 1=40. Let � = 1=40 � �d.Case 2: I2 � Z + W3 + 2�3 n.We prove here, in a proof similar to case 1, that the best of Algorithms A(2) and A(4) alwayshas a 10=9�ratio. Algorithm A(4) has the following properties. It colors I1 by 1, I2 by 2, at leasthalf of the remaining (n� I1 � I2) vertices by 3, and the rest of the vertices by 4. The worst casefor A(4) is when I2 is minimal, in this case it happens when I2 = Z +W=3 + (2�n)=3. This givesthe following upper bound:SC(A(4)) � I1 + 2I2 + 3�n� I1 � I22 �+ 4�n� I1 � I22 �� I1 + 2�Z + W3 + 2�n3 �+ 3�W3 � �n3 �+ 4�W3 � �n3 �= I1 + 2Z + 3W � �n= 5n� 3I12 � (�+ �d)n= 5n� 3I12 � n40 :The 10=9�ratio follows as in case 1, where again we choose the best between two algorithms onewith SC = (5n� 3I1)=2 � n=40 and one with SC = 3n=2.Assumption 2 I2 � Z + W3 + 2�3 n. 22



Case 3: W � (5�n+ 6�d)n.In this case we consider only the performance of Algorithm A(3). Recall that SC(A(3)) =I1 + 2Z + 3W , while SC(OPT) � 2n� I1. Therefore,SC(A(3))SC(OPT) � I1 + 2Z + 3W2n� I1= 1 + Wn+ Z +W= 1 + Wn+ 2W + 2�dn� 1 +maxW � Wn+ 2W + 2�dn�� 1 + 5�+ 6�d1 + 10�+ 14�d :The last inequality follows since the expression increases with W , and in this case W is boundedby (5�+ 6�d)n. Since � = (1=40) � �d, it follows thatSC(A(3))SC(OPT) � 1 + 1=8 + �d1 + 1=4 + 4�d � 1 + 6=401 + 14=40 = 109 :The last inequality follows since the expression increases with �d and �d � 1=40 by Assumption 1.Assumption 3 W � (5�+ 6�d)n.Before dealing with the forth case, we need to prove some claims. The following corollary isderived directly from Assumptions 2 and 3.Corollary 4.2 Z +W � I2 � (8�3 + 4�d)n.Note the implication of Corollary 4.2. Suppose that the number of vertices colored by 2 in OPTroughly equals I2. Then since OPT cannot color more than I1 vertices by 1, the corollary indicatesthat roughly Z +W � I2 vertices in OPT are colored by at least 3. Taking this in mind, we makethe following de�nitions. Let I�1 be the set of vertices colored by 1 in OPT. Let A be the set ofvertices from Z [W that are colored by 1 in OPT. That is, A = I�1 \ (Z [W ). Note that the setN1(A) = N(A)\I1 is thus not colored by 1 in OPT. More precisely, the set of vertices not colored by1 in OPT, denoted by ALT , equals, (Z [W [N1(A)) nA. The next claim states that the maximumindependent set, MIS(ALT ), in the graph induced by ALT is \small enough". The corollary thatfollows the claim indicates that \many" of the vertices of ALT are colored by at least 3.Claim 4.3 MIS(ALT ) =MIS((Z [W [N1(A)) n A) � Z +W � �8�3 + 4�d�n+N1(A).Proof: We have: MIS((Z [W [N1(A)) nA) �MIS((Z [W [N1(A)) �MIS(Z [W ) +N1(A).Now, the desired inequality follows from Corollary 4.2, since MIS(Z [W ) = I2.Corollary 4.4 In OPT, exactly I1�N1(A)+A vertices are colored by 1 and at least (8�=3+4�d)n�Avertices are colored by 3. 23



Proof: The �rst part of the claim is by de�nition. For proving the second part of the corollary,note that the number of vertices outside I�1 is (Z +W + N1(A) � A) and that the bound on theindependent set of G n I�1 is (Z +W � (8�=3 + 4�d)n+N1(A)). Subtracting these two expressionsgives (8�=3 + 4�d)n�A.Thus the following bound on the optimal sum is derived.SC(OPT) � (I1 �N1(A) +A) + 2�Z +W � �8�3 + 4�d�n+N1(A)� (1)+3��8�3 + 4�d�n�A�= 2n� I1 � (2A�N1(A)) + �8�3 + 4�d�n :We are now ready to deal with the forth case.Case 4: 2A�N1(A) � (2�+ 4�d)n.Plugging this upper bound in inequality 1 gives,SC(OPT) � 2n� I1 + 2�n3 : (2)Recall, that the usual lower bound on SC(OPT) is 2n � I1, and thus this lower bound is an im-provement. As in case 1, we consider the performance of the best of the two algorithms A(2)and A(3). It turns out that the ratio A(3) increases when I1 decreases. Hence the worst caseis when SC(A(2)) = SC(A(3)) = 3n=2. We get 3n=2 = (5n � 3I1)=2 � �dn, which implies thatI1 = (2=3 � 2�d=3)n. By inequality 2 we get thatSC(OPT) � 2n� I1 + 2�n3 = 4n3 + 2(1=40)n3 = 27n20 :The 10=9 bound follows as in case 1.Assumption 4 2A�N1(A) � (2�+ 4�d)n.We are now ready to complete the analysis of algorithm C. The next case is the remaining case.Case 5: We now show that under Assumptions 1, 2, 3, and 4 it is enough to consider the combinedperformance of procedure Neig and algorithm A(2). Recall that A = I�1 \ (Z [W ) is the subset ofZ [W that is colored by 1 in OPT. Let AZ = Z \ A, AW = W \ A, N1(AZ) = N(AZ) \ I1, andN1(AW ) = N(AW ) \ I1. It follows from assumption 4 that either 2AZ �N1(AZ) � (� + 2�d)n or2AW � N1(AW ) � (� + 2�d)n. Consequently, either dSZ or dSW is greater or equal to (� + 2�d)n.This is because procedure Neig �nds the sets which maximize expressions of the form 2S �N(S).24



The worst case happens when only dSZ � (� + 2�d)n. This is because otherwise the gain ofprocedure Neig over algorithm A(3) is larger (see proposition 4.1). Hence, by proposition 4.1,SC(Neig) = SC(A(3)) + (Z �W )� dSZ� 5n� 3I12 � �dn+ 2�dn� (�+ 2�d)n= 5n� 3I12 � (�+ �d)n= 5n� 3I12 � n40 :Thus, as in Case 1, the best of Procedure Neig and Algorithm A(2) yields the 10=9�ratio. Wehave completed the proof of the following theorem.Theorem 4.5 Algorithm C is a polynomial 10=9-approximation algorithm for the MBCS problem.5 Discussion and future workWe have proven that the MBCS is NP�hard, and furthermore, admits no polynomial time approx-imation scheme, unless P = NP . We have also given an improved 10=9�ratio approximationalgorithm for MBCS.Some open questions to be addresed in future work.� Determine the best constant-ratio approximation for MBCS. For example, is the 10=9-ratioalgorithm the best possible? A good direction to check is the following: is it possible tochoose a better set S to be moved away from Z [ W , and be recolored 1 in Neig? Notethat we re-color by 1 a set SW or SZ that is entirely contained in a single side (left side orright side). It may be possible to gain by choosing to be colored 1 an (independent) set Scontaining vertices of both Z and W . Choosing such a good S seams a challenging task.� Give good approximation algorithms for MCS on other families of graphs, such as intervalgraphs. An important contribution was done in that respect in [NSS94], where a ratio 2algorithm was presented for MCS on interval graphs. Can this ratio be improved? Furthermore,no MAXSNP-hardness result is known for MCS on interval graphs.
25



References[ALM+92] S. Arora, C. Lund, R. Motwani, M Sudan, and M. Szegedy. Proof veri�cation andintractability of approximation problems. In Proc. of the 33'rd IEEE Symp. on theFoundations of Computer Science, pages 14{23, 1992.[AS90] B. Awerbuch and M. Saks. A Dining Philosophers Algorithm with Polynomial ResponseTime. In Proc. of the 31'st IEEE Symp. on the Foundation of Computer Science, pages65{74, 1990.[BP92] J. Bar-Ilan and D. Peleg. Distributed Resource Allocation Algorithms. In Proc. of theSixth International Workshop on Distributed Algorithms, pages 276{291, 1992.[BST96] A. Bar-Noy, H. Shachnai, and T. Tamir. On chromatic sums and distributed resourceallocation. In Proc. of the fourth Israel Symp. on Theory and Computing and Systems,pages 119{128, 1996.[BBH+96] A. Bar-Noy, M. Bellare, M. M. Halld�orsson, H. Shachnai, and T. Tamir. On chro-matic sums and distributed resource allocation. In URL:http://www.eng.tau.ac.il/ amotz/publications.html.[BF94] P. Berman and M. Fu�rer. Approximating maximum independent set in bounded degreegraphs. In Proc. of the Fifth ACM-SIAM Symp. on Discrete Algorithms, pages 365{371,1994.[BCC+94] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan.The Minimum Latency Problem. In Proc. of the 26'th IEEE Symp. on the Theory ofComputing, pages 163{171, 1994.[CM84] K. Chandy and J. Misra. The Drinking Philosophers Problem. ACM Trans. Program-ming Languages and Systems, 6:632{646, 1984.[Chr76] N. Christo�des. Worst case analysis of a new heuristic for the traveling salesman prob-lem. Technical report GSIA, Carnegie-Mellon Univ., 1976.[E70] P. Erd�os. On the Graph-Theorem of Tur�an. In Math. Lapok, 21:249{251, 1970.[EKS] P. Erd�os, E. Kubicka, and A. J. Schwenk. Graphs that Require Many Colors to Achievetheir Chromatic Sum. Congressus Numerantium, 71:17{28, 1990.[FK96] U. Feige and J. Kilian. Zero Knowledge and the Chromatic number. In Proc. of the11'th IEEE Conference on Computational Theory, pages 278{287, 1996.[GGT89] G. Gallo, M.D. Grigoriadis, and R.E. Tarjan. A fast parametric maximum 
ow algo-rithm and applications. SIAM J. on Comput., 18:30{55, 1989.26



[Has96] J. H�astad. Clique is hard to approximate within n1��. In Proc. of the 37'th IEEE Symp.on the Foundation of Computer Science, 627{639, 1996.[H83] D. S. Hochbaum. E�cient bounds for the stable set, vertex cover and set packingproblems. Discrete Applied Mathematics, 6:243{254, 1983.[HR93] M. M. Halld�orsson and J. Radhakrishnan. Approximating the Chromatic Sum of aGraph. Japan Advanced Institute of Science and Technology, IS-RR-93-0002f, 1993.[HR94] M. M. Halld�orsson and J. Radhakrishnan. Greed is good: Approximating independentsets in sparse and bounded-degree graphs. In Proc. of the 26'th IEEE Symp. on theTheory of Computing, pages 439{448, 1994.[K89] E. Kubicka. The Chromatic Sum of a Graph. PhD thesis, Western Michigan University,1989.[KKK89] E. Kubicka, G. Kubicki, and D. Kountanis. Approximation Algorithms for the Chro-matic Sum. In Proc. of the First Great Lakes Computer Science Conf., Springer LNCS507, pages 15{21, 1989.[KS89] E. Kubicka and A. J. Schwenk. An Introduction to Chromatic Sums. In Proc. of theACM Computer Science Conf., pages 39-45, 1989.[L76] E. Lawler. Combinatorial Optimization Networks and Matroids. Holt Rinehart andWinston, 1976.[LYN81] N. Lynch. Upper Bounds for Static Resource Allocation in a Distributed System. J. ofComputer and System Sciences, 23:254{278, 1981.[NSS94] S. Nicoloso and M. Sarrafzadeh and X. Song. On the sum coloring problem on intervalgraphs. Unpublished Manuscript.[PY88] C. H. Papadimitriou and M. Yannakakis. Optimization approximation and complexityclasses. In Proc. of the 20'th IEEE Symp. on The Theory of Computing, pages 229{234,1988.[T41] P. Tur�an. An Extremal Problem in Graph Theory. InMat. Fiz Lapok, 48:436{452, 1941.[TEA+89] C. Thomassen, P. Erd�os, Y. Alavi, j. Malde, and A. J. Schwenk. Tight Bounds on theChromatic Sum of a Connected Graph. J. of Graph Theory, 13:353{357, 1989.
27


