
On Maximum Leaf Trees and Connections to
Connected Maximum Cut Problems

Rajiv Gandhi
Rutgers University, Camden, NJ

rajivg@camden.rutgers,edu ∗

Mohammad Taghi Hajiaghayi
University of Maryland, College Park, MD

hajiagha@cs.umd.edu †

Guy Kortsarz
Rutgers University, Camden, NJ

guyk@camden.rutgers.edu ‡

Manish Purohit
Google, Mountain View, CA

mpurohit@google.com

Kanthi Sarpatwar
IBM Research, Yorktown Heights, NY

sarpatwa@us.ibm.com

Abstract

In an instance of the (directed) Max Leaf Tree (MLT) problem we are given a vertex-
weighted (di)graph G(V,E,w) and the goal is to compute a subtree with maximum weight
on the leaves. The weighted Connected Max Cut (CMC) problem takes in an undirected edge-
weighted graph G(V,E,w) and seeks a subset S ⊆ V such that the induced graph G[S] is
connected and

∑
e∈δ(S)w(e) is maximized.

We obtain a constant approximation algorithm for MLT when the weights are chosen from
{0, 1}, which in turn implies a Ω(1/ log n) approximation for the general case. We show that
the MLT and CMC problems are related and use the algorithm for MLT to improve the factor
for CMC from Ω(1/ log2 n) (Hajiaghayi et al., ESA 2015) to Ω(1/ log n).

1 Introduction

Given a vertex-weighted graph G = (V,E,w), the Max Leaf Tree problem is to find a subtree T such
that the total weight of the leaves of T is maximized. The closely related Maximum Leaf Spanning
Tree problem seeks to find a spanning tree T of G that maximizes the sum of weights on the leaves
of T . The Maximum Leaf Spanning Tree problem on unweighted graphs has been very well studied
and constant factor approximation algorithms are known both for undirected [5, 8, 10, 11, 13] as
well as directed graphs [3, 4].

In the unweighted case, it is easy to observe that any subtree T can be augmented to a
spanning tree T ′ without decreasing the number of leaves. Consequently, on unweighted graphs –

∗Supported in Part by NSF Grant number 1218620
†Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF AF:Medium

grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another DARPA SIMPLEX grant.
‡Supported in Part by NSF Grant Number 1218620 and NSF Grant Number 1540547

1

both undirected and directed (in this case, we assume that all the nodes have a directed path from
the root), the Max Leaf Tree problem is equivalent to the Maximum Leaf Spanning Tree problem.
However, the two problems differ significantly in their weighted versions. In this paper, we study
the approximability of the weighted Max Leaf Tree problem on both directed and undirected graphs.

Hajiaghayi et al. [6] initiated the study of the Connected Submodular Maximization problem:
Given a graph G = (V,E) and a non-negative submodular set function f : 2V → R+ ∪ {0}, find a
subset S of vertices that maximizes f(S) such that the induced graph G[S] is connected. It can
be readily observed that the weighted Max Leaf Tree problem is a special case of the Connected
Submodular Maximization problem where the submodular function is f(S) =

∑
u∈N(S)w(u) where

N(S) refers to the set of all vertices that are not in S but have neighbors in S. Another important
special case of the Connected Submodular Maximization problem is the Connected Maximum
Cut (CMC) problem: Given an edge-weighted undirected graph G = (V,E,w) find a set S ⊆ V
that maximizes the total weight of edges in the cut δ(S, V \ S) such that the induced graph G[S]
is connected. Hajiaghayi et al. [6] obtained the first Ω(1

log2 n
) approximation algorithm for the

Connected Maximum Cut problem on weighted graphs.

Contribution and Techniques

Our key results can be summarized as follows.

1. We obtain the first Ω(1
logn

) approximation algorithm for the Max Leaf Tree problem with
general weights on directed and undirected graphs.

2. We show that an α-approximation algorithm for the weighted Max Leaf Tree problem leads
to an Ω(α)-approximation algorithm for the Connected Maximum Cut problem on general
weighted graphs. Combined with the previous result, we obtain an Ω(1

logn
)-approximation,

thus improving upon the Ω(1
log2 n

)-approximation obtained by Hajiaghayi et al. [6].

1.1 Related Work

Max Leaf Spanning Tree is a classical problem that has been very well-studied from the perspective
of approximation algorithms [5, 8, 10, 11, 13] as well as fixed parameterized tractability [1, 3].
As observed by Drescher and Vetta [4], the weighted Max Leaf Spanning Tree problem is as hard
as the Independent Set problem and hence cannot be approximated within a factor of Ω(1

n1−ε)
unless P=NP. For unweighted directed graphs, Drescher and Vetta [4] obtained an Ω(1√

OPT
)

approximation for the Max Leaf Spanning Tree problem. Daligault and Thomassé [3] discovered
the first constant approximation algorithm for the same.

Hajiaghayi et al. [6] introduced the Connected Maximum Cut problem and gave an Ω(1
logn

)

approximation algorithm on unweighted graphs as well as an Ω(1
log2 n

) approximation algorithm

on general weighted graphs. Lee, Nagarajan and Shen [9] studied a generalization of the con-
nected maximum cut where connectivity and cut are defined by different graphs. Optimization
of submodular functions over graphs subject to a connectivity constraint has been well studied in
different contexts especially for monotone submodular functions [2, 7].

2 Preliminaries

Problem Definition. (Directed) Weighted Maximum Leaf Tree : Given a graph G = (V,E) and a

2

weight function w : V → R+, find a subtree T that maximizes
∑

v∈L(T)w(v) where L(T) denotes
the set of leaves of the tree T . In the directed version, we are also given a root vertex r and the
goal is to find an out-tree T rooted at r that maximizes

∑
v∈L(T)w(v).

Problem Definition. Connected Max Cut : Given a graph G = (V,E) and a weight function
w : E → R+, find a subset S ⊂ V that maximizes

∑
e∈δ(S,V \S)w(e) such that the subgraph induced

by S is connected.

3 Approximation Algorithms for General Graphs

In this section, we consider the Weighted Maximum Leaf Tree on directed graphs and provide
the first Ω(1

logn
) approximation algorithm. Naturally all our results are applicable for undirected

graphs as well. Our approach is to first reduce the problem to an instance of the unweighted
maximum leaf tree problem in two stages and then use a constant factor approximation algorithm
for the same.

Stage 1: Reduction to binary weighted max leaf tree.

We partition the vertices in V into log2 n classes based on their weight as follows. Let OPT denote
the total weight of leaves of an optimal weighted Max Leaf Tree and let wmax = maxv∈V w(v),
wmin = minv∈V |w(v) 6=0w(v) denote the weights of the heaviest and lightest (non-zero) vertices in
V respectively. Without loss of generality, we can assume that OPT ≥ wmax and hence we reset
the weights of edges whose weights are less than wmax

2n
to 0. This alteration modifies OPT by at

most an 1/2 fraction and we can now assume that wmin >
wmax
2n

. We define thresholds τ0 = wmax
2n

and τi = τ02
i for i ∈ [log2 2n]. The vertices in V are grouped into O(log n) classes using these

thresholds as follows - let Vi = {v ∈ V |τi−1 < w(v) ≤ τi}.
LetO denote an optimal solution for the Max Leaf Tree problem and letOPTi =

∑
v∈Vi∩L(O)w(v)

denote the contribution of vertices from Vi to the optimal solution. Let i∗ = arg maxi∈[log2 2n]OPTi
denote the vertex class that has the highest contribution. We now set w′(v) = 0 for all v /∈ Vi∗
and set w′(v) = 1 for all v ∈ Vi∗ to obtain a new instance I ′ of the Max Leaf Tree problem with
only {0, 1} weights.

Lemma 3.1. If there exists an α-approximation algorithm for the Max Leaf Tree problem with
{0, 1} weights, then there exists an Ω(α

logn
)-approximation algorithm for the Max Leaf Tree problem

with general weight functions.

Proof. Given an instance I =< G,w > of the general weighted Max Leaf Tree problem, we obtain
an instance I ′ =< G,w′ > of the Max Leaf Tree problem with {0, 1} weights using the procedure
described above. By construction, we have that OPT (I ′) ≥ OPTi∗

τi∗
≥ OPT

τi∗ log2 2n
.

Let T be an α-approximate solution for the instance I ′. We now observe that the tree T is an
Ω(α

logn
)-approximate solution for the original instance I as well.

w(L(T)) ≥ τi∗−1w
′(L(T)) ≥ τi∗−1αOPT (I ′) ≥ τi∗−1αOPT

τi∗ log2 2n
≥ αOPT

2 log2 2n

3

Stage 2: Reduction to unweighted max leaf tree.

Lemma 3.2. Given a digraph G = (V,E) with {0, 1}-vertex weights, we can construct an un-
weighted digraph G′ = (V ′, E ′) in polynomial time, such that G′ has a Max Leaf Tree solution T ′

of weight at least ψ if and only if G has a Max Leaf Tree solution T of weight at least ψ.

Proof. Let v ∈ V \ {r} be a non-root vertex in G with weight 0 and let {v1, v2, . . . , vl} denote
the set of its neighbors. Consider the digraph G′ obtained from G by deleting v along with all
its incident edges and adding a directed edge between every ordered pair of its neighbors {vi, vj}
that does not already exist, if the path vi → v → vj exists in G. Let T denote a tree of leaf weight
ψ in G. If v /∈ T , then clearly T ′ = T is the required solution in G′. If v ∈ T , then let u be the
parent of v in T and C(v) be its children in T . Now the tree T ′ can be obtained by deleting v,
along with all its edges, and instead adding the edges between u and each w ∈ C(v). Clearly, all
these edges exist in G′.

Finally, to prove the other direction, suppose we have a feasible solution T ′ of leaf weight ψ in
G′. Now, if T ′ is a subtree of G, then T = T ′ is a feasible solution in G of weight ψ. Otherwise, T ′

contains an edge (u,w) /∈ E such that (u, v) ∈ E and (v, w) ∈ E. We can now obtain the subtree
T from T ′ by adding the vertex v and replacing such edges (u,w) by (u, v) and (v, w). The proof
of the lemma then follows from induction.

Theorem 3.3. There exists a polynomial time Ω(1
logn

) approximation algorithm for the weighted
Max Leaf Tree problem in general graphs.

Proof. Lemma 3.2 shows that one can reduce the binary weighted Max Leaf Tree problem to the
unweighted Max Leaf Tree problem without a loss in the approximation factor. However, in the
unweighted case, one can always assume without loss of generality that the Max Leaf Tree is also
spanning. Consequently, well known constant factor approximation algorithms for the maximum
leaf spanning tree problem (see [13] for undirected graphs and [3] for directed graphs) now yield
a constant factor approximation algorithm for the maximum leaf tree with {0, 1} weights. The
theorem now follows from Lemma 3.1.

4 Connections to Connected Maximum Cut

We now show that the weighted Max Leaf Tree problem can be used to obtain a simple Ω(1
logn

)-
approximation algorithm for the weighted connected maximum cut problem.

Theorem 4.1. Given a polynomial time α-approximation algorithm for the weighted Max Leaf
Tree problem, we can obtain an α

4
-approximation algorithm for the weighted Connected Max Cut

problem.

Let G = (V,E,w) denote an instance I of the weighted connected max cut problem. To obtain
an instance I ′ of the Max Leaf Tree problem, we define a weight function w′ : V → R+ as follows -
w′(v) =

∑
e=(u,v)w(e). We first claim that optimal solution value of the Max Leaf Tree instance so

constructed is at least as large as the optimal solution of the weighted connected max cut instance.

Claim 4.2. OPT (I ′) ≥ OPT (I)

4

Proof. Let S denote the optimal solution for the weighted connected max cut of graph G. Let
N (S) denote the set of all vertices that have neighbors in S but are not in S themselves, i.e.
N (S) = {u ∈ V \ S | ∃v ∈ S such that (u, v) ∈ E}.

By definition, we thus have δ(S, V \ S) = δ(S,N (S)) and
∑

e∈δ(S,N (S))w(e) = OPT (I). Since

S is a feasible solution for the connected max cut, G[S] is connected and thus there exists a subtree
T̃ of G with L(T̃) = N (S). Since T̃ is a feasible solution for the maximum leaf tree problem, we
have the following.

OPT (I ′) ≥ w′(L(T̃)) =
∑

u∈N (S)w
′(u) =

∑
u∈N (S)

∑
e=(u,v)w(e) ≥

∑
e∈δ(S,N (S))w(e) ≥ OPT (I)

Let T denote a α-approximate solution for the weighted Max Leaf Tree problem obtained via
the given approximation algorithm and let L denote the set of leaves of T . Let wL denote the
weight of edges in G[L], the subgraph induced by L in the graph G. We now partition L into two
disjoint sets L1 and L2 such that the weight of edges in w(δ(L1, L2)) ≥ wL

2
. This can be done

by applying the standard algorithm for Max-Cut (e.g. see [12]) on G[L]. Now, consider the two
connected subgraphs T \ L1 and T \ L2. We first claim that every edge in δ(L) belongs to either
δ(T \L1) or δ(T \L2). Indeed, any edge e in δ(L), belongs to one of the four possible sets, namely
δ(L2, T \L), δ(L1, V \T), δ(L1, T \L) and δ(L2, V \T). In the first two cases, e belongs to δ(T \L2)
while in the last two cases, e belongs δ(T \ L1), hence the claim. Further, every edge in δ(L1, L2)
belongs to both δ(T \ L1) and δ(T \ L2). We have -

w(δ(T \ L1)) + w(δ(T \ L2)) = w(δ(L)) + 2w(δ(L1, L2)) ≥ w(δ(L)) + wL

≥
∑

u∈Lw
′(u)

2
=
w′(L)

2
≥ αOPT (I)

2

Hence, the better of the two solutions T \ L1 or T \ L2 is guaranteed to have a cut of weight at

least αOPT (I)
4

.

References

[1] Paul S Bonsma, Tobias Brueggemann, and Gerhard J Woeginger. A faster fpt algorithm for
finding spanning trees with many leaves. In MFCS, pages 259–268. 2003.

[2] Gruia Calinescu and Alexander Zelikovsky. The polymatroid Steiner problems. Journal of
Combinatorial Optimization, 9(3):281–294, 2005.

[3] Jean Daligault and Stéphan Thomassé. On finding directed trees with many leaves. In IPEC,
pages 86–97. 2009.

[4] Matthew Drescher and Adrian Vetta. An approximation algorithm for the maximum leaf
spanning arborescence problem. TALG, 6(3):46, 2010.

[5] Giulia Galbiati, Francesco Maffioli, and Angelo Morzenti. A short note on the approximability
of the maximum leaves spanning tree problem. Information Processing Letters, 52(1):45–49,
1994.

[6] Mohammad Taghi Hajiaghayi, Guy Kortsarz, Robert MacDavid, Manish Purohit, and Kanthi
Sarpatwar. Approximation algorithms for connected maximum cut and related problems. In
ESA, pages 693–704. 2015.

5

[7] Samir Khuller, Manish Purohit, and Kanthi K Sarpatwar. Analyzing the optimal neighbor-
hood: Algorithms for budgeted and partial connected dominating set problems. In SODA,
pages 1702–1713, 2014.

[8] Daniel J Kleitman and Douglas B West. Spanning trees with many leaves. SIAM Journal on
Discrete Mathematics, 4(1):99–106, 1991.

[9] Jon Lee, Viswanath Nagarajan, and Xiangkun Shen. Max-cut under graph constraints. In
IPCO, pages 50–62, 2016.

[10] Hsueh-I Lu and R Ravi. The power of local optimization: Approximation algorithms for
maximum-leaf spanning tree. In Proceedings of the Annual Allerton Conference on Commu-
nication Control and Computing, volume 30, pages 533–533, 1992.

[11] Hsueh-I Lu and Ramamurthy Ravi. Approximating maximum leaf spanning trees in almost
linear time. Journal of Algorithms, 29(1):132–141, 1998.

[12] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[13] Roberto Solis-Oba. 2-approximation algorithm for finding a spanning tree with maximum
number of leaves. In ESA, pages 441–452, 1998.

6

