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1. Main Results

Theorem 1. (Berman) Let X be a Fano manifold. If X has a Kähler-Einstein metric
then X is K-stable.

This means the Donaldson-Futaki invariant of any test configuration (X ,L) is non-negative,
and moreover, if it vanishes, X ≈ X × C.

To prove the main theorem, Berman first establishes a second theorem (Theorem 2 below)
which relates the Donaldson-Futaki invariant to the Ding functional. To state this theorem,
we first recall the necessary notation.

Let ω ∈ c1(−KX) and Dω : PSH(X,ω) ∩ L∞(X)→ R the Ding functional:

Dω(φ) = −E(φ0, φ1)− log

∫
X
he−φ

where ω = −i∂∂̄ log h = −ddc log h. The critical points of Dω are the KE metrics.

Let ρ : C× → Aut(L → X → C) be a test configuration for (X,−KX). Assume X ⊆ PN×C
for some N . Thus ρ(τ) ∈ GL(N + 1,C) for all τ ∈ C× and ρ(τ)X = Xτ .

Theorem 2. Let hFSe
−φ be locally bounded S1 invariant metric on L with ωFS+ddcφ ≥ 0.

Then

(1.1) −DF (X ,L) = lim
t→∞

d

dt
Dω(φt) + q

where q is a non-negative rational number. Here φt ∈ PSH(X,−KX) is defined by

(1.2) hFSe
−φt = ρ(τ)∗([hFSe

−φ]|Lτ ) ; e−t = log |τ |

1.1. The geodesic ray φt(X ,L). We shall apply (1.1) to a particular path of metrics
φt. Let p : X ′ → X be an S1 equivariant log-resolution of singularities. Then φ(X ,L) ∈
PSH(X ′∆, ωFS) is the solution to the Dirichlet problem

(ωFS + ddcφ)n+1 = 0 ; φ|∂∆ = φ0

and φt ∈ PSH(X,ωFS) is defined by (1.2).
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2. Formula for q

After replacing X by a X ′, we may then L′ → X ′ is semi-ample with L′(X ′)× ≈ −K(X ′)×/C.

Let A = π∗(L′ + K ′X ′/C). Then A → C is a coherent sheaf, rank one, and torsion free.

Thus A is a line bundle. To see this, recall that any coherent sheaf over C is of the form

A = C[t]r ⊕ C[t]/(f1)⊕ · · · ⊕ C[t]/(fm)

Thus torsion free implies free and r = 1 implies free of rank one.

Now let s be a trivializing section of A over C. Thus s ∈ H0(X ,L + KX/C) and for all

τ ∈ C we have 0 6= s|Xτ ∈ H0(Xτ , (L+KX/C)|Xτ ). In particular, s|Xτ is nowhere vanishing

if τ ∈ C×. This means the divisor of s is supported on the central fiber:

(π) =
∑
i

miEi, mi > 0

(s) =
∑
i

ciEi, ci ≥ 0

Note that (π) = (τ) so we must have mi < ci for some i (otherwise, replace s by s/τ).

There is a natural (singular) metric ΦA on A defined by

‖s‖2ΦA(τ) =

∫
X′τ

(s ∧ s̄)e−φ ; τ 6= 0

Before stating the formula for q we need one more construction: Let X̄ → P1 be the trivial
completion of X → C and L̄ → X̄ the trivial completion of L → X . This means that
X̄ |P1\{∞} = X and X̄ |P1\{0} = X × {P1\{0}}. Thus X̄ ⊆ P1 × PN is a closed submanifold.

Proposition 1. We have

(2.1) q = max
i

mi − 1− ci
mi

+
1

c1(L)n

∑
i

ciEi · L̄′ · · · L̄′ ∈ Q

3. Proof that q ≥ 0

We wish to prove q ≥ 0. To do this, we rewrite (2.1) as follows. First note that by flatness,∑
i

miEi · L̄′ · · · L̄′ = c1(L)n

Thus, setting

ti = mi
Ei · L̄′ · · · L̄′

c1(L)n

we see
∑

i∈I ti = 1 where I = {i : ti > 0}. Moreover

q = max
i

(
mi − 1

mi
− ci
mi

)
+
∑
i∈I

ci
mi

ti
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If i0 ∈ I is the index where the minimum of ci
mi

is attained, we see q ≥ mi0−1

mi0
≥ 0.

We have thus reduced the proof of the main theorem to the proof of Proposition 1. We
first review some of the necessary tools.

4. Weight-Slope identity

Let η → C be a holomorphic line bundle and ρ : C× → Aut(η → C) a C× action. Let
w ∈ Z be the weight of η at the origin.

Proposition 2. Let h = h0e
−Φ a metric on η (here h0 is a fixed smooth metric). Then

lim
τ→0

log ‖ρ(τ)s1)‖h
log |τ |

= wη − lΦ

where

lΦ = lim
τ→0

Φ(τ)

log |τ |

5. The weight-slope identity for the Chow bundle.

Let L → X → C be a test configuration, let φ be a locally bounded metric on L, and
C = 〈L, ...,L〉 → C the Chow line bundle. Since φ is locally bounded, one easily shows
the Deligne metric ΦD = 〈φ, ..., φ〉 is locally bounded, so lΦD = 0. Let φt = ρ(τ)∗φτ where
t = − log |τ |. Thus φt is a family of metrics on L → X where, as usual, we make the
identification X = X1. Then the weight-slope identity plus S. Zhang’s theorem implies

(5.2) wC = lim
t→∞

d

dt
E(φ0, φt)

6. The weight-slope identity for the adjoint bundle.

(6.3) lim
t→∞
− d

dt
log

∫
X

(s1 ∧ s̄1)1/re−φt = lim
t→∞
− d

dt
log

∫
X
e−φt = wA − lΦA

In the second integral we view e−φt as a metric on −KX using the isorphism defined by s1.

7. The CM line bundle

We want to apply the weight-slope formula to particular line bundle η → C whose weight
is −D(X ,L).

Theorem 3. (Phong-Ross-S) Let X be Fano and (X ,L) a test configuration. Assume X
is Q-Gorenstein and define

(7.4) η = − 1

(n+ 1)c1(L)n
〈L, ....,L〉+

1

c1(L)n
〈L+KX/C,L, ...L〉

Then

(7.5) −DF (X ,L) = wη′
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If X is only normal, then let X ′ → X be an equivariant resolution so KX ′/C is defined.
Define η′ as in (7.5) but with X ,L replaced by X ′,L′. Then

(7.6) −DF (X ,L) = wη′

8. Decomposition of the CM line bundle

Our goal is to calculate wη′ . We first decompose η′ as follows:

(8.7) η′ = F ′ + I ′ = −C ′ +A′ + I ′

Where

(8.8) F ′ = − 1

(n+ 1)c1(L)n
〈L′, ....,L′〉+ π′∗(L′ +KX ′/C) = −C ′ +A′

and

I ′ =

(
1

c1(L)n
〈L′ +KX ′/C,L′, ...L′〉 − π′∗(L′ +KX ′/C)

)
To compute w(C ′) and w(A′) we use the weight-asymptote identity twice:

w(F ) = −wC + wA = −
(

lim
t→∞

d

dt
E(φ0, φt)

)
+

(
− lim
t→∞

d

dt
log

∫
X
e−φt + lΦA

)
We obtain

w(F ′) = lim
t→∞

Dω0(φt) + lΦA

Thus
−DF (X ,L) = lim

t→∞
Dω0(φt) + q

where
q = lΦA′ + w(I ′)

Here lΦA′ is a Lelong number and, as we shall see, w(I ′) is an intersection number.

9. Calculation of lΦA

We wish to show

(9.9) lΦA = max
i

mi − 1− ci
mi

One easily sees that the Lelong number can be characterized as follows:

lΦA = inf

{
l :

∫
∆∗

e−(ΦA−l log |τ |2)

|τ |2
dτ ∧ dτ̄ < ∞

}
Now
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∫
∆∗

e−(ΦA−l log |τ |2)

|τ |2
dτ ∧ dτ̄ =

∫
∆∗

∫
Xτ

(s ∧ s̄)1/re−φ
1

|τ |2(1−l)dτ ∧ dτ̄ =

∫
X ′

Ω

Where Ω is a positive measure on X ′.

Let p ∈ X ′0 and choose p ∈ U ⊆ X ′ a coordinate neighborhood. Let Ei1 , ..., Eir be the
divisors passing through p, and let (z0, ..., zn) be holomorphic coordinates on U . On U ,

τ = eα(z)z
mi1
i1
· · · zmirir

(s ∧ s̄)1/re−φ dτ ∧ dτ̄ = eβ(z)z
ci1
i1
· · · zcirir dz ∧ dz̄

where α(z), β(z) are bounded functions on U . Thus∫
U

Ω =

∫
U
eα+β

r∏
µ=1

|z2
iµ |

ciµ−(1−l)miµ dz ∧ dz̄

which is finite if and only if ci − (1− l)mi > −1 for all i and this establishes (9.9)

10. Calculation of w(I ′)

This is inspired by Xiaowei Wang’s formula for DF (X ,L):

Lemma 1. Let Ī → P1 be a line bundle with C× action. Then

deg Ī = w0 − w∞
We postpone the proof. Let Ī → P1 be

I =

(
1

c1(L)n
〈L̄′ +KX̄ ′/C, L̄′, ...L̄′〉 − π′∗(L̄′ +KX̄ ′/P1)

)
w(I) = deg Ī =

1

c1(L)n
deg〈L̄′ +KX̄ ′/C, L̄′, ...L̄′〉 − deg π′∗(L̄′ +KX̄ ′/P1)

But the Deligne curvature formula (D1) in §6 implies

deg〈L̄′ +KX̄ ′/C, L̄′, ...L̄′〉 =

∫
P1

π′∗
[
c1(L̄′ +KX̄ ′/C) ∧ c1(L̄′) ∧ · · · ∧ c1(L̄′)

]
=

∫
X̄
c1(L̄′ +KX̄ ′/C) ∧ c1(L̄′) ∧ · · · ∧ c1(L̄′) = (L̄′ +KX̄ ′/C) · L̄′ · · · L̄′

Hence

w(I) =
1

c1(L)n
(L̄′ +KX̄ ′/C) · L̄′ · · · L̄′ − deg π′∗(L̄′ +KX̄ ′/P1)

We claim that w(I) doesn’t change if we replace L̄′ by L̄′⊗(π′)∗OP1(m) (see Lemma below).

This means, in the calculation of w(I), we may assume

deg π′∗(L′ +KX̄ ′/P1) = 0
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In order to proceed with the calculation, we need some notation. Write

div(π∗τ) =
∑
i

miEi

Thus mi ≥ 1 for all i is given by mi = ordEiπ
∗τ .

Let s be a nowhere vanishing section of π′∗L′ + KX̄′/C. Thus s is a section of L′ + KX̄′/C
with the property τ 6 | s so

div(s) =
∑
i

ciEi

with ci ≥ 0 for all i and ci < mi for some i. We conclude

(10.10) w(I) =
1

c1(L)n
(L̄′ +KX̄ ′/C) · L̄′ · · · L̄′ =

1

c1(L)n

∑
i

ciEi · L̄′ · · · L̄′ ≥ 0

11. Weight-degree identity

Let F → P1 be a line bundle with C× action. We wish to show that

degF = w0 − w∞
Without lose of generality, we may assume degF ≥ 0 (otherwise replace F by −F ). Let s
be a holomorphic section whose zeros are α1, ..., αd ∈ C×. Then

ρ(τ)(s)

s
= c(τ)

(z − τα1) · · · (z − ταd)
(z − α1) · · · (z − αd)

Taking the limit as z →∞ we see that c(τ) = τw∞ . Plugging in z = 0 we get

τw0 = τw∞τdegF

This proves the identity.

12. Twisting lemma

Lemma 2. w(I) doesn’t change if we replace L̄′ by L̄′ ⊗ (π′)∗OP1(m)

Proof. Note that

deg π′∗(L′ +KX̄ ′/P1 + (π′)∗OP1(m)) = deg
(

[π′∗(L′ +KX̄ ′/P1)]⊗OP1(m))
)

= deg[π′∗(L′ +KX̄ ′/P1)] +m

On the other hand, if in the integral

1

c1(L)n

∫
X̄
c1(L̄′ +KX̄ ′/C) ∧ c1(L̄′) ∧ · · · ∧ c1(L̄′)
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we replace c1(L̄′) with c1(L̄′) + m(π′)∗ωFS and c1(L̄′ + KX̄ ′/C) with c1(L̄′ + KX̄ ′/C) +

m(π′)∗ωFS and expand, only terms with at most one m(π′)∗ωFS will survive. And since
c1(L̄′ +KX̄ ′/C) = 0 on a generic fiber, only

1

c1(L)n

∫
X̄
m(π′)∗ωFS ∧ c1(L̄′) ∧ · · · ∧ c1(L̄′) =

1

c1(L)n
mc1(L)n = m

survives. The two copies of m appear with opposite signs, and thus cancel.

13. Theorem 2 implies Theorem 1

We give a sketch: Let φ0 be a Kähler-Einstein metric and let φ = φ(X ,L) the geodesic
associated to (X ,L). Then Dω(φt) is convex (Berndtsson) so (1.1) implies −D(X ,L) ≥ 0.
If equality holds, we must show there is a biholomorphic map f : X ≈ X0.

Since ρ(τ) : X → Xτ we might try f(x) = limτ→0 ρ(τ)(x). But such an f is usually not
continuous, let alone holomorphic. If n = 1 the image of f is typically a finite set of points
(we gave an example of this last time).

But if equality holds then Dω(φt) is linear and hence (Berndtsson) φt is a smooth geodesic
associated to a non-zero holomorphic vector field V . Let σV (τ) : X → X be the 1-
parameter family of biholomorphic maps (here τ ∈ C×) and define f : X → X0 by
f(x) = limτ→0 ρ(τ)σ(τ)(x). We saw that f is onto, holomorphic and generically finite.
Moreover, by the result of Li-Xu, we may assume X0 is normal. Hence, by Zariski’s main
theorem, f is biholomorphic.

14. Deligne pairing

We want to apply the weight-slope formula to certain hermitian line bundle (η, hη) → C
whose weight is −D(X ,L). To explain the construction of η we first recall the concept of
Deligne pairing.

Let π : X → B be a flat projective morphism between algebraic varieties with B smooth.
Let L0...,Ln → X be line bundles equipped with locally bounded hermitian metrics
φ0, ..., φn (so the curvature of Lj is ddcφj). Then

〈L0, ...,Ln〉 → B
is a line bundle equipped with the Deligne metric ΦD = 〈φ0, ..., φn〉. It satisfies

(1) The curvature of ΦD is given by the current

ddcΦD = π∗(dd
cφ0 ∧ · · · ∧ ddcφn)

(2) If φj , ψj are locally bounded metrics on Lj then

ΦD −ΨD = (n+ 1)E(φ, ψ) =

n∑
j=0

∫
X/B

(φj − ψj)
∧
k<j

(ddcφk)
∧
k>j

(ddcψk)


