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1. Background from complex variables

1.1. Convex sets and domains. We shall consider two types of convexity: relative and
intrinsic. We start with the classical definition, in which the defining sheaf is the sheaf of
linear functions: Let Ω ⊆ Rn be a domain and Λ(Ω) the space of linear functions on Ω.
The restriction map for this sheaf Λ(Rn)→ Λ(Ω) is clearly bijective.

Recall that if K ⊆ Rn is a subset then the (linear) convex hull is defined by

K̂ = K̂Λ(Rn) =
⋂
{λ ≤ 0 : λ|K ≤ 0, λ ∈ Λ(Rn) }

We say that a set K is convex in Rn if K = K̂. If If Ω ⊆ Rn is a domain and K ⊆ Ω we
define the relative convex hull of K with respect to Ω as

K̂Ω = K̂Λ(Ω) :=
⋂
{λ ≤ 0 : λ|K ≤ 0, λ ∈ Λ(Ω) } = K̂ ∩ Ω ⊆ Ω

We say K is convex relative to Ω if K = K̂Ω.

Let CNV(Ω) be set of all convex functions on Ω. Then we easily see

K̂Λ(Ω) = K̂CNV(Ω) =
⋂
{u ≤ 0 : u|K ≤ 0, u ∈ CNV(Ω) }

We define Ω to be (intrinsically) convex if K̂Ω is compact whenever K ⊆ Ω is compact (In
fact if we wish, we may assume, in this definition, that K is a set with two elements).
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Another way to define convex sets is via the notion of convex exhaustion functions: We
say Ω ⊆ Rn is convex if there exists a convex function f : Ω → R with the property
{f ≤ c} ⊆ Ω is compact (and convex) for all c ∈ R.

To see that the two definitions are equivalent, first note that if Ω has a convex exhaustion
function f , then {f ≤ c} is clearly convex in the usual sense. On the other hand, if Ω
is convex in the usual sense, then it is not hard to see that f = − log d∂Ω is a convex
exhaustion function, where d∂Ω(x) = dist(x, ∂Ω). In fact, replacing f by f + |x|2, we may
assume the exhaustion function is strictly convex. Moreover, one can show there always
exists a smooth strictly convex exhaustion function.

1.2. Holomorphically convex sets and domains. We next consider the complex ana-
logue, replacing the sheaf of linear functions with the sheaf of holomorphic functions. Let
K ⊆ Cn be a compact set. The holomorphic convex hull of K is defined by

K̂O(Cn) =
⋂
{|h| ≤ 1 : |h||K ≤ 1, h ∈ O(Cn) } ⊆ Cn

We say K is holomorphically convex in Cn if K = K̂O(Cn). Note that K̂O(Cn) = K̂C[Z] so
h-convex (i.e. holomorphically convex) is the same as polynomially convex.

One big source of h-convex sets are the so called h-polyhedra: Let h1, ...hp be a collection
of holomorphic functions on Cn. Then if ∩pj=1{ |hj | ≤ 1} is compact, it is automatically
h-convex in Cn.

If n = 1 then K is h-convex in C if and only if K has no holes. The classical Runge theorem
says that if K ⊆ C has no holes, then any holomorphic function on a neighborhood of K can
be uniformly approximated on K by a sequence of entire (or even polynomial) functions.

If n > 1 then holomorphic convexity is much more subtle and has no topological charac-
terization. But the classical Runge theorem does generalize:

Theorem 1. (Oka, 1939) Let K ⊆ Cn be holomorphically convex in Cn. If f is holo-
morphic in some neighborhood of K then there is a sequence of polynomials Pj such that
Pj → f uniformly on K.

We postpone the proof - late we shall give a proof of a generalization (Oka-Weil).

We define the relative version of h-convexity mimicking the construction in Rn. Let Ω ⊆ Cn
be a domain and let O(Ω) the ring of holomorphic functions on Ω. Let K ⊆ Ω be compact.
Define the holomorphic convex hull of K relative to Ω:

K̂O(Ω) =
⋂
{|h| ≤ 1 : |h||K ≤ 1, h ∈ O(Ω) } ⊆ Ω

We say K is h-convex relative to Ω (or sometimes K is O(Ω)-convex) if K = K̂O(Ω). Note

that if Ω1 ⊆ Ω2 and K ⊆ Ω1 is compact, then K̂O(Ω2) ⊆ K̂O(Ω1) but the two are not, in
general, equal.
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Next we define convexity for domains. We say Ω is holomorphically convex if K̂O(Ω) ⊆ Ω
is compact whenever K ⊆ Ω is compact.

We emphasize that for compact sets, convexity is a relative notion while for open sets,
convexity is an intrinsic notion. Thus a compact sub-annulus K of an open annulus Ω ⊆ C
is h-convex in Ω (in fact, it is an h-polygon) but not h-convex in C. On the other hand,
the annulus Ω is h-convex.

Theorem 2. If Ω is holomorphically convex then

(1.1) K̂O(Ω) = K̂PSH(Ω) =
⋂
{φ ≤ 0 : φ|K ≤ 0, φ ∈ PSH(Ω) } ⊆ Ω

for all compact sets K ⊆ Ω.

Let Ω1 ⊆ Ω2 ⊆ Cn be h-convex domains in Cn. We say Ω1 is Runge in Ω2 ifO(Ω2)→ O(Ω1)
has dense image.

Corollary 1. If Ω is holomorphically convex then open psh-polyhedra are Runge in Ω
and closed psh-polyhedra are h-convex in Ω. In particular closed sublevel sets of plurisub-
harmonic functions are h-convex and open sublevel sets are Runge. More precisely, if
φ ∈ PSH(Ω) ∩ C0(Ω) and c ∈ R. Assume {φ ≤ c} ⊆ Ω is compact. Then

(1.2) {φ ≤ c} ⊆ Ω is h-convex in Ω

(1.3) {φ < c} is Runge in Ω

Proof. Statement (1.2) follows immediately from the theorem. As for (1.3), first we observe
that Ωc = {φ < c} is h-convex. In fact, − log(c − ψ) is a psh exhaustion function for Ωc.
To see this, recall that if χ(t1, ..., tp) is convex on Rp and increasing in each variable, then
χ(u1, ..., up) is psh whenever u1, ..., up are psh. In our setting we take χ(t) = − log(c− t).
To prove Ωc is Runge, note that Kε = {φ ≤ c − ε} ⊆ Ω is h-convex by (1.2). Thus if
f ∈ O(Ω), Oka’s theorem (more precisely, Oka-Weil) implies that for each j there is a
sequence P1, P2, ... ∈ O(Ω) such that Pk → f uniformly on K1/j . Now let j →∞ and take
a diagonal subsequence.

Another way to define h-convex sets is via the notion of plurisubharmonic exhaustion
functions: We say Ω ⊆ Rn is pseudoconvex if there exists a continuous plurisubharmonic
function ψ : Ω→ R with the property {ψ ≤ c} ⊆ Ω is compact for all c ∈ R.

Theorem 3. Let Ω ⊆ Cn be a domain. The following are equivalent:

(1) Ω is holomorphically convex.
(2) Ω is pseudoconvex, i.e. there exists some continuous psh exhaustion function.
(3) − log d∂Ω is a continuous plurisubharmonic exhaustion function.
(4) There exists a smooth strictly plurisubharmonic exhaustion function.
(5) Ω is a domain of holomorphy, i.e. there exists f ∈ O(Ω) which can not be extended

to a holomorphic function on any open set which strictly contains Ω.
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In particular, h-convex domains can be exhausted by compact h-convex sets and also by
relatively compact Runge sub-domains: if ψ is a continuous exhaustion function, then
Kc = {ψ ≤ c} ⊆ Ω is compact and h-convex in Ω.

The equivalence of (1) and (5) is due to Cartan-Thullen, and is not difficult. First, if
f ∈ O(Ω) can not be extended, and if p ∈ K ⊆ Ω with K compact, then the radius of
convergence of f centered at p is the distance from p to ∂Ω, which is bounded below by
r = dist(K, ∂Ω) > 0. Thus

r|α||Dαf |(p) ≤ sup
Br/2(p)

r|α||Dαf | ≤ C(n) sup
K′
|f |

where x ∈ K ′ if d∂Ω(x) ≥ r/2. Thus, if q ∈ K̂O(Ω) we have

r|α||Dαf |(q) ≤ C(n) sup
K′
|f |

But this means the radius of convergence of f at q is at least r/c(n) which implies

dist(K̂O(Ω), ∂Ω) ≥ r/c(n) so K̂O(Ω) is compact. For the converse, let zk ∈ O be any se-

quence such that {zk : k = 1, 2, ...} = ∂Ω. Choose an increasiong sequence K1 ⊆ K2 · · · ⊆ Ω
of compact sets whose union is Ω. Then for each j, there exist fj ∈ O(Ω) such that |fj | ≤ 1
on Kj but |fj |(zk) > 1 for k sufficiently large. After passing to a subsequence, and mul-
tiplying fj by τjfj with |τj | = 1, we may assume |Im(fj(zk))| ≤ |Re(fj(zk))| for all k.
Replacing fj by fNj for large N , we may assume |fj(zj)| ≥ j2j Now let f =

∑
j 2−jfj . We

see f |(zj)| → ∞ so Ω is a domain of holomorphy.

1.3. Characterization of Runge domains. Let Ω ⊆ Cn be a pseudoconvex domain.
Recall that Ω is a Runge domain if O(Cn)→ O(Ω) has dense image.

When n = 1, a bounded domain Ω ⊆ C is Runge if and only if its complement is connected.
In the general case, we don’t have such a simple characterization of Runge domains, but
the following is useful:

Theorem 4. A pseudoconvex domain Ω ⊆ Cn is Runge if and only if

(1.4) K̂O(Cn) = K̂O(Ω) for all K ⊆ Ω compact

To see this, let f ∈ O(Ω) and write Ω = ∪Kj where Kj ⊆ Ω is an increasing sequence of

compact h-convex subsets. Fix j and let K = Kj . Then K = K̂O(Cn) so Oka’s theorem
says there is a sequence of polynomial P1, P2, .. converging uniformly to f on Kj . Passing
to a diagonal subsequence we get uniform convergence of the Pj to f on any compact
subset.

1.4. Stein manifolds. Stein manifolds are generalizations of h-convex domains.

Theorem 5. Let X be a complex manifold of dimension n. The following are equivalent.

(1) X is Stein
(2) There exists a continuous plurisubharmonic exhaustion function ψ : X → R.
(3) There exists a smooth strictly plurisubharmonic exhaustion function ψ : X → R.
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(4) X is holomorphically convex and O(X) separates points.
(5) There exists an imbedding X ↪→ CN whose image is a closed submanifold. We may

always take N = 2n+ 1.
(6) Hp(X,F) = 0 for all coherent sheaves F → X and all p > 0.

Thus a domain Ω ⊆ Cn is a Stein manifold if and only if it is pseudoconvex. Also, a closed
submanfold of a Stein manifold is Stein. Non-compact Riemann surfaces are Stein (this is
a difficult theorem) and holomorphic covers of Stein manifolds are Stein.

Relation (1.1) generalizes to Stein manifolds: If K ⊆ X is a compact subset of a Stein
manifold then

(1.5) K̂O(X) = K̂PSH(X) =
⋂
{φ ≤ 0 : φ|K ≤ 0, φ ∈ PSH(X) } ⊆ Ω

Thus every Stein manifold is exhausted by compact h-convex subsets.

Oka’s theorem generalizes as well:

Theorem 6. (Oka-Weil) Let X be a Stein manifold and K ⊆ X a compact O(X)-convex
subset. Then if f is holomorphic in some neighborhood of K there is a sequence Fj ∈ O(X)
such that Fj → f uniformly on K.

Proof (sketch). If f is defined on W , an open neighborhood of K, then we can squeeze an
analytic polyhedra between K and W . That is, there exist h1, ..., hp ∈ O(X) such that

K ⊆ U =

p⋂
j=1

{|hj | < 1} ⊆ W

Thus we obtain a map X → Cp whose restriction to U is a proper map U → Dp, where
D ⊆ C is the unit disk. By adding more holomorphic functions hp+1, ..., hm, we may insure
that U → Dm is a proper closed imbedding. Cartan’s extension theorem says that f , which
is holomorphic on U ⊆ Dm, is the restriction of a holomorphic function F on Dm which
may be approximated by polynomials P1, P2, ... on Cm. Pulling back via X → Cm we get
a sequence of elements in O(X) converging uniformly to f on U .

1.5. Runge domains in Stein manifolds. Let Ω ⊆ X be an Stein open subset of a
Stein manfold. We say Ω is Runge in X if O(X)→ O(Ω) has dense image.

Theorem 4 holds for Stein manifolds:

Theorem 7. If X is a Stein manifold and Ω ⊆ X a Stein domain then Ω is Runge in X
if and only if for every compact set K ⊆ Ω we have K̂O(X) = K̂O(Ω).

The proof is identical to the case for domains.

If X ⊆ Y is a closed submanifold of a Stein manfiold (and hence Stein) then O(Y )→ O(X)
is surjective. This can be seen using Cartan’s theorems.

In particular, if Ω̃ ⊆ Y is Runge, then Ω = Ω̃ ∩X ⊆ X is Runge. Coltoiu’s theorem says
the converse is true.
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1.6. Coltoiu’s theorem.

Theorem 8. Let X ⊆ Cn be a closed analytic set and Ω ⊆ X a Runge open subset. Then
there exists a Runge open subsect Ω̃ ⊆ Cn such that Ω̃ ∩X = Ω. Moreover, if K ⊆ Cn is
a holomorphically convex compact subset such that K ∩X ⊆ Ω then we there exists such a
Ω̃ with the additional property: K ⊆ Ω̃.
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