EXTENSION OF PSH FUNCTIONS WITH GROWTH CONTROL

JACOB STURM

CONTENTS

1. Background from complex variables		1
1.1.	Convex sets and domains.	1
1.2.	Holomorphically convex sets and domains.	2
1.3.	Characterization of Runge domains.	4
1.4.	Stein manifolds	4
1.5.	Runge domains in Stein manifolds	5
1.6.	Coltoiu's theorem.	5
References		6

1. BACKGROUND FROM COMPLEX VARIABLES

1.1. Convex sets and domains. We shall consider two types of convexity: relative and intrinsic. We start with the classical definition, in which the defining sheaf is the sheaf of linear functions: Let $\Omega \subseteq \mathbb{R}^n$ be a domain and $\Lambda(\Omega)$ the space of linear functions on Ω . The restriction map for this sheaf $\Lambda(\mathbb{R}^n) \to \Lambda(\Omega)$ is clearly bijective.

Recall that if $K \subseteq \mathbb{R}^n$ is a subset then the (linear) convex hull is defined by

$$\hat{K} = \hat{K}_{\Lambda(\mathbb{R}^n)} = \bigcap \{ \lambda \le 0 : \lambda |_K \le 0, \lambda \in \Lambda(\mathbb{R}^n) \}$$

We say that a set K is convex in \mathbb{R}^n if $K = \hat{K}$. If If $\Omega \subseteq \mathbb{R}^n$ is a domain and $K \subseteq \Omega$ we define the relative convex hull of K with respect to Ω as

$$\hat{K}_{\Omega} = \hat{K}_{\Lambda(\Omega)} := \bigcap \left\{ \lambda \leq 0 : \lambda |_{K} \leq 0, \lambda \in \Lambda(\Omega) \right\} = \hat{K} \cap \Omega \subseteq \Omega$$

We say K is convex relative to Ω if $K = \hat{K}_{\Omega}$.

Let $CNV(\Omega)$ be set of all convex functions on Ω . Then we easily see

$$\hat{K}_{\Lambda(\Omega)} = \hat{K}_{\text{CNV}(\Omega)} = \bigcap \{ u \le 0 : u | _{K} \le 0, u \in \text{CNV}(\Omega) \}$$

We define Ω to be (intrinsically) convex if \hat{K}_{Ω} is compact whenever $K \subseteq \Omega$ is compact (In fact if we wish, we may assume, in this definition, that K is a set with two elements).

JACOB STURM

Another way to define convex sets is via the notion of convex exhaustion functions: We say $\Omega \subseteq \mathbb{R}^n$ is convex if there exists a convex function $f : \Omega \to \mathbb{R}$ with the property $\{f \leq c\} \subseteq \Omega$ is compact (and convex) for all $c \in \mathbb{R}$.

To see that the two definitions are equivalent, first note that if Ω has a convex exhaustion function f, then $\{f \leq c\}$ is clearly convex in the usual sense. On the other hand, if Ω is convex in the usual sense, then it is not hard to see that $f = -\log d_{\partial\Omega}$ is a convex exhaustion function, where $d_{\partial\Omega}(x) = \operatorname{dist}(x, \partial\Omega)$. In fact, replacing f by $f + |x|^2$, we may assume the exhaustion function is strictly convex. Moreover, one can show there always exists a smooth strictly convex exhaustion function.

1.2. Holomorphically convex sets and domains. We next consider the complex analogue, replacing the sheaf of linear functions with the sheaf of holomorphic functions. Let $K \subseteq \mathbb{C}^n$ be a compact set. The holomorphic convex hull of K is defined by

$$\hat{K}_{\mathcal{O}(\mathbb{C}^n)} = \bigcap \{ |h| \le 1 : |h||_K \le 1, h \in \mathcal{O}(\mathbb{C}^n) \} \subseteq \mathbb{C}^n$$

We say K is holomorphically convex in \mathbb{C}^n if $K = \hat{K}_{\mathcal{O}(\mathbb{C}^n)}$. Note that $\hat{K}_{\mathcal{O}(\mathbb{C}^n)} = \hat{K}_{\mathbb{C}[Z]}$ so h-convex (i.e. holomorphically convex) is the same as polynomially convex.

One big source of h-convex sets are the so called h-polyhedra: Let $h_1, ..., h_p$ be a collection of holomorphic functions on \mathbb{C}^n . Then if $\bigcap_{j=1}^p \{ |h_j| \leq 1 \}$ is compact, it is automatically h-convex in \mathbb{C}^n .

If n = 1 then K is h-convex in C if and only if K has no holes. The classical Runge theorem says that if $K \subseteq \mathbb{C}$ has no holes, then any holomorphic function on a neighborhood of K can be uniformly approximated on K by a sequence of entire (or even polynomial) functions.

If n > 1 then holomorphic convexity is much more subtle and has no topological characterization. But the classical Runge theorem does generalize:

Theorem 1. (Oka, 1939) Let $K \subseteq \mathbb{C}^n$ be holomorphically convex in \mathbb{C}^n . If f is holomorphic in some neighborhood of K then there is a sequence of polynomials P_j such that $P_j \to f$ uniformly on K.

We postpone the proof - late we shall give a proof of a generalization (Oka-Weil).

We define the relative version of h-convexity mimicking the construction in \mathbb{R}^n . Let $\Omega \subseteq \mathbb{C}^n$ be a domain and let $\mathcal{O}(\Omega)$ the ring of holomorphic functions on Ω . Let $K \subseteq \Omega$ be compact. Define the holomorphic convex hull of K relative to Ω :

$$\hat{K}_{\mathcal{O}(\Omega)} = \bigcap \{ |h| \leq 1 : |h||_K \leq 1, h \in \mathcal{O}(\Omega) \} \subseteq \Omega$$

We say K is h-convex relative to Ω (or sometimes K is $\mathcal{O}(\Omega)$ -convex) if $K = \hat{K}_{\mathcal{O}(\Omega)}$. Note that if $\Omega_1 \subseteq \Omega_2$ and $K \subseteq \Omega_1$ is compact, then $\hat{K}_{\mathcal{O}(\Omega_2)} \subseteq \hat{K}_{\mathcal{O}(\Omega_1)}$ but the two are not, in general, equal.

Next we define convexity for domains. We say Ω is holomorphically convex if $K_{\mathcal{O}(\Omega)} \subseteq \Omega$ is compact whenever $K \subseteq \Omega$ is compact.

We emphasize that for compact sets, convexity is a relative notion while for open sets, convexity is an intrinsic notion. Thus a compact sub-annulus K of an open annulus $\Omega \subseteq \mathbb{C}$ is h-convex in Ω (in fact, it is an h-polygon) but not h-convex in \mathbb{C} . On the other hand, the annulus Ω is h-convex.

Theorem 2. If Ω is holomorphically convex then

(1.1)
$$\hat{K}_{\mathcal{O}(\Omega)} = \hat{K}_{\text{PSH}(\Omega)} = \bigcap \{ \phi \le 0 : \phi |_K \le 0, \phi \in \text{PSH}(\Omega) \} \subseteq \Omega$$

for all compact sets $K \subseteq \Omega$.

Let $\Omega_1 \subseteq \Omega_2 \subseteq \mathbb{C}^n$ be h-convex domains in \mathbb{C}^n . We say Ω_1 is Runge in Ω_2 if $\mathcal{O}(\Omega_2) \to \mathcal{O}(\Omega_1)$ has dense image.

Corollary 1. If Ω is holomorphically convex then open psh-polyhedra are Runge in Ω and closed psh-polyhedra are h-convex in Ω . In particular closed sublevel sets of plurisubharmonic functions are h-convex and open sublevel sets are Runge. More precisely, if $\phi \in PSH(\Omega) \cap C^0(\Omega)$ and $c \in \mathbb{R}$. Assume $\{\phi \leq c\} \subseteq \Omega$ is compact. Then

(1.2)
$$\{\phi \le c\} \subseteq \Omega \quad is \ h\text{-convex in } \Omega$$

(1.3)
$$\{\phi < c\} \text{ is Runge in } \Omega$$

Proof. Statement (1.2) follows immediately from the theorem. As for (1.3), first we observe that $\Omega_c = \{\phi < c\}$ is h-convex. In fact, $-\log(c - \psi)$ is a psh exhaustion function for Ω_c . To see this, recall that if $\chi(t_1, ..., t_p)$ is convex on \mathbb{R}^p and increasing in each variable, then $\chi(u_1, ..., u_p)$ is psh whenever $u_1, ..., u_p$ are psh. In our setting we take $\chi(t) = -\log(c - t)$. To prove Ω_c is Runge, note that $K_{\epsilon} = \{\phi \leq c - \epsilon\} \subseteq \Omega$ is h-convex by (1.2). Thus if $f \in \mathcal{O}(\Omega)$, Oka's theorem (more precisely, Oka-Weil) implies that for each j there is a sequence $P_1, P_2, ... \in \mathcal{O}(\Omega)$ such that $P_k \to f$ uniformly on $K_{1/j}$. Now let $j \to \infty$ and take a diagonal subsequence.

Another way to define h-convex sets is via the notion of plurisubharmonic exhaustion functions: We say $\Omega \subseteq \mathbb{R}^n$ is pseudoconvex if there exists a continuous plurisubharmonic function $\psi : \Omega \to \mathbb{R}$ with the property $\{\psi \leq c\} \subseteq \Omega$ is compact for all $c \in \mathbb{R}$.

Theorem 3. Let $\Omega \subseteq \mathbb{C}^n$ be a domain. The following are equivalent:

- (1) Ω is holomorphically convex.
- (2) Ω is pseudoconvex, i.e. there exists some continuous psh exhaustion function.
- (3) $-\log d_{\partial\Omega}$ is a continuous plurisubharmonic exhaustion function.
- (4) There exists a smooth strictly plurisubharmonic exhaustion function.
- (5) Ω is a domain of holomorphy, i.e. there exists $f \in \mathcal{O}(\Omega)$ which can not be extended to a holomorphic function on any open set which strictly contains Ω .

JACOB STURM

In particular, h-convex domains can be exhausted by compact h-convex sets and also by relatively compact Runge sub-domains: if ψ is a continuous exhaustion function, then $K_c = \{\psi \leq c\} \subseteq \Omega$ is compact and h-convex in Ω .

The equivalence of (1) and (5) is due to Cartan-Thullen, and is not difficult. First, if $f \in \mathcal{O}(\Omega)$ can not be extended, and if $p \in K \subseteq \Omega$ with K compact, then the radius of convergence of f centered at p is the distance from p to $\partial\Omega$, which is bounded below by $r = \operatorname{dist}(K, \partial\Omega) > 0$. Thus

$$r^{|\alpha|}|D^{\alpha}f|(p) \leq \sup_{B_{r/2}(p)} r^{|\alpha|}|D^{\alpha}f| \leq C(n) \sup_{K'} |f|$$

where $x \in K'$ if $d_{\partial\Omega}(x) \ge r/2$. Thus, if $q \in \hat{K}_{\mathcal{O}(\Omega)}$ we have

$$r^{|\alpha|}|D^{\alpha}f|(q) \leq C(n) \sup_{K'} |f|$$

But this means the radius of convergence of f at q is at least r/c(n) which implies $\operatorname{dist}(\hat{K}_{\mathcal{O}(\Omega)}, \partial\Omega) \geq r/c(n)$ so $\hat{K}_{\mathcal{O}(\Omega)}$ is compact. For the converse, let $z_k \in \mathcal{O}$ be any sequence such that $\overline{\{z_k : k = 1, 2, \ldots\}} = \partial\Omega$. Choose an increasiong sequence $K_1 \subseteq K_2 \cdots \subseteq \Omega$ of compact sets whose union is Ω . Then for each j, there exist $f_j \in \mathcal{O}(\Omega)$ such that $|f_j| \leq 1$ on K_j but $|f_j|(z_k) > 1$ for k sufficiently large. After passing to a subsequence, and multiplying f_j by $\tau_j f_j$ with $|\tau_j| = 1$, we may assume $|Im(f_j(z_k))| \leq |Re(f_j(z_k))|$ for all k. Replacing f_j by f_j^N for large N, we may assume $|f_j(z_j)| \geq j2^j$ Now let $f = \sum_j 2^{-j} f_j$. We see $f|(z_j)| \to \infty$ so Ω is a domain of holomorphy.

1.3. Characterization of Runge domains. Let $\Omega \subseteq \mathbb{C}^n$ be a pseudoconvex domain. Recall that Ω is a Runge domain if $\mathcal{O}(\mathbb{C}^n) \to \mathcal{O}(\Omega)$ has dense image.

When n = 1, a bounded domain $\Omega \subseteq \mathbb{C}$ is Runge if and only if its complement is connected. In the general case, we don't have such a simple characterization of Runge domains, but the following is useful:

Theorem 4. A pseudoconvex domain $\Omega \subseteq \mathbb{C}^n$ is Runge if and only if

(1.4) $\hat{K}_{\mathcal{O}(\mathbb{C}^n)} = \hat{K}_{\mathcal{O}(\Omega)} \text{ for all } K \subseteq \Omega \text{ compact}$

To see this, let $f \in \mathcal{O}(\Omega)$ and write $\Omega = \bigcup K_j$ where $K_j \subseteq \Omega$ is an increasing sequence of compact h-convex subsets. Fix j and let $K = K_j$. Then $K = \hat{K}_{\mathcal{O}(\mathbb{C}^n)}$ so Oka's theorem says there is a sequence of polynomial P_1, P_2, \ldots converging uniformly to f on K_j . Passing to a diagonal subsequence we get uniform convergence of the P_j to f on any compact subset.

1.4. Stein manifolds. Stein manifolds are generalizations of h-convex domains.

Theorem 5. Let X be a complex manifold of dimension n. The following are equivalent.

- (1) X is Stein
- (2) There exists a continuous plurisubharmonic exhaustion function $\psi: X \to \mathbb{R}$.
- (3) There exists a smooth strictly plurisubharmonic exhaustion function $\psi: X \to \mathbb{R}$.

- (4) X is holomorphically convex and $\mathcal{O}(X)$ separates points.
- (5) There exists an imbedding $X \hookrightarrow \mathbb{C}^N$ whose image is a closed submanifold. We may always take N = 2n + 1.
- (6) $H^p(X, \mathcal{F}) = 0$ for all coherent sheaves $\mathcal{F} \to X$ and all p > 0.

Thus a domain $\Omega \subseteq \mathbb{C}^n$ is a Stein manifold if and only if it is pseudoconvex. Also, a closed submanfold of a Stein manifold is Stein. Non-compact Riemann surfaces are Stein (this is a difficult theorem) and holomorphic covers of Stein manifolds are Stein.

Relation (1.1) generalizes to Stein manifolds: If $K \subseteq X$ is a compact subset of a Stein manifold then

(1.5)
$$\hat{K}_{\mathcal{O}(X)} = \hat{K}_{\text{PSH}(X)} = \bigcap \{ \phi \le 0 : \phi |_K \le 0, \phi \in \text{PSH}(X) \} \subseteq \Omega$$

Thus every Stein manifold is exhausted by compact h-convex subsets.

Oka's theorem generalizes as well:

Theorem 6. (Oka-Weil) Let X be a Stein manifold and $K \subseteq X$ a compact $\mathcal{O}(X)$ -convex subset. Then if f is holomorphic in some neighborhood of K there is a sequence $F_j \in \mathcal{O}(X)$ such that $F_j \to f$ uniformly on K.

Proof (sketch). If f is defined on W, an open neighborhood of K, then we can squeeze an analytic polyhedra between K and W. That is, there exist $h_1, ..., h_p \in \mathcal{O}(X)$ such that

$$K \subseteq U = \bigcap_{j=1}^{p} \{|h_j| < 1\} \subseteq W$$

Thus we obtain a map $X \to \mathbb{C}^p$ whose restriction to U is a proper map $U \to D^p$, where $D \subseteq \mathbb{C}$ is the unit disk. By adding more holomorphic functions $h_{p+1}, ..., h_m$, we may insure that $U \to D^m$ is a proper closed imbedding. Cartan's extension theorem says that f, which is holomorphic on $U \subseteq D^m$, is the restriction of a holomorphic function F on D^m which may be approximated by polynomials $P_1, P_2, ...$ on \mathbb{C}^m . Pulling back via $X \to \mathbb{C}^m$ we get a sequence of elements in $\mathcal{O}(X)$ converging uniformly to f on U.

1.5. Runge domains in Stein manifolds. Let $\Omega \subseteq X$ be an Stein open subset of a Stein manfold. We say Ω is Runge in X if $\mathcal{O}(X) \to \mathcal{O}(\Omega)$ has dense image.

Theorem 4 holds for Stein manifolds:

Theorem 7. If X is a Stein manifold and $\Omega \subseteq X$ a Stein domain then Ω is Runge in X if and only if for every compact set $K \subseteq \Omega$ we have $\hat{K}_{\mathcal{O}(X)} = \hat{K}_{\mathcal{O}(\Omega)}$.

The proof is identical to the case for domains.

If $X \subseteq Y$ is a closed submanifold of a Stein manifold (and hence Stein) then $\mathcal{O}(Y) \to \mathcal{O}(X)$ is surjective. This can be seen using Cartan's theorems.

In particular, if $\tilde{\Omega} \subseteq Y$ is Runge, then $\Omega = \tilde{\Omega} \cap X \subseteq X$ is Runge. Coltoiu's theorem says the converse is true.

JACOB STURM

1.6. Coltoiu's theorem.

Theorem 8. Let $X \subseteq \mathbb{C}^n$ be a closed analytic set and $\Omega \subseteq X$ a Runge open subset. Then there exists a Runge open subsect $\tilde{\Omega} \subseteq \mathbb{C}^n$ such that $\tilde{\Omega} \cap X = \Omega$. Moreover, if $K \subseteq \mathbb{C}^n$ is a holomorphically convex compact subset such that $K \cap X \subseteq \Omega$ then we there exists such a $\tilde{\Omega}$ with the additional property: $K \subseteq \tilde{\Omega}$.

6

References

[CGZ] D. Coman, V. Guedj and A. Zeriahi, "Extension of PSH functions with growth control", J. reine angew. Math. 676 (2013), 33–49