
Donaldson’s theorems on scalar curvature

§1. Linear Algebra.

Complex Structures on Vector Spaces.

Let V be a vector space over R of dimension 2n. Then a complex structure on V is an
element J ∈ Aut(V ) with the property J2 = −I.

Alternatively, a complex structure on V is a pair (ξ, T ) mod equivalence where T is a
complex vector space of dimension n and ξ : V → T is an isomorphisom of real vector
spaces. The equivalence relation is given by (ξ, T ) ∼ (ξ′, T ′) if there is an isomorphism of
complex vector spaces T → T ′ which makes the diagram commute.

To see the equivalence of the two definitions, let J : V → V be such that J2 = −I and
define T as follows: Then J ⊗ I defines and automorphism of the vector space V ⊗ C Let
T be the +i eigenspace. Then T̄ is the −i eigenspace. We have

V ⊗ C = T ⊕ T̄

Now T is a complex vector space and the map ξ : V → T obtained by composing the maps
V → V ⊗ C = T ⊕ T̄ → T is an isomorphism of real vector spaces. Conversely, if T is
a complex vector space and if ξ : V → T is an isomorphism of real vector spaces, then
J = ξ−1 ◦ i ◦ ξ is a complex structure. Here i is the map on T given by multiplication by
i. Note that J depends only on the equivalence class of (ξ, T ).

A slight variant is: A complex structure on V is an equivalence class of isomorphisms
f : V → Cn, where two isomorphisms are equivalent if they differ by an element of
GL(n,C).

If we fix a basis of V , we see that a complex structure on V is a 2n × 2n matrix J with
the property J2 = −I, where I is the 2n× 2n identity matrix. Alternatively, a complex
structure is an equivalence class of isomorphisms f : R2n → Cn of real vector spaces.

Thus we see that GL(2n,R) operates transitively on the space of complex structures, with
stabilizer group GL(n,C). So the space of complex structures on R2n is just the space
GL(2n,R)/GL(n,C). Thus, if we let J (V ) be the space of complex structures on V , we
see that

J (V ) ≈ GL(2n,R)/GL(n,C) (1.1)

J (V ) as a complex manifold.

The space J (V ) is a smooth manifold. In fact, it has a natural structure as a complex
manifold. To see this, observe that J (V ) is the set of equivalence classes of n×2n matrices
M with entries in C whose columns form a basis of Cn viewed as a vector space over R. In
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other words,

det

(
M
M̄

)
6= 0 (1.2)

Since such an M has maximal rank over C, at least one of its n × n minors has non-zero
determinant. Suppose that the first n columns of M form a minor of non-zero determinant.
Then equivalence class of M has a unique representative of the form (I, Z) where Z,
according to (1.2), is an n × n matrix such that Im(Z) is non-singular. Such Z form an
open subset of Mn×n(C). Since M is covered by a finite number of such open sets, with
holomorphic transitions, we see that J is a complex manifold of dimension n2.

Symplectic structures on vector spaces.

A symplectic form on V is an non-degenerate alternating form ω : V × V → R. In other
words, a symplectic form is an element ω ∈ Λ2V ∗ which is non-degenerate.

If V = R2n then a symplectic form is a non-singular 2n× 2n matrix ω such that tω = −ω.

The standard symplectic form on R2n is ω =

(
0 1
−1 0

)
. Since GL(2n,R) acts transitively

on the set of symplectic froms with stabilizer Sp(2n,R), we see that the set of symplectic
structures on R2n is GL(2n,R)/Sp(2n,R). Thus, if we let S(V ) be the space of symplectic
structures on V , we see that

S(V ) ≈ GL(2n,R)/Sp(2n,R) (1.3)

S(V ) as a symplectic manifold.

The space S(V ) is a smooth manifold with a natural symplectic structure. If ω ∈ S(V )
then ω + η ∈ S(V ) for sufficiently small η ∈ Tω(S(V )) = Λ2(V ∗). This shows that S(V ) is
a manifold of dimension

(
n
2

)
.

If η1, η2 ∈ Tω(S(V )) then define

Ω(η1, η2) = Tr(η1ωη2)

Then Ω is a non-degenerate closed 2-form on S(V ).

Complex structures compatible with symplectic forms.

Let V be a finite dimensional vector space over R and fix ω, a symplectic form on V . We say
that a complex structure J is compatible with ω if ω(Ju, Jv) = ω(u, v) and if ω(u, Ju) > 0
if u 6= 0. Let Jω(V ) ⊆ J (V ) be the set of complex structures on V compatible with ω. We
have seen that J (V ) is a complex manifold, which is covered by coordinate neighborhoods

J (V )i, with 1 ≤ i ≤
(

2n
n

)
where

J (V )i = {Z ∈Mn×n(C) : det(Im(Z)) 6= 0}

Let Jω,i = Ji ∩ Jω.
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Claim. Jω is a complex submanifold of J . Moreover, for every i,

Jω = Jω,i = {Z ∈Mn×n(C) : Z = tZ, Im(Z) > 0 } = Sp(2n,R)/U(n)

In other words, Jω is the Siegel upper half plane of genus n, and the natural action of

Sp(2n;R) on Jω is the standard Möbius action: If γ =

(
A B
C D

)
∈ Sp(2n,R) and if Z is

a point in the upper half plane then

γ(Z) = (AZ +B)(CZ +D)−1

Proof. A complex structure ξ : V → Cn is compatible with ω if and only if ν = ξ∗ω ( which
is a symplectic form on the real vector space Cn) has the property: ν(iz, iw) = ν(z, w)
for all z, w ∈ Cn. In other words, ν(z, w) = Im

(
〈z, w〉ξ

)
where 〈z, w〉ξ is the hermitian

metric on Cn given by the formula:

〈z, w〉ξ = ν(z, iw) + iν(z, w) (1.4)

(Our convention for the definition of a a hermitian pairing is: 〈z, aw〉 = a〈z, w〉 and
〈az, w〉 = ā〈z, w〉 for all a ∈ C). Since any two hermitian metrics on Cn are equivalent
under the action of GL(n,C), we see that inside the equivalence class of ξ there is a
representative (which we also call ξ) with the property 〈, 〉ξ = 〈, 〉 where 〈, 〉 is the standard
hermitian pairing on Cn: 〈z, w〉 = tz̄w. This representative is unique up to U(n), the
symmetry group of the form 〈, 〉. Thus the set of complex structures compatible with ω is
the set of U(n) equivalence classes of isomorphisms ξ : V → Cn with the property ω = ξ∗ν
where ν = Im

(
〈 , 〉

)
. Fix one such ξ. Then any other ξ must be of the form η = ξ◦f where

f ∈ GL(V ). But the condition η∗ν = ω implies, f∗ω = ω which means that f ∈ Sp(V, ω).
This shows that Jω = Sp(2n,R)/U(n). In other words the inclusion Jω(V ) ↪→ J (V ) is
equivalent to the inclusion

Sp(2n,R)/U(n) ↪→ GL(2n,R)/GL(n,C) (1.5)

(thus we’ve proved that U(n) = Sp(2n,R) ∩ GL(n,C)). The rest of the claim follows by
simple calculation.

§2. The groups, the manifolds, and the actions.

We digress for a moment to discuss the definition of an infinite dimensional manifold. We
start with the two basic examples:

Let M be a smooth manifold, and let N be a smooth manifold. Let C∞(M,N) be the set
of smooth maps from M to N . Then C∞(M,N) is an example of an infinite dimensional
manifold (which is actually finite dimensional when M is a finite collection of points). If
f ∈ C∞(M,N) then the tangent space at f is defined as Tf (C∞(M,N)) = Γ(f∗TN)).
Thus an element in the tangent space assigns, in a smooth fashion, to each point x ∈M a
tangent vector at the point f(x) ∈ N .
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To give an example of an infinite dimensional complex manifold, we again let M be a
smooth manifold and N a complex manifold. Then C∞(M,N) is a complex manifold. The
complex structure on the tangent space Tf is defined to be f∗J , were J : TN → TN is the
complex structure on N .

Now we describe a more general class of examples: The category of infinite dimensional
manifolds based on a given finite dimensional manifold M is contains the category of fiber
bundles over M . Recall that a fiber bundle over M is a manifold F and a map F → M
with the property that locally, F = Uα × Fo where Fo is a fixed smooth manifold. We
require that on the overlaps, the transition functions φαβ(x) are diffeomorphisms of Fo
which vary smoothly with x. Then the infinite dimensional manifold associated to F →M
is the space Γ(F/M) of smooth sections s : M → F . The tangent space at s is defined to
be Ts(Γ(F/M)) = Γ(s∗(TF v)) , where TF v ⊆ TF is the subsheaf consisting of “vertical
vectors”, that is, TF v is the kernel of the map TF → TM . Thus a tangent vector at s
assigns to every x ∈M a vector tangent to the fiber Fx at the point s(x) ∈ Fx ⊆ F .

Similarly we can define the complex manifold assoicated to a fiber bundle, is similar, but
we require that Fo be a complex manifold and that the transition functions φαβ(x) be
biholomorphic maps which vary smoothly with x.

Now maps between fiber bundles over M give rise to maps between corresponding manifolds
in the obvious way. Embeddings F ↪→ F ′ correspond to submanifolds.

The simplest examples come from the case where Fo is a vector space, in other words, if
F is a vector bundle. The assoicated manifold is the space of smooths sections. These
manifolds are affine: This means that all the tangent spaces are canonically identified with
the manifold itself.

The general definition of a manifold based on a given M is similar to the usual definition
of a finite dimensional manifold: It’s a topological space F which is covered by “Euclidean
balls over M”: A Euclidean ball is a set of the form {s ∈ Γ(E) : ||s − s0||C∞ < r}, where
E is a smooth vector vector bundle on M endowed with a connection ∇, s0 ∈ Γ(E) is a
fixed smooth section, r is a positive number, and the norm is the C∞ norm defined by ∇.

Next we define the relevant infinite dimensional Lie groups and the infinite dimensional
manifolds upon which they act, and we calculate the infintesimal actions of the Lie algebras.

The groups Diff and Sym.

Let M be a smooth manifold. Then Diff(M) is the group of diffeomorphisms of M . We
have Lie(Diff(M)) = V ect(M), the space of smooth vector fields on M .

Now let ω be a symplectic form on M . We define Sym(M,ω) ⊆ Diff(M) to be the group
of exact symplectomorphisms of (M,ω). Then

Lie(Sym(M,ω)) = C∞(M)/R
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The Lie algebra imbedding C∞(M)/R = Lie(Sym(M,ω)) ↪→ Lie(Diff(M)) = V ect(M)
is given by f 7→ Xf , where Xf is the symplectic gradient of f . In other words,

Xj
f = fiω

ij (2.1)

In other words, df = iXfω. The Lie algebra structure on C∞(M)/R is given by the Poisson
bracket: If f, g ∈ C∞(M)/R then {f, g} = ω(Xf , Xg)

The manifolds Aut,J ,S,Jω, C and K.

Define
Aut = {J : TM → TM | J is a bundle automorphism }

J = {J : Aut | J2 = −I}
S = {ω : TM ⊗ TM → C∞ | ω is a symplectic form}

C = {(J, ω) ∈ J × S : ω(Ju, Jv) = ω(u, v), ω(u, Ju) > 0 for u 6= 0}
and for a fixed symplectic form ω,

Jω = {J ∈ J : (J, ω) ∈ C }
For (J, ω) ∈ C we define g(J,ω)(u, v) = ω(u, Jv) which is a Riemannian metric on M , and
we let ∇(J,ω) be the corresponding Levi-Civita connection. Then define the space of Kahler
structures on M as follows:

K = {(J, ω) ∈ C : ∇J = 0}
Finally we define Jint ⊆ J as follows:

Jint = {J ∈ J : N(J) = 0 }
where N is the Nijenhuis tensor. Recall that if (J, ω) ∈ χC with J ∈ Jint then (J, ω) ∈ K.

The discussion in §1 shows that J ,S and Jω are all infinite dimensional manifolds which
are associated to various fiber bundles. For example, J is the set of all sections of
a certain GL(2n,R)/GL(n,C) bundle over M . In a similar way, S is associated to a
GL(2n,R)/Sp(2n,R) bundle and Jω to a Sp(2n,R)/U(n)) bundle.

Since Sp(2n,R)/U(n)) is the Siegel uper half plane, which has a complex structure, we see
that J is a complex manifold. The submanifolds Jint and K are defined by smooth first
order (non-linear) differential equations. They are not associated to a fiber bundle and are
thus more difficult to understand.

The tangent spaces.

The tangent spaces can be described as follows:

TJ(Aut) = {A : TM → TM : A is a bundle map} = End(TM)

TJ(J ) = {A ∈ End(TM) : JA+AJ = 0}
Tω(S) = {η : TM∗ ⊗ TM∗ → C∞ : η(u, v) = −η(v, u)}

T(J,ω)(C) = {(A, η) : ω(JAu, v) + ω(u, JAv) = η(Ju, Jv)− η(u, v)
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TJ(Jω) = {A ∈ TJ(J ) : ω(JAu, v) + ω(u, JAv) = 0}
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Complex Coordinates

If J ∈ J then we can decompose TM ⊗C = T ⊕ T̄ , where T is the i eigenspace of J and
T̄ the −i eigenspace. Using this decomposition, one can give a simpler description of the
tangent spaces above. For example, if A ∈ TJ(Aut) then we can write

A =

(
Aij Ai

j̄

Aīj Aī
j̄

)
, Aij = Aīj̄ , A

i
j̄

= Aīj (2.2)

with Aij ∈ Hom(T, T ), Ai
j̄
∈ Hom(T̄ , T ), etc. An element A ∈ TJ(Aut) is in TJ(J ) if an

only if Aij = Aī
j̄

= 0. Thus we have an isomorphism µ : TJ(J ) → Γ(T ⊗ T̄ ∗) which we

normalize as follows:

µ(A) =

√
−1
2

2
·Aij̄ (2.3)

Since Γ(T ⊗ T̄ ∗) is a complex vector space, we see that J has a complex structure.

If (J, ω) ∈ C then, with respect to the eigenspace decomposition TM ⊗ C = T ⊕ T̄ ,

J =

(
i 0
0 −i

)
, and ω =

(
0 ωij̄
ωīj 0

)
, ωij̄ = ωīj , ωij̄ = −ωjī

Thus if J ∈ Jω we see that

TJ(Jω) = {µij̄ ∈ TJ(J ) : ωīkµ
k
j̄ = ωj̄kµ

k
ī }

Thus, if we let S2(T̄ ∗) be the set of symmetric tensors in Γ(T̄ ∗⊗T̄ ∗) we have an isomorphism

s : TJ(Jω)→ S2(T̄ ∗)

given by µi
j̄
7→ sīj̄ = ωīkµ

k
j̄
. Again, since S2(T̄ ∗) is a complex vector space, Jω has a

complex structure.

Finally, the symplectic gradient (2.1) can also we written in complex coordinates: For a
smooth function f ∈ C∞(M)/R we have Xf = ξf + ξf where ξf ∈ Γ(T ) is given by

ξif = fj̄ω
j̄i (2.4)

The actions.

Now we define the actions of Diff(M) on J and on S: If φ ∈ Diff(M) and J ∈ J , then
φ · J = Dφ ◦ J ◦Dφ−1, where Dφ : TM → TM is the derivative of φ. If ω ∈ S then we
define φ · ω = φ∗ω. These actions induce actions on C and K and Jint. Note however that
the manifold Jω is invariant under Sym(M,ω) but not under Diff(M).

Now we calculate the infinitestimal action of Diff(M) on Aut and on S. If v ∈ V ect(M) =
Lie(Diff(M)), and if J ∈ Aut, we have

v · J = LvJ ∈ TJ(J ) (2.5)
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where Lv is the Lie derivative (this is essentially the definition of the Lie derivative). Note
that if J ∈ J then J2 = −1 so we have AJ + JA = 0 where A = LvJ . In other words,
LvJ ∈ TJ(J ) as expected.

Next we re-write (2.5) in terms of coordinates: Let v be a smooth vector field let φtv be
the 1-parameter family of diffeomorphisms associtated to v. Then by definition,

v · J =
d

dt

∣∣∣∣
t=0

Dφtv ◦ J(φtv(x)) ◦Dφ−1
tv =

d

dt

∣∣∣∣
t=0

(
δip + tvip

) (
Jpk + tJpk;lv

l
)(

δkj − tvkj
)

= (vipJ
p
j − J

i
pv
p
j ) + J ij;lv

l

Now suppose that ∇ is a connection on TM with the property: ∇J = 0 (this is the case,
for example, when M is Kähler). Choosing normal coordinates:

(v · J)ij = vipJ
p
j − J

i
pv
p
j (2.6)

Since the right side of (2.6) is a tensor, we see that (2.6) holds in any coordinate system,
where, as usual, vij denotes covariant differentiation.

Equation (2.6) takes a particularly simple form if J ∈ J :

µ(v · J) = ∂̄v (2.7)

In other words, if we identify TJ(J ) with Γ(T ⊗ T̄ ∗), we obtain:

(v · J)ij̄ = vik̄ (2.8)

Again (2.7) and (2.8) hold when J ∈ J and when ∇J = 0. For example, they hold when
J ∈ Jint is compatible with a symplectic form ω.

To prove (2.6) and (2.7), we simply calculate the right side of (2.6):(
vij vi

j̄

vīj vī
j̄

)(
i 0
0 −i

)
−
(
i 0
0 −i

)(
vij vi

j̄

vīj vī
j̄

)
=

(
0 −2

√
−1
2 vi

j̄

2
√
−1
2 vīj 0

)
Applying (2.3) we get (2.8).

§3. The lifted groups, manifolds and actions.

Let M be a compact manifold and let π : L → M be a complex line bundle on M . Let
Aut(M) be the diffeomorphism group of M . Define Aut(M,L) to be the group of bundle

automorphisms of L: Thus Aut(M,L) consists of all pairs F = (F, F̃ ) where F : M →M

and F̃ : L→ L are diffeomorphisms with the properties: πF̃ = Fπ and F̃ (λx) = λF (x) for

all λ ∈ C and all x ∈ L. Clearly the map Aut(M,L)→ Aut(M) mapping (F, F̃ ) 7→ F is a
homomorphism. It’s image is the group Aut0(M) consisting off all diffeomorphisms such
that F ∗c1(L) = c1(L).
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The Lie algebra of Aut(M) (and of Aut0(M)) is the space V ect(M) consisting of all smooth
vector fields on M . The Lie algebra of Aut(M,L) is given by the space of vector fields on
L× (the complement of the zero section in L) which are C× invariant. If we choose on L
a hermitian metric h and a unitary connection A, then we can describe the Lie algebra in
a very convenient fashion:

Lie(Aut(M,L)) = {(X̃ + ψt) : X ∈ V ect(M), ψ ∈ C∞(M,C)}

where X̃ is the horizontal lift of the vector field X, t is the vector field on L× generated
by the infinitesimal action of U(1) and C∞(M,C) is the space of complex valued smooth
functions on M .

Now fix (M,ω), a compact symplectic manifold, and (L, h,A), a complex vector bundle
with hermitian metric and unitary connection, satisfying the following curvature property:

FA = −iω (3.1)

We let G0 = Aut(M,ω) be the group of exact symplectomorphisms of M . Recall that
the Hamiltonian construction gives an isomorphism Lie(Aut(M,ω) = C∞(M)/R. We now
define G = Aut((M,ω), (L,A, ω)) to be the subroup of Aut(M,L) which preserve h and A.

Thus and element F = (F, F̃ ) ∈ Aut(M,L) is in Aut((M,ω), (L,A, ω)) if |F (x)|h = |x|h
for all x ∈ L and if F̃ ∗A = A: Recall that if F : N →M is a smooth map, and E →M a
vector bundle with connection A, the F ∗E is a vector bundle on N with connection F ∗A.
There are various (equivalent) ways of defining F ∗A: in local coordinates, A = (Aij) is a
matrix of one forms on M . Then F ∗A = (F ∗A)ij is a matrix of one forms on N defined
by (F ∗A)ij = F ∗(Aij). Thus F ∗A is characterized by the formula:

∇(F ∗A)(F
∗s) = F ∗(∇As)

for every section s of E. More geometrically, we can view the pullback of a connection via
holonomy maps as follows: The connection A assigns to each path γ in M an isomorphism:
Aγ : Lγ(0) → Lγ(1). If σ is a path on N , define (F ∗A)σ : (F ∗L)σ(0) → (F ∗L)σ(1) by the
formula (F ∗A)σ = AFσ, where we make the canonical identification (F ∗L)σ(t) = LFσ(t).
These holonomy isomorphisms determine F ∗A.

Now we calculate the lie algebra Lie(G): Since G ⊆ Aut(M,L), every element in G must

be of the form V = X̃ + ψt for some X ∈ V ect(M) and some ψ ∈ C∞(M,C). Then
V ∈ Lie(G) if and only if LV (|x|h) = 0 and LVA = 0, where L is the Lie derivative. The
infintesimal action of V on the metric is given by

LV (|x|h) =
d

dt

∣∣∣∣
t=0

| exp(itψ)x|h = −Im(ψ)|x|h

Since the elements in G are required to preserve the metric, we must have Im(ψ) = 0, that
is, ψ = f ∈ C∞(M,R), a real valued function.
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Next we calculate the infinitesimal action of V on the connection: We view A as a one-form
on L(1) (the elements of L of norm one) with values in iR (the lie algebra of U(1)). Then

(LVA)(Z) = V (A(Z)) − A([V,Z]) = 0 (3.2)

for all Z = Ỹ + gt, where Y ∈ V ect(M) and g ∈ C∞(M), where L is the lie derivative

acting on one-forms. Now A(Z) = A(Ỹ + gt) = g since A kills horizonal vectors and

A(t) = 1. Thus V (A(Z)) = V (g) = (X̃ + ft)(g) = X(g) since g is constant on fibers and
is thus killed by t. Thus (3.2) becomes

X(g) = A([V,Z])

for all g and all Y . Now

[V,Z] = [X̃ + ft, Ỹ + gt] = [X̃, Ỹ ] + [ft, Ỹ ] + [X̃, gt] + [ft, gt]

Now

[X̃, Ỹ ] = [̃X,Y ] + iFA(X,Y )t

using the definition of curvature. But we are assuming that FA = −iω. Thus we obtain
A([X̃, Ỹ ]) = ω(X,Y ). Now

[X̃, gt] = LX̃gt = X(g)t + LX̃t = X(g)t

and
[ft, gt] = Lft(gt) = f(Ltg) · t + fgLtt = 0 + 0 = 0

Thus
X(g) = A([V,Z]) = ω(X,Y ) + X(g)− Y (f)

which implies ω(X,Y ) = Y (f) = df(Y ) for all Y , in other words, X = Xf . Thus, we see
that

Lie(G) = {X̃f + ft : f ∈ C∞(M)} ≈ C∞(M)

where the isomorphism is an isomorphism of Lie algebras (where C∞(M) has the lie algebra
structure given by the Poisson bracket). The map G → G0 induces a map on Lie algebras
C∞(M)→ C∞(M)/R which is just the canonical quotient map.

§4. The mirror principle.

As before, we let H = {(s, I) : s is a basis of H0(LkI ) } and we define, for a > 0,

µa = {(s, I) ∈ H :

N∑
α=0

|sα|2h0 = a }

We wish to show:
µa/G = H/Gc (4.1)

To do this, we first prove the following:

Lemma (mirror principle). Fix (s, I) ∈ H. There is a natural diffeomorphism of infinite
dimensonal manifolds:

Gc(s, I)/G ≈ Herm(LI) (4.2)
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where Herm(LI) = {h : LI → R : h is a hermitian metric with positive curvature }

Proof. We first define a map Gc(s, I) → Herm(LI) as follows: Let (s′, I ′) ∈ Gc(s, I) and

choose F ∈ Aut(M,L) such that F(s′, I ′) = (s, I). Thus F = (F, F̃ ), where the map

F : (M, I)→ (M, I ′) is biholomorphic, F̃ : LI → LI′ is a holomorphic isomorphism of line

bundles, and s = F̃−1s′F .

The choice of F is unique, since if (s, I) = (s′, I ′) then F(F, F̃ ) has the property: F is

a holomorphic automorphism of (M, I) such that F̃ s = sF . Evaluating at any x ∈ M :

F̃x(s(x)) = s(F (x)). But F̃x is a non-zero complex number, and thus s(x) and s(F (x))
define the same point in projective space. But we are assuming that s provides and
embedding of M into projective space. Thus x = F (x) and F is the identity. Thus

s(x) = F̃x · s(x). Since at least one of the elements in the basis s is non-zero, we see that

F̃x = 1. This shows that F is unique.

Now define h = F(h0), that is, h = h0 ◦ F̃ . Then R(h) = F ∗(R(h0)) = F ∗(ω). Since I ′

is compatible with ω, we have that I = F(I ′) is compatible with F ∗(ω). In other words,
F ∗(ω) is a positive (1, 1) form, and thus R(h) is positive, that is, h = h(s′, I ′) ∈ Herm(LI).

Note that h(s′, I ′) = h(s′′, I ′′) if (s′, I ′) = F(s′′, I ′′) for some F ∈ G. We claim the converse
is true as well: Assume h(s′, I ′) = h(s′′, I ′′). Then there is an F ∈ Aut(M,L) such that
F(s′, I ′) = (s′′, I ′′) and such that F(h0) = h0. Now consider the two connections: A
and F∗A. The complex structure on LI′ is compatible with both, and the metric h0 is
compatible with both. Since the connection compatible with the metric and the complex
structure is uniquely determined, we conclude that A = F∗(A), and thus F ∈ G.

We now see that the map h : Gc(s, I)/G → Herm(LI) is well defined and injective. It
remains to prove that it is surjective. So let h ∈ Herm(LI). Then R(h) = ω + i∂∂̄φ > 0.
By Moser’s lemma, there is F : M → M such that F ∗(ω) = ω + i∂∂̄φ. This shows that

c1(F ∗L) = c1(L), so there is a diffeomorphism (G, G̃) : (M,F ∗L)→ (M,L) where G is the

identity. Thus there exists F̃ such that F = (F, F̃ ) ∈ Aut(M,L). Now the curvature of

F(h0) is ω+ i∂∂̄φ and thus F(h0) = ah for some a > 0. Replacing F̃ by a−1F̃ , we conclude
F(h0) = h, and thus our map is surjective.

Now we extablish (4.1): Note that for every (s′, I ′) ∈ Gc(s, I) we have∑
α

|s′α|2h0 =
∑
α

|sα|2h

where h = h(s′, I ′). Thus there exists (s′, I ′) ∈ Gc(s, I) with the property
∑

α |s′α|2h0 = a if
and only if there exists h ∈ Herm(LI) with the property∑

α

|sα|2h = a (4.3)

Now for a fixed (s, I) ∈ H there is clearly a unique h satisfying (4.3), namely:
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h = a · h0∑
α |sα|2h0

Thus, by the mirror lemma, for a fixed (s, I) ∈ H there is, up to the action of G, a unique
(s′, I ′) ∈ Gc(s, I) such that (s′, I ′) ∈ µa.

§5. Moment maps: Uniqueness and existence of zeros.

Let G be a compact Lie group acting on a Kahler manifold (Z, ω, I). Let h be a invariant
inner product on Lie(G) (which always exists when G is compact) and let ν : Z → Lie(G)
be a moment map for the action of G, where we identify Lie(G) with Lie(G)∗ using h.

For z ∈ Z, let σz : Lie(G) → TZz be the infinitesimal action: σz(ξ) = d
dt |t=0 exp(tξ) · z.

Let I : TZ → TZ be the complex structure. Then to say that ν is a moment map is to
say:

〈dν(w), ξ〉Lie(G) = 〈w, Iσz(ξ)〉TZz (5.1)

for all w ∈ TZz and all ξ ∈ Lie(G) . Replacing w by Iw, and using the fact that the metric
is invariant under I, we can restate (5.1) as follows:

dν ◦ I = σ∗ (5.2)

Using the relation gij = ωikI
k
j , we can rewrite (5.1) using indices as follows:

ναj hαβ = σiβωij (5.3)

Uniqueness of moment map zeros.

Let Lie(G)c = Lie(G) ⊗ C be the complexified Lie algebra. Let Gc be the associated
complexified group. Then Lie(Gc) = Lie(G)C and G ⊆ Gc is a maximal compact subgroup.

If G is the set of real points of a linear algebraic group over R (i.e., a subgroup of GL(n)
defined by polynomial equations with coefficients in R), then Gc is just the set of complex
points. For example,

U(n) = {
(
a b
c d

)
: a, b, c, d ∈Mn(R), a = d, b = −c, ata+ btb = I, bta = atb}

where we identify u = a+ bi ∈ U(n) with the 2n× 2n matrix

(
a b
−b a

)
. Thus

U(n)c = {
(
a b
c d

)
: a, b, c, d ∈Mn(C), a = d, b = −c, ata+ btb = I, bta = atb}

where Mn(R) (resp. Mn(R)) is the set of n× n matrices with entries in R (resp. C). Note

that U(n)c ≈ GL(n,C) via the map

(
a b
−b a

)
7→ a+ bi. Similarly SU(n)c = SL(n,C).
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The action of G on (Z, ω) extends to an action of Gc on Z (which no longer preserves ω).
To see this, we first extend infinitsimally by defining

σz(ξ1 + iξ2) = σz(ξ1) + Iσz(ξ2) (5.4)

and then the action of g = exp(ξ1 + iξ2) is obtained by integrating (5.4).

Let z ∈ Z. We are interested in the solutions to the moment map equation:

ν(gz) = 0

Note that by the equivariance of ν, if ν(z) = 0 then ν(gz) = 0 for all g ∈ G.

The solution to the moment map equation may not always exist, but if it does, it is unique
modulo the action of G:

Lemma (uniqueness of moment map zero) Let z ∈ Z, and assume ν(z) = 0.

1. Assume that ν(gz) = 0, for some g ∈ Gc. Then we can factor g as follows:

g = g0 exp(iξ)

were g0 ∈ G, ξ ∈ Lie(G) and exp(itξ) · z = z for all t ∈ R.

2. If ν(gz) = 0, for some g ∈ Gc, then z = goz for some go ∈ G.

3. We have the following isomorphism of discrete groups:

zG

(zG)0
≈ zG

c

(zGc)0

where H0 denotes the connected component of the identity of a topological group H, and
zG = {g ∈ G : gz = z}.

Proof. We start with the proof of statement 1. Define Qz, and endomorphism of Lie(G),
as follows:

Qz = σ∗zσz = dν ◦ I ◦ σz
Assume ν(z) = ν(gz) = 0 for some g ∈ Gc. Write g = go exp(iξ) for some go ∈ G and some
ξ ∈ Lie(G). Then we have ν(z) = ν(go exp(iξ)z) = ν(exp(iξ)z) = 0. Let z(t) = exp(itξ) ·z.
Then

z′(t) = Iσz(t)(ξ) = σz(t)(iξ) (5.5)

Define
f(t) = 〈ξ, ν(z(t))〉

Then
f ′(t) = 〈ξ, dν(Iσz(t)(ξ)〉 = 〈ξ,Qz(t)ξ〉 = 〈σz(t)ξ, σz(t)ξ〉 (5.6)

where in the first equality we’ve made use of (5.2).

Now we are assuming f(0) = f(1) = 0. Equation (5.6) implies σz(t)ξ = 0 for all t. Thus,
by (5.5), we have z′(t) = 0 for all t, which shows that z(t) is constant, and this proves part
one. Parts two and three are immediate consequences of part one.
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We can rephrase part two as follows: Let Zs ⊆ Z denote the set of stable elements, that
is, those elements whose complex orbits meet the set ν(z) = 0. Then

Z//G =
{z ∈ Z : ν(z) = 0}

G
=

Zs

Gc
(5.7)

where, for the moment, we view (5.7) is a bijections of sets.

The gradient flow and existence of moment map zero.

The solutions to the equation ν(g · z) = 0, are the same as the solutons to φ(g · z) = 0,
where φ(z) = |ν(z)|2. We shall try to solve this equation by flowing along the descending
gradient lines of φ.

First we compute the gradient of φ: Since φ : Z → R, we have gradzφ ∈ TzZ. We claim:

gradzφ = 2Iσz(ν(z)) (5.8)

To see this, we start with the defintion: φ(z) = 〈ν(z), ν(z)〉
Lie(G)

. Thus, for w ∈ TzZ,

〈gradzφ,w〉TZ = dφ(w) = 2〈dν, ν〉
Lie(G)

(w) = 2〈dν(w), ν〉
Lie(G)

= 2〈w, Iσz(ν(z))〉TZ

The first equality is the definiton of gradzφ. Since this holds for all w, we obtain (5.8).

Remark: Equation (5.8) shows that if gradzφ = 0, then either ν(z) = 0 or z has a non-
discrete stablizer group (that is, there is a one paramenter subgroup of G fixing z). Thus, if
we assume that all stabilizers are discrete, the critical points of φ are in 1-1 correspondence
with the zeros of the moment map.

Using equation (5.8), we see that the descending gradient flow equation is:

dz

dt
= −Iσz(ν(z)); z(0) = z0 . (5.9)

We also consider the lifted equation

dξ

dt
= ν(exp(iξ(t)) · z0); ξ(0) = 0 . (5.10)

where ξ : R→ Lie(G) is an unknown fucntion.

Lemma on the gradient flow.

1. Equation (5.9) preserves the Gc orbits, that is, z(t) ∈ Γ = Gcz0 for all t.

2. Equations (5.9) and (5.10) have solutions z(t) and ξ(t) which exists for all t ∈ R.

3. a) If the flow ξ(t) has an accumulation point ξ1 ∈ Lie(G), then z1 = exp(iξ1) · z0 is a
critical point of φ.

b) Moreover, if the points of Γ have discrete stabilizers, then z1 is the unique (modulo
G action) zero of the moment map and limt→∞ ξ(t) = ξ1, limt→∞ z(t) = z1.

4. If V is compact, then the flow lines converge to the critical set of φ.
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Proof. Part 1. follows from the simple equation: −Iσz(ν(z)) = σz(−iν(z)) which says
that the tangent line of the flow stays inside the tangent space of the Gc orbit.

More explicitly, let’s consider the lifted equation

dξ

dt
= ν(exp(iξ(t)) · z0); ξ(0) = 0 . (5.10)

where ξ : R → Lie(G) is an unknown fucntion. Since ν(exp(iξ) · zo) is a smooth vector
field on Lie(G), equation (5.10) has a solution ξ which exists for t is some interval [0, T∞).
Choose T∞ to be maximal. Thus T∞ ∈ (0,∞].

Let z(t) = exp(ξ(t)) · z0. Then we clearly have z(t) ∈ Gcz0 for all t. We claim that z(t) is
a solution (and thus the unique solution) to (5.9). To see this, we differentiate:

dz

dt
= σz(t)(ξ

′(t)) = σz(t)
(
− iν(z(t))

)
= −Iσz(t)(ν(z(t))

which shows that z(t) is a solution to (5.9).

To finish the proof of part one and two of the lemma, we must show that T∞ = ∞:
Since |ν(z(t)| is a decreasing function, we see that |ξ′(t)| is a bounded function. Thus, if
T∞ <∞, the curve ξ : [0, T∞) has bounded lenth. Thus limt→T∞ ξ(t) = ξ1 exists. But now
the gradient flow (5.10) with initial condition ξ(T∞) = ξ1 has a smooth solution on some
interval (T∞ − ε, T∞ + ε) which patches together with the solution ξ : [0, T∞)→ V to give
a solution on [0, T∞ + ε), contradicting the maximality of T∞.

Now we prove part three: If ξ(tn) converges to ξ1 ∈ Lie(G), then we wish to show that
gradz1φ = 0, where z1 = exp(iξ1). First observe that |ν(t)| is decreasing, and thus has a
limit c ≥ 0. If c = 0, then ν(z1) = 0, and thus z1 is a critical point of φ. Assume therefore
that c > 0, and fix ε > 0. Then |gradtn | > ε implies that |gradt| = |σz(t)(ν(z(t)))| > ε/2
on some interval [tn, tn + δ], where δ depends only on ε (Reason: |gradφ| = |σz(ν(z))| is
a uniformly conintuous function of z on compact sets. Since |ν(z(t))| is decreasing, it’s
bounded above, which means that the velocity of ξ(t) is bounded above. So ξ(t) stays
close to ξ(tn) for a bounded amount of time. For that time interval, σz(t) is bounded above
which means that z′(t) is bounded above. Thus z(t) stays close to z(tn) for a bounded
amount of time depending on ε).

Now observe that if z(t) is a solution to (5.9), then∫ T

0

∣∣∣∣dzdt
∣∣∣∣2 dt =

∫ T

0
|gradφ|2 dt = −

∫ T

0

d

dt
|ν(z(t))|2 dt = ν(z(0))− ν(z(T )) ≤ ν(z(0))

The first equality follows from (5.9). The second from the fact that −|gradφ| = dφ
ds , where

s is the arc length parameter, and the fact that ds
dt = |z′(t)| = |gradφ|.

Thus
∣∣dz
dt

∣∣ is in L2
(
[0, T∞)

)
. But it might not be in L1 (that is, z(t) need not have bounded

length).
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Returning now to the proof of part three, the fact that |gradtφ| is bounded in L2 says that
the set of n for which |gradt| = |σz(t)(ν(z(t)))| > ε/2 on some interval [tn, tn + δ] is a finite
set. But this shows that gradtnφ→ 0, which completes the proof of part 3a).

To prove 3b): We have already seen that if the stabilizers are discrete, then every critical
point of φ is a moment map zero. And the uniqueness of z1 modulo G action has also been
proved. To prove lim ξ(t) = ξ1, let A be an annulus cenetered at ξ with finite inner and
outer radius. Then ξ−1(A) is a disjoint union of bounded intervals. If this union is infinite
for every A, then every A contains an accumulation point ξA which, by uniqueness, must
satisfy exp(iξA) · z0 = gA exp(iξ1) · z0 for some gA ∈ G. But the ξA → ξ1 as we take smaller
and smaller annuli. Thus, for every pair A,B we have

g−1
A gB exp(i(ξB − ξ1)) · z0 = exp(i(ξA − ξ1)) · z0 (∗)

Since G is compact, we can choose a family of pairs such that g−1
A gB → 1. But then (*)

together with the assumption that the stabilizer of z0 is discrete, implies that gA = gB and
ξA = ξB = ξ1. But the ξA are in different annuli, as A varies, so this is a contradiction.
Thus we conclude that for some A, ξ−1(A) is a finite union of intervals. This shows that
ξ(t)→ ξ1 and the completes the proof of part 3.

The proof of part 4 is similar, and we omit it.

Next we prove Proposition 17, which guarantees the existence of a solution to the moment
map equation under the assumption that the operator Qz is bounded below.

Assume that the stabilizers of all points under the G action are discrete. This implies
that σz is injective for all z and thus Qz in invertible for all z ∈ Z. In otherwords, the
eigenvalues of Q, which are all non-negative real numbers, are strictly positive. Let Λz be
the operator norm of Q−1

z : Lie(G)→ Lie(G), defined using the metric h on Lie(G). Thus
Λz, the inverse of the smallest eigenvalue of Qz, is a positive continuous function on Z.

Proposition 17. Let z0 ∈ Z and let δ > 0. Assume that Λz ≤ 1 for all z = exp(iξ) with
|ξ| ≤ δ. Suppose that |ν(z0)| < δ. Then there is a point w = exp(iη) · z0 with |η| < δ and
ν(w) = 0.

Proof. Let ξ(t) be the solution to (5.10). Let s : [0,∞) → R be the arc length function:

Thus s(T ) =
∫ T

0 |ξ
′(t)|dt. Since s is an increasing function of t, there are two possibilities:

A) limt→∞ s(t) < δ or B) limt→∞ s(t) ≥ δ.

If A) holds, let η = limt→∞ ξ(t) and let w = exp(η) · z0. Then we must have ν(w) = 0,
for otherwise, |ξ′(t)| = |ν(exp(ξ(t) · z0)| → |ν(w)| > 0 as t → ∞ which implies that
limt→∞ s(t) =

∫∞
0 |ξ

′(t)|dt = ∞. This contradicts A), so we conclude that ν(w) = 0.
Moreover, |η| < δ, so the proposition is proved if A occurs.
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Thus we may assume that B) holds. Then, letting z(t) = exp(ξ(t)) · z0 and ν(t) = ν(z(t)),

d

ds
|ν(t)| =

d

ds
〈ν(t), ν(t)〉

1
2 =

1

2

2〈dν(σ(−iν(t), ν(t)〉
|ν(t)|

· dt
ds

where we use (5.9) to establish the second equality. Now ds
dt = |ν(t)|. Equation (5.2) yields:

− d

ds
|ν(t)| =

〈Qz(ξ)ν, ν〉
〈ν, ν〉

≥ 1 (5.11)

provided s ≤ δ. Here we are using the assumption that the smallest eigenvalue of Qz is at
least one, inside the closed ball of radius δ. But we are assuming that |ν(0)| < δ. Hence
(5.11) shows that |ν(t)| = 0 for some s = s(t) < δ, and this proves the proposition.

§6. The symplectic quotients.

Whenever a Lie group H acts on a symplectic manifold (W,ω), one can ask for the existence
of an equivariant moment map µ. If such a µ exists, and if the action is discrete, then one
can construct the symplectic quotient, W//H, which is defined by W//H = µ−1(0)/H. It
turns out that W//H has a natural structure of symplectic manifold. If W has additional
structure (eg a line bundle compatible with ω, or a complex structure compatible with
ω), then the symplectic quotient also has the same additional sturcture. We consturct the
symplectic quotient in this section, and we show how the additional structure descends to
the symplectic quotient.

The symplectic quotient of (W,ω).

We start with the simplest setting: Let H act on a symplectic manifold (W,ω). There may
not be a moment map for the action of H on W , but if one exists, it is essentially unique:

Theorem (uniqueness of moment maps)

1. If µH is a moment map for the action of H, then the set of all moment maps is the
set µH + c, where c ranges over all elements of [Lie(H), Lie(H)]0 the set of elements in
Lie(H)∗ which kills [Lie(H), Lie(H)].

2. If H is semi-simple (by defintion, this means that we have [Lie(H), Lie(H)] = Lie(H))
then there exists a unique moment map µH for the action of H.

Examples of semi-simple Lie groups are SU(n), SO(n), Sp(n), SL(n), for n ≥ 2, and any
product of such groups.

We are interested in the sets µ−1(0), where µ ranges over the moment maps for H. By
the theorem above, this is equivalent to fixing a moment map µ, and considering the sets
µ−1(c) where c ∈ [Lie(H), Lie(H)]0. Let W//H = µ−1(c)/H.

If H acts freely, then it turns out that W//H has the structure of a smooth symplectic
manifold, known as the “symplectic quotient” of W :
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Theorem (Marsden-Weinstein-Meyer). Assume that H is compact and that it acts
freely on µ−1(c).

1. The set µ−1(c) ⊆W is a smooth manifold.

2. The set W//H has the structure of a smooth manifold and the map π : µ−1(c)→W//H
is a smooth principal H bundle.

3. There is a symplectic form ωred on W//H with the property π∗ωred = ι∗ω where ι is the
inclusion map: ι : µ−1(c) ↪→W.

Proof of parts one and three. Let w ∈ µ−1(c). Then dµ : TwW → Lie(H)∗.

Claim: codim(Ker(dµ)) = dim(H).

To see this, recall the moment map conditon:

dµ(ξ)(Y ) = ω(Xξ, Y ) (6.2)

for all ξ ∈ Lie(H) and all Y ∈ TwW . Thus Y ∈ Ker(dµ) if and only if 0 = dµ(ξ)(Y ) =
ω(Xξ, Y ) for all ξ ∈ Lie(H). Since H acts freely the Xξ span a subspace of TwW of
dimenson dimH. The claim now follows from the assumption that ω is non-degenerate.
We now see that dµ has maximal rank at all points of µ−1(c) which implies that µ−1(c) is
a smooth manifold, and completes the proof of part one.

Next we prove part three: Consider the linear maps

Lie(H) → σ TsW → dµ Lie(H)∗

where σ is the map ξ 7→ Xξ. Since µ is constant on the orbit of w, we have im(σ) ⊆ ker(dµ).

Claim: ker(dµ) = ann(im(σ)) where

ann(im(σ)) = {Y ∈ TwW : ω(Xξ, Y ) for all ξ ∈ Lie(H) } (6.2a)

is the annihilator of the image of σ.

To prove the claim, observe first that (6.2) implies that ker(dµ) ⊆ ann(im(σ)). Further-
more, we have seen that codim(ker(dµ)) = dim(H). On the other hand, since H acts
freely, dim(im(σ)) = dim(H). Since ω is non-degenerate, codim [ann(im(σ)] = dim(H).

Now the claim implies that we have a non-degenerate pairing induced by ω:

ker(dµ)

im(σ)
× ker(dµ)

im(σ)
→ ωred R

On the other hand, we have a canonical isomorphism

T[w] (W//H) = T[w]

(
µ−1(c)/H

)
=

ker(dµ)

im(σ)
(6.3)

where [w] = wH ⊆ µ−1(c)/H. This proves part three.
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Remark: We are assuming in the above that H acts freely. If we only assume that the
stabilizers are finite, then the above proof shows that µ−1(c) is still a smooth manifold and
that W//H is a symplectic orbifold.

Example 1. The simplest example is H = U(1), W = CN+1 , ω = −i
∑
dwj ∧ dw̄j .

Then Lie(U(1)) = iR so Lie(U(1))∗ = iR where the pairing sends (ix, iy) 7→ xy. Define
µ : CN+1 → iR to be the map µ(w) = i

∑
|wj |2. Then we claim µ is a moment map. To

see this, let ξ = ix ∈ Lie(U(1)). We must show

dµ(ξ)(Y ) = ω(Xξ, Y ) = (ιXξω)(Y )

for every tangent vector Y , where Xξ is the infinitesimal action of ξ, that is, identifying the

complexification of the tangent space of CN+1 with CN+1⊕CN+1: Xξ(w) = ix ·w− ix · w̄.
Thus ιXξω = x

∑
(wjdw̄j + w̄jdwj). On the other hand, µ(ξ) = x

∑
|wj |2. Thus we see

dµ(ξ) = ιXξω.

Now let c = i, so that

µ−1(c) = {(w0, ..., wN ) ∈ CN+1\{0} :
∑
|wi|2 = 1}

and W//H = CPN , where ωred is the Fubini-Study form.

Example 2. Let (V, h) be a hermitian vector space and let

W = { s = (s0, ..., sN ) : the si form a basis of V }
Then Ts(W ) = {σ = (σ0, ..., σN ) : σ ∈ V }. Define ω(σ, σ′) =

∑
j Im〈σj , σ′j〉 Then ω is a

symplectic form on W , and U(h), the unitary group of h, acts on (W,ω).

Define µ : W → u(N + 1) by

µ(s) =
1

2
i〈sα, sβ〉h

where we identify u(h) = u(N + 1) and u(h)∗ = u(N + 1)∗. The first identification is via
the basis s, and the second via the invariant pairing on u(N + 1) given by the formula
〈A,B〉u(N+1) = Tr(AB∗) = −Tr(AB).

Then we claim µ is a moment map. To see this, let ξ = iA ∈ u(N + 1). Then

dµ(ξ)s(σ) = lim
t→0

µ(ξ)(s+ tσ)− µ(ξ)(s)

t
=

1

2

∑(
〈σα, sβ〉+ 〈sα, σβ〉

)
Āαβ =∑

α,β

Re〈σα, Aαβsβ〉

On the other hand, Xξ = i
∑
Aαβsβ so

ω(Xσ, σ) =
∑
α

Im〈iAαβsβ, σα〉 =
∑
α,β

Re〈σα, Aαβsβ〉

Now the annihilator of [Lie(H), Lie(H)] is the set of scalar diagonal elements. Let c = iλ
where λ ∈ R. Now µ−1(0) = 0, so the action of H is not free. So let’s consider the case
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c 6= 0: µ−1(2i) is the set of bases which are orthonormal. Since any two orthonormal bases
are in the same H orbit, we see that W//H is a single point in this case.

Symplectic quotient of (W,ω;L, h,A)

Assume, as above, that we are given an action of a compact Lie group H on a symplectic
manifold (W,ω) and an equivariant moment map µ , such that H acts freely on W .

Assume as well that we are given a hermitian complex line bundle on W , with unitary
connection (L, h,A), compatible with ω, that is, assume that the property

FA = −iω

Then the action of H on (W,ω) extends to an action of H on (L, h,A), covering the action
on W (and preserving h and A).

To see this, let G0 = Aut(W,ω) and let G = Aut(L, h, ω). Then we proved in §3 that
Lie(G0) = C∞(W )/R and Lie(G) = C∞(W ) We are given a homomorphism H → G0,
which, on the level of Lie algebras is the map ξ 7→ Hξ, where Hξ is the unique element of
C∞(W )/R whose symplectic gradient is the vector field σw(ξ) (the inifinitesimal action).

Now define Lie(H) → C∞(W ) by the rule: ξ → µ(w)(ξ), where µ : W → Lie(H)∗ is the
moment map. This is clearly a lift of the map Lie(H) → C∞(W )/R, and thus defines a
lifted homorphism H → G.

Now L|µ−1(0) is a line bundle on a smooth manifold together with an H action. Now let

U ⊆W//H be an open subset and let π : µ−1(0)→W//H be the canonical quotient map.
Then we define a line bundle Lred on W//H as follows: Let s : U → µ−1(0) be any section
of π, viewed as a principal H bundle (which exists, provided U is sufficiently small). Then
Lred|U = s∗L. Since there is a canonical isomorphism s∗L = s′∗L for any sections s, s′, this
is well defined and patches together to define Lred. Thus we have

Lred(U) = {s ∈ L(π−1(U)) : s is H invariant }

in other words, s ∈ Lred(U) is a section s : π−1(U) → L satisfying s(hw) = ρ(h)s(w)
where ρ is the canonical isomorphism ρ : L → h∗L. Sometimes we refer to ρ as a “factor
of automorphy”.

The metric and the connection clearly descend as well. Thus (Lred, hred, Ared) is a hermitian
line bundle with connection on (W//H,ωred).

In example 1 of the previous section, H = U(1) , W = CN+1, and ω = −i
∑
dzj ∧ dz̄j .

Let L be the trivial line bundle CN+1 × C, with the metric: |(w, z)| = e−|w|
2 |z|. The

curvature of the metric is ω. Now U(1) acts on L: If exp(ix) ∈ U(1) then exp(ix) · (w, z) =
(exp(ix)w, exp(ix)z). The action clearly preserves the metric and the connection (which
we take to be the trivial connection).
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Now we compute the quotient: µ−1(c) = S2n+1 = {w : |w| = 1}. The sections of Lred
are the functions f on S2n+1 which transform by the rule: f(ζw) = ζf(w) for ζ ∈ U(1).
The principal U(1) bundle S2n+1 → CPn = S2n is the standard Hopf bundle, and the line
bundle Lred is the Hopf line bundle on complex projective space.

The linear maps f : CN+1 → C are all global sections of Lred. If f is such a linear map,

then ||f([z])|| = |f(z)|
|z| where z ∈ CN+1 is any representative of [z] ∈ CPN .

Symplectic Quotient of a Kahler Manifold.

Let H be a compact Lie group acting freely (resp. with finite stabilizers) on a symplectic
manifold (W,ω) and fix an equivariant moment map µ : W → Lie(H)∗. Then we saw in
the previous section that

(W//H,ωred)

is a symplectic manifold (resp. orbifold) where W//H = µ−1(0)/H. Moreover, the map
µ−1(0)→W//H is a principal H bundle.

Lemma on the Kahler quotient. Assume that (W,ω, I) is a Kahler manifold and that
H acts freely on W .

1. Then Z = W//H has a natural almost complex structure Ired, compatible with ωred.

2. If z = Hw ∈ Z for some w ∈ µ−1(c), we have a canonical isomorphism of complex
vector spaces:

TwW/Tw(Hcw) = TzZ (6.5)

(in fact, this is how Ired is defined). This gives us a canonical isomorphism

TzZ = Tw(Hcw)⊥ ⊆ TwW (6.6)

where the hermitian inner product on TwW is the one defined by ω and I: For u, v ∈ TwW ,

〈u, v〉 = ω(u, Iv) + iω(u, v) = g(u, v) + iω(u, v) (6.7)

(where g is the Riemannian metric). Moreover, the restriction of 〈, 〉 to TzZ gives a
hermitian structure on TzZ whose imaginary part is ωred.

3. Assume the action of H extends to an action of Hc on W s via biholomorphic maps.
Then (Z, ωred, Ired) is a Kahler manifold.

Proof. We start with the proof of statements one and two.

Claim:

T[w](W//H) =
ker(dµ)

im(σ)
= {u ∈ TwW : 〈u, σ(ξ)〉 = 0 for all ξ ∈ Lie(Hc) } (6.8)

Proof of claim. The first equality is (6.3). We thus have a canonical identification:

T[w](W//H) = {u ∈ ker(dµ) : g(u, σ(ξ)) = 0 for all ξ ∈ Lie(H) }
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This follows from the fact that g is a metric on the real vector space ker(dµ). On the other
hand, (6.2a) implies

ker(dµ) = {u ∈ TwW : ω(u, σ(ξ)) = 0 for all ξ ∈ Lie(H) }

Thus (6.7) implies (6.8), and the claim is proved. Since the right side of (6.8) is clearly
a complex subspace of TwW , we have defined an almost complex structure Ired on TwW ,
which is clearly compatible with ωred. This proves parts one and two.

Now we sketch the proof of part three: (which I don’t fully understand): First observe that
Hc has no continuous isotropy groups (since σ(iξ) = Iσ(ξ)). Thus (5.4a) implies that Hc

acts freely on W . In particular, the orbits Hcw are smooth complex manifolds (isomorphic
to Hc).

Now for w ∈ µ−1(0) relation (6.5) implies

T[w](W//H) = (TwW )/Tw(Hcw) (6.9)

One way to prove statement 3 is to show directly (by showing that the Nijenhuis tensor
vanishes) that the complex structure induced by (6.9) is integrable.

Another way to prove 3 is to use the fact that was proved earlier:

W//H = W s/Hc (6.10)

where W s ⊆W is the subset of points w ∈W for which there is a zero of the moment map
in the orbit Hcw. It turns out that W s is always open (I’m not sure why). Thus W s/Hc

has a natural complex structure (I’m not sure why. I guess: If U ⊆W//H = W s/Hc, then
a smooth function f : U → C is holomorphic if and only if π ◦ f is a holomorphic function
on U , where π : W s →W s/Hc is the canonical quotient map. But it’s not clear that there
exist non-constant holomorphic functions...).

Finally we prove 3b): Let ξ ∈ Lie(H), and z = Hcw ∈ Z where µ(w) = 0. The σ(iξ) =
Iσ(ξ) ∈ TwW is the infinitesimal action of iξ on w. Statement 3b) says that

π(σ(iξ)) = π(Iσ(ξ)) = Iredσ(ξ) (∗)

where

π : TwW → TzZ

is the projection map. But the projection map is a map of complex vector spaces (by
definition of Ired). Thus πI = Iredπ. This proves (*).

In the example above, we give W = CN+1 the usual complex structure. Then W s is the
set of non-zero points, Hc = C× and every Hc orbit meets S2n+1 uniquely up to the action
of H. If z ∈ CN+1\0, the tangent space at a point [z] ∈ CPN is z⊥ and the Fubini-Study
metric is the euclidean metric on z⊥.

The action of G×H
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Let G and H be Lie groups acting on a symplectic manifold (W,ω) which commute, in
other words, assume that we are given an action of G × H on W . Let µG and µH be
equivariant moment maps for the actions of G and H.

Observe that if g ∈ G is a fixed element, then then µH(gw) is a moment map for the
action of H. Thus µH(gw)−µH(w) is a constant, depending on g ∈ G. We shall make the
following assumptions:

µH(gw) = µH(w) and µG(hw) = µG(w) for all g ∈ G, h ∈ H and w ∈W (A)

For example, if G and H are semi-simple, then assumption (A) is automatic.

Let ZH = W//H and ZG = W//G. Then (A) implies that G acts symplectically on ZH
and H act symplectically on ZG. More precisely, if w ∈ µ−1

H (0) so that z = Hw ∈ ZH , and
if go ∈ G, then

goz = go(Hw) = H(gow)

In other words:

πo(gow) = go(πow)

where πo : µ−1(0)→ ZH is the canonical quotient map.

Moreover, µG defines an equivariant moment map for the action of G on ZH , and similarly
for µH .

Now assume that (W,ω) is Kähler. In order to simplify the discussion, assume as well that
every point in W is H stable and G stable. Then ZH = W/Hc and ZG = W/Gc.

Now G acts on W and Z = ZH , so Gc also acts on W and Z = ZH (whenever a compact
group acts on a Kahler manifold, then the action extends to an action of Gc which is given,
infinitesimally by the formula σ(iξ) = Iσ(ξ)). We wish to show that these two actions
are compatible:

Lemma on the action of Gc on ZH . Let π : W → ZH be the canoncial quotient map.
Then

π(gw) = gπ(w)

for all w ∈ µ−1(0) and g ∈ Gc.

Proof. It suffices to prove this infinitesimally: Thus, we must show that for ξ ∈ Lie(G),
the following formula holds:

π∗(σw(iξ)) = Iredσz(ξ)

where π∗ : TwW → TzZ, σw : Lie(G)→ TwW is the infinitesimal action of G on TwW and
σz : Lie(G)→ TzZ is the infinitesimal action of G on TzW , where z = πw.

The uniqueness of moment map zeros lemma says that π|µ−1(0) = πo. Thus () implies

π∗(σw(ξ)) = σz(ξ) ()
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for all ξ ∈ Lie(G). On the other hand, σw(iξ) = Iσ(ξ) (by definition). Thus () follows
from () and the fact that π∗I = Iredπ (this is the defintion of Ired). This proves the lemma,
and shows as well that () holds for all ξ ∈ Lie(Gc).

§7. Zeros of the moment map: The line bundle point of view.

Let K be a compact Lie group acting on a Kahler manifold (V, ω, I). Then the complexified
group satisfies Lie(Kc) = Lie(K) ⊗ C, and Kc acts on (V, I), preserving the complex
structure, but not the Kahler form or the metric.

Let ν : V → Lie(H) be an equivariant moment map, where we identify Lie(H) with its
dual via an invariant metric on Lie(H). Let φ(x) = |ν(x)|2. Then gradxφ = 2σ(Iν(x))
and the gradient flow is:

dz

dt
= −σ(I(ν(x)) ; z(0) = z0 (7.1)

If ξ(t) is a solution to

dξ

dt
= −ν(exp(iξ(t)) · z0) ; ξ(0) = 0 (7.2)

then z(t) = exp(iξ(t)) · z0 is a solution to (7.1).

Let Γ = Hcz0. We have seen that the flow z(t) stays inside Γ. If the stabilizers of points
in Γ are discrete, then either z(t) has a limit in Γ, and the limit is the unique (up to G
action) moment map zero, or z(t) has no accumulation point in Γ.

A very useful way of interpreting the zeros of the moment map is via the norm on the line
bundle L: Let (L, h,A) be a complex hermitian line bundle with unitary connection on a
Kahler manifold (V, ω, I). Let L = (L, I) be the holomorphic line bundle determined by I.
Let ν : V → Lie(K) be an equivariant moment map. Then ν allows us to lift the action of
Kc to L as follows: If ξ ∈ Lie(K) then the infinitesimal action of K on L is given by

σ̂(ξ) = σ̃(ξ) + ν(ξ)t

where t is the infinitesimal action of U(1). This gives the infinitesimal action of K on L
which integrates to an action of K. We thus get as well an action of Kc on L:

σ̂(Ξ) = [σ(ξ1) + Iσ(ξ2)]˜ + [ν(ξ1) + iν(ξ2)] (7.3)

Ξ = ξ1 + iξ2 ∈ Lie(Kc) (where ξ1, ξ2 ∈ Lie(K)).

Now let Γ̃ ⊆ L be a fixed orbit for Kc acting on L. Then Γ̃ is a smooth manifold which
lies over an orbit Γ ⊆ V (also a smooth manifold). Define

h : Γ̃→ R

by

h(γ) = − log |γ|2
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Let Q = Kc/K and fix γo ∈ Γ̃. Define

H : Q→ R
by

H(g) = h(g · γo)
Thus Γ̃ = H(Q).

Theorem.

1. If γ ∈ Γ̃, then γ is a critical point of h if and only if ν(π(γ)) = 0 .

2. For ξ ∈ Lie(K) let Hξ(t) = H(exp(itξ)). Then

H ′ξ(t) = 2〈ν(exp(itξ) · xo), ξ〉 (7.4)

and
H ′′ξ (t) = 2〈σx(ξ), σx(ξ)〉 (7.5)

where x = x(t) = exp(itξ) · γo.

3. The gradient flow lines of H on Q map to the gradient flow lines of Φ on Γ.

Proof. If Ξ ∈ Lie(Kc) then σ̂(Ξ) is a smooth vector field on Γ̃. We wish to compute the
lie derivative Lσ̂(Ξ)h.

Claim:
(Lσ̂(Ξ)h)(γ) = 2〈ν(x), ξ2〉 (7.6)

where x = π(γ) ∈ V (here π : L→ V ).

Proof. Clearly LX̃h = 0 for any vector field X on V (since |γ|2 is infinitesimally constant
in the horizontal direction). Thus, (7.3) implies

(Lσ̂(Ξ)h)(γ) = − d

dt
log

∣∣∣∣ exp(it[ν(ξ1) + iν(ξ2)]γ

∣∣∣∣2 = − d

dt
exp(−2tν(ξ2))

which yields (7.6). Taking Ξ = iξ in (7.6) we get (7.4). Differentiating one more time we
get

H ′′ξ (t) = 2〈dν(σx(iξ)), ξ〉 = 2〈σ∗xσx(ξ), ξ〉 = 2〈σx(ξ), σ(ξ)〉
and this proves (7.5). Now (7.4) says that gradgH = ν(g · xo). Thus the gradient flow
equation of H is just given by (7.2), whose solutions, as we have seen, map to the gradient
flow of Φ. To prove statement one, observe that Lσ̂(Ξ)h)(γ) = 0 for all Ξ if and only if
ν(x) = 0.

Now g is a critical point of H, if and only if gγo is a critical point of point of h. Thus a
moment map zero exists if and only if H has a critical point. Moreover, (7.5) shows that
the critical points of H are all global minima, and that the global minima are all in the
isotropy group of the moment map zero. Thus, if the isotropy group is discrete, H can
have at most one critical point.


