
SUMMARY OF SCALAR CURVARTURE AND PROJECTIVE

EMBEDDINGS II

1. Introduction

In this paper Donaldson proves the following

Theorem 1. Suppose Aut(X,L) is discrete and the there is a cscK metric ω∞ ∈ c1(L).
Then ω∞ minimizes ν, the Mabuchi K-energy in c1(L).

We sketch the idea of the proof: Donaldson introduces a sequence of functionals Lk : H → R
which have the following properties:

a) If h ∈ H then Lk(h)→ ν(h) as k →∞. In fact, if hk ∈ H and hk → h then
Lk(hk)→ ν(h).

b) If hk is k-balanced, then Lk reaches its minimum at hk.

Property b) follows (indirectly) from the result of S. Zhang. And property a) follows from
the Tian-Yau-Zelditch approximation theorem.

The hypothesis of the theorem implies (Donaldson’s first paper) that there is a sequence
of k-balanced metrics hk such that hk → h∞, the cscK metric. Now assume a) and b). Let
h′ ∈ H. Property b) says Lk(hk) ≤ Lk(h′). Now, taking the limit as k → ∞, property a)
implies ν(h∞) ≤ ν(h′).

Before presenting the details, we sketch the proof of property b) which relies on another
functional Z : M → R, where M is the space of hermitian metrics on the finite dimensional
vector space H0(X,L) (this is essentially the F 0 functional, restricted to the Bergman
space). It is not difficult to show that L(h′) ≥ Z(Hilb(h′)) for all h′ ∈ H, with equality
if h′ is balanced. On the other hand, (dropping the subscript k) if h is balanced, and if
H = Hilb(h), Zhang’s result says that Z(H ′) ≥ Z(H) for any H ′ ∈M . Thus we have

L(h′) ≥ Z(Hilb(h′)) ≥ Z(Hilb(h)) = L(h)

1.1. The maps FS and Hilb. Let

(1) H = {h : hermitian metric on L : ω = −i∂∂̄h > 0}

(2) M = {H : hermitian metric on H0(X,L) }

Define FS : M → H by:
1
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(3)
∑
α

sαs̄α FH(H) = 1 if (sα) is H−orthonormal

Define Hilb : H →M by

(4) Hilb(h)(sα, s̄β) =
d

V

∫
X
sαs̄β h dµh

where dµh = ωn/n!.

1.2. The Bergman approximation. Let h ∈ H. Define hb = FS(Hilb(h)). Then hb is
called the Bergman approximation of h.

Proposition 1. Let h ∈ H and define φ by h = e−φhb. Then

(5)
1

V

∫
X
e−φ dµh = 1

We say that h is balanced if h = hb, that is, if φ = 0.

Proof of Proposition. Let (sα) be a Hilb(h)-orthonormal basis so Hilb(sα, s̄β) = δαβ. Then

d =
∑
α

Hilb(h)(sα, s̄α) =
d

V

∫
X

∑
α

sαs̄αh dµh =
d

V

∫
X

(
∑
α

sαs̄αhb)e
−φ dµh =

d

V

∫
X
e−φ dµh

1.3. The Functional I. Let h0 ∈ H so H = {φ : ω0 + i∂∂̄φ > 0}. Define I : H → R by

(6) δI =

∫
X
δ log h dµh = −

∫
X
δφ dµh

Thus if φt is a path in H then

(7)
d

dt
I(φt) = −

∫
X
φ̇ dµh and

d2

dt2
I(φt) = −

∫
X

(φ̈+ φ̇∆φ̇) dµh

Proposition 2. Let h1, h0 ∈ H and write h1 = h0e
−φ. Then

(8)

∫
X
φdµh0 ≥ I(h0)− I(h1) ≥

∫
X
φdµh1

Proof. Let ht = h0e
−tφ so φt = tφ. Then φ̈ = 0 so (7) implies I(φt) is convex. Thus

I(h1)− I(h0) =

∫ 1

0

d

dt
I(φt) dt

The integrand reaches its max at t = 1 and its min at t = 0. This proves the proposition.

Proposition 3. Let h ∈ H. Then

(9) I(h) ≤ I(hb)
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Proof. Write h = hbe
−φ. Let h1 = h and h0 = hb. Then (5) implies (since log is concave)∫

X
φdµh1 ≥ 0

Thus (9) follows from (8).

1.4. The functionals L̃ and Z̃. Define L̃ : H → R and Z̃ : M → R by

1

d
L̃ = − 1

V
I +

1

d
log det ◦Hilb

1

V
Z̃ = − 1

V
I ◦ FS +

1

d
log det

To define the map det, fix a basis (sα) of H0(X,L). Then det : M → R+ is the map
H 7→ det(H(sα, s̄β)). Changing the basis (sα) changes det by an additive constant.

We now have the following bounds: Let h ∈ H and H ∈M . Then

1

d
L̃(h) ≥ 1

V
Z̃(Hilb(h))(10)

1

d
L̃(FS(H)) ≤ 1

V
Z̃(H)(11)

Estimate (10) is a rephrasing of (9). For (11) we estimate:

(12) det
(
Hilb(FS(H))

) 1
d ≤ 1

d
trHilb(FS(H)) =

1

V

∫
X

∑
α

sαs̄α FS(H) dµh

Choosing now (sα) to be H-orthonormal, the right side of (12) is one. Thus

det
(
Hilb(FS(H)(sα, s̄β)

) 1
d ≤ 1 = detH(sα, s̄β)

and this proves (11).

1.5. Balanced metrics. Let h ∈ H and H ∈ M . We say the pair (h,H) is balanced if
h = FS(H) and H = Hilb(h). Thus h = FS(Hilb(h)) (in other words, if h = hb) and
Hilb(FS(H)) = H.

An equivalent characterization is the following: Let h ∈ H. Choose a basis (sα) satisfying

d

V

∫
X
sαs̄β h dµh = δαβ

(In other words, (sα) is Hilb(h)-orthnormal). Then h is balanced if

ρh(z) =
d

V

∑
α

sαs̄α h =
d

V

Remark: 1
V

∫
X ρhdµh = d

V .
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Theorem 2. Suppose h ∈ H is balanced and let H = Hilb(h).

(1) H is an absolute minimum of Z̃.

(2) h is an absolute minimum of L̃

Proof. The first statement is the theorem of Zhang. For the second, let h′ ∈ H:

1

d
L̃(h′) ≥ 1

V
Z̃(Hilb(h′)) ≥ 1

V
Z̃(Hilb(h)) =

1

d
L̃(h)

where the first inequality makes use of (10) and the second is a consequence of part (1).

Next we prove that the critical points of L̃ and Z̃ are precisely the balanced metrics. In
fact we have the following more precise statement:

Theorem 3.

(13) δL̃ =

∫
X

(δφ)(∆ρh − ρh +
d

V
) dµh

(14) δZ̃ =
∑
α,β

(δH)αβ̄

(∫
X
s̄αsβ FS(H) dµFS(H) −

V

d
δαβ

)
Proof. Let L = log det ◦Hilb. Then

δL(h) = trHilb(h)(δHilb(h))

Let h0 ∈ H and let (sα) be a Hilb(h0)-orthonormal basis. Then at the point h = h0

δL(h) = trHilb(h0)(δ Hilb(h)) = δ (trHilb(h0)Hilb(h))(15)

= δ
∑
α

Hilb(he−φ)(sα, s̄α) =
d

V
δ
∑
α

∫
X
sαs̄α he

−φ dµhe−φ

The second equality follows from: δtrH0H = δ
∑

αH(sα, s̄α) =
∑

α δH(sα, s̄α). Thus

δL(h) =

∫
X

d

V

∑
α

sαs̄α h(−δφ+ ∆δφ) dµh =

∫
X

(δφ)(−ρh + ∆ρh) dµh

Now we prove (14). Let (sα) be H-orthonormal. Then
∑

α sαs̄αFS(H) = 1 so

(16)

0 =
∑
α

(δsαs̄α+sαδsα)FS(H) +
∑
α

sαsα δFS(H) =
∑
α

(δsαs̄α+sαδsα)FS(H) +
δFS(H)

FS(H)

On the other hand, H(sα, s̄β) = δαβ so

(17) 0 = δH(sα, s̄β) +H(δsα, s̄β) +H(sα, δs̄β) = δHαβ̄ +H(δsα, s̄β) +H(sα, δs̄β)

Next, if we write δsα =
∑

β pαβsβ we see pαβ = H(δsα, s̄β) so
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(18) δsα s̄α =
∑
α,β

H(δsα, s̄β)s̄αsβ

Combining (16), (17) and (18) we conclude

(19) δ logFS(H) =
δFS(H)

FS(H)
=
∑
α,β

(δHαβ̄) s̄αsβ FS(H)

Since

(20) δI(FS(H)) =

∫
X
δ logFS(H) dµFS(H)

we obtain (14).

1.6. Raising the power of the line bundle. We now replace L by Lk, H by the space
Hk = {h(k) : positive hermitian metrics on Lk} = {φ(k) : ω0(k) + i∂∂̄φ(k) > 0}. Then

ρh(k)(z) =
dk
Vk

∑
α

sαs̄α h(k)

where the sα form an orthonormal basis of H0(X,Lk) with respect to Hilbk(h(k)):

Hilbk(h(k))(sα, s̄β) =
dk
Vk

∫
X
sαs̄β h(k) dµh(k)

Let I(k), L̃(k) be the corresponding functionals on H(k):

δI(k) = −
∫
δφ(k) dµh(k) , L̃(k) = −dk

Vk
I(k) + log det ◦Hilbk

Then (13) implies

(21) δL̃(k) =

∫
X

(δφ(k))(∆kρh(k) − ρh(k) +
dk
Vk

) dµh(k)

Now apply this to h(k) = hk for some h ∈ H. Then φ(k) = kφ, ∆k = 1
k∆, dµh(k) = kndµh

(22) I(k)(φ(k)) = k · knI(φ)

(23) δL̃(k) =

∫
X

(δφ)(∆ρh(k) − kρh(k) + k
dk
Vk

) dµh(k)

If f is a function on X write [f ]h = f − f̂ where f̂ is the average of f defined using the
measure dµh. Then we can write this last identity as
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(24) δL̃(k) =

∫
X

(δφ)[∆ρh(k) − kρh(k)]h dµh(k)

We define ρk,h =
∑

α sαs̄αh
k where

∫
X sαs̄αdµh = δαβ. Thus ρh(k) = k−nρh,k so

(25) δL̃k =

∫
X

(δφ)[∆ρk,h − kρk,h]h dµh

Where L̃k(h) = L̃(k)(hk). Now TYZ tells us ρk,h = kn + s
2πk

n−1 + · · · so

[∆ρh(k) − kρh(k)]h = −kn 1

2π
[s]h + · · ·

On the other hand, δν = −
∫
X [s]h dµh. Thus δ 2π

kn L̃k → δν so

(26)
2π

kn
L̃k + λk → ν

for some λk ∈ C. The convergence is uniform over bounded subsets of H.

1.7. Proof of Theorem. Let h0 ∈ H be a base point and let us normalize I, ν and
log det ◦Hilbk by requiring

I(h0) = 0, ν(h0) = 0 and log det ◦Hilbk(h0(k)) = 0

Then L̃k(h0) = ν(h0) = 0 for all k so we may take λk = 0.

Note that ∣∣∣∣2πkn L̃k(φ1)− 2π

kn
L̃k(φ0)

∣∣∣∣ ≤ sup |φ1 − φ0| · sup

∣∣∣∣ 1

2π
[s]h +O(

1

k
)

∣∣∣∣
The second factor is uniformly bounded in k when φ1 is in a bounded neighborhood of φ0

in H.

Assume now that there exists ω∞ ∈ c1(L) with constant scalar curvature, corresponding
to some h∞ ∈ H. The Donaldson’s theorem shows that there exists h(k) ∈ Hk, a balanced

metric such that hk = h(k)1/k → h∞.

(27)

∣∣∣∣2πkn L̃k(hk)− 2π

kn
L̃k(h∞)

∣∣∣∣→ 0

Thus if h ∈ H we have, for k large,

ν(h∞) ≤ 2π

kn
L̃k(h∞) + ε ≤ 2π

kn
L̃k(hk) + 2ε ≤ 2π

kn
L̃k(h) + 2ε

The first inequality follows from (26), the second from (27) and the third from the fact

that hk is the absolute minimum of L̃k. Taking the limit as k →∞ we prove our theorem.
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2. Appendix

Let f : X → Y be a smooth maps between manifolds (which may be infinite dimensional).
Let x ∈ X and let y = f(x). Then (δf)(x) : TxX → TyY is a linear map. If δx ∈ TxX.
Then we define

δ(f(x)) = (δf)(x)(δx) ∈ TyY
For example, δ(x2) = 2x · δx. If x(t) is a curve in X, then d

dtf(x(t)) = (δf)(x)(ẋ).

The chain rule: Let f : X → Y and g : U → X. Then

δ(f(g(u)) = (δf)(g(u))(δg(u))

Now let H0 ∈M and let trH0 : M → R be the map trH0(H) =
∑

αH(sα, s̄α). Moreover, if

we differentiate both sides of this last equation with respect to t (so δH = Ḣ) we obtain

δ(trH0H) = trH0δH

Consider the map log det : GL(n,C)→ C∗. Then

δ log det(A) = trA(δA)

Let L = log det ◦Hilb. Then

δL(h) = trHilb(h)(δHilb(h))

so

δL(h)(h0) = trHilb(h0)(δ Hilb(h)(h0)) = (δ trHilb(h0)(Hilb(h))(h0)(28)

= δ
∑
α

Hilb(he−φ)(sα, s̄α) =
d

V
δ
∑
α

∫
X
sαs̄α he

−φ dµhe−φ

Let h0 ∈ H and let (sα) be a Hilb(h0)-orthonormal basis. Then at the point h = h0

δL(h) = trHilb(h0)(δ Hilb(h)) = δ (trHilb(h0)Hilb(h))(29)

= δ
∑
α

Hilb(he−φ)(sα, s̄α) =
d

V
δ
∑
α

∫
X
sαs̄α he

−φ dµhe−φ


