SUMMARY OF SCALAR CURVARTURE AND PROJECTIVE
EMBEDDINGS II

1. INTRODUCTION
In this paper Donaldson proves the following

Theorem 1. Suppose Aut(X, L) is discrete and the there is a cscK metric ws € c1(L).
Then weo minimizes v, the Mabuchi K-energy in c¢1(L).

We sketch the idea of the proof: Donaldson introduces a sequence of functionals L : H — R
which have the following properties:

a) If h € H then Lx(h) — v(h) as k — oco. In fact, if hy € H and hy, — h then
Ly (hx) — v(h).
b) If hy is k-balanced, then L reaches its minimum at hy.

Property b) follows (indirectly) from the result of S. Zhang. And property a) follows from
the Tian-Yau-Zelditch approximation theorem.

The hypothesis of the theorem implies (Donaldson’s first paper) that there is a sequence
of k-balanced metrics hy such that hy — heo, the cscK metric. Now assume a) and b). Let
h' € H. Property b) says Li(hr) < Li(h'). Now, taking the limit as kK — oo, property a)
implies v(hs) < v(1).

Before presenting the details, we sketch the proof of property b) which relies on another
functional Z : M — R, where M is the space of hermitian metrics on the finite dimensional
vector space H(X, L) (this is essentially the FY functional, restricted to the Bergman
space). It is not difficult to show that £(h') > Z(Hilb(h')) for all A’ € H, with equality
if ' is balanced. On the other hand, (dropping the subscript k) if h is balanced, and if
H = Hilb(h), Zhang’s result says that Z(H') > Z(H) for any H' € M. Thus we have

L(K) > Z(Hilb(k')) > Z(Hilb(h)) = L(h)

1.1. The maps F'S and Hilb. Let

(1) H = {h: hermitian metric on L : w = —iddh > 0}

(2) M = {H: hermitian metric on H°(X, L) }
Define F'S : M — H by:
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(3) Z SaSq FH(H) = 1 if (s,)is H—orthonormal

Define Hilb: H — M by

d

(4) Hilb(h)(Sa,58) = / sa8g hdup,
Vix

where dup = w™/nl.

1.2. The Bergman approximation. Let h € H. Define hy, = F'S(Hilb(h)). Then hy is
called the Bergman approximation of h.

Proposition 1. Let h € H and define ¢ by h = e~%hy. Then
1
5 — [ e %du, = 1
(5) 7 [ dm
We say that h is balanced if h = hy, that is, if ¢ = 0.
Proof of Proposition. Let (sq) be a Hilb(h)-orthonormal basis so Hilb(s«,53) = da3. Then

d d d
d =Y Hilb(h)(sa,50) = V/ > saFahdpy, = V/ (> saSah)e® dup = V/ e % dpp,
- X7 X 7 X

1.3. The Functional I. Let hg € H so H = {¢ : wy +i09¢ > 0}. Define I : H — R by

(6) ol = / dloghduy = —/ 0o dup,
X X
Thus if ¢; is a path in H then

d . PR
(7) Lrg = - / b, and L1 = / 6+ 3Ad) dun
dt . dt X

Proposition 2. Let hi,hg € H and write h1 = hoe~®. Then
(8) / bdun, > I(ho) — / 6 djun,

Proof. Let hy = hoe™*® so ¢, = t¢. Then ¢ = 0 so (7) implies I(¢;) is convex. Thus

I(h) - / 2 () dt
The integrand reaches its max at ¢ = 1 and its min at t = 0. This proves the proposition.
Proposition 3. Let h € H. Then
(9) I(h) < I(hs)
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Proof. Write h = hye™®. Let hy = h and hg = hy. Then (5) implies (since log is concave)

[ odimn, =0
X

1.4. The functionals £ and Z. Define £:H — R and Z: M — R by

Thus (9) follows from (8).

~ 1 1
= _VI + glogdetoHilb

~ 1 1
7z = —VIOFS + alogdet

To define the map det, fix a basis (sq) of H(X,L). Then det : M — R* is the map
H +— det(H (sqa,58)). Changing the basis (so) changes det by an additive constant.

We now have the following bounds: Let h € H and H € M. Then

</ 8

(10) %E(h) > %Z(Hz’lb(h))
(1) Zli/f(FS(H)) < %Z(H)

Estimate (10) is a rephrasing of (9). For (11) we estimate:

(12)  det(Hilb(FS(H)))" < %tr Hilb(FS(H)) = % /X Za:saga FS(H) dp

Choosing now (sq) to be H-orthonormal, the right side of (12) is one. Thus

=

det (Hilb(FS(H)(sa,35))? < 1 = det H(sq,33)

and this proves (11).

1.5. Balanced metrics. Let h € H and H € M. We say the pair (h, H) is balanced if
h = FS(H) and H = Hilb(h). Thus h = FS(Hilb(h)) (in other words, if h = hy) and
Hilb(FS(H)) = H.

An equivalent characterization is the following: Let h € H. Choose a basis (s,) satisfying

d
V /X Sa§5hduh = 5a5
(In other words, (sq) is Hilb(h)-orthnormal). Then h is balanced if

d _ d
pn(z) = VZsasah = v

«

Remark: & [ prdpy, = &.



4 SUMMARY OF SCALAR CURVARTURE AND PROJECTIVE EMBEDDINGS II

Theorem 2. Suppose h € H is balanced and let H = Hilb(h).

(1) H is an absolute minimum 0f~Z.
(2) h is an absolute minimum of L

Proof. The first statement is the theorem of Zhang. For the second, let h' € H:
1E(h’) > lZ(H'lb(h’)) > lZ(H'lb(h)) = 1E(h)
d = you = you T d

where the first inequality makes use of (10) and the second is a consequence of part (1).

Next we prove that the critical points of £ and Z are precisely the balanced metrics. In
fact we have the following more precise statement:

Theorem 3.

(13) oL = /X (56) (Dpn — pi + )
~ B 1%
(14) 57 = %(5H)aﬁ ( /X Sass FS(H) dpps g — d5a6>

Proof. Let £ = logdet o Hilb. Then

Let hg € H and let (so) be a Hilb(hg)-orthonormal basis. Then at the point h = hg
(15) 6L(h) = trginng) (0 Hilb(h)) = 6 (trgip(ne) Hilb(h))

. _ _ d o
= 52H@lb(he ) (Sas 5a) = Véz/xsasahe ® dptg, oo

The second equality follows from: otrg,H =9, H(sa,54) = ), 0H(Sa,54). Thus

L) = [ 3 sasa (=6 +250) dun = [ (G0)=on + Apn) i

Now we prove (14). Let (so) be H-orthonormal. Then ) s45,FS(H) =1 so

(16)
0= (950Fa+sad50) FS(H) + D _ s05a 0FS(H) =) (85a5a+sadsa) FS(H) +‘f§((§))

« «

On the other hand, H(sq,58) = 648 SO

(17) 0 = 6H(sa,3p) + H(054,53) + H(sa,653) = 0H,5+ H(dsa,53) + H(54,058)
Next, if we write dsy, = Z,B Paps3 We see pog = H(05q,53) so
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(18) 05050 = Y H(05a,53)5a53
a,B

Combining (16), (17) and (18) we conclude

SFS(H)

(19) Slog FS(H) = T > (0H,3) Sasg FS(H)
a,B

Since

(20) SI(FS(H)) = /X §log FS(H) dppsm

we obtain (14).

1.6. Raising the power of the line bundle. We now replace L by LF, H by the space
Hy, = {h(k) : positive hermitian metrics on L*} = {4(k) : wo(k) +i00¢4(k) > 0}. Then

di;
z) = — E SaSa h(k
Ph(k)( ) Vi — (k)
where the s, form an orthonormal basis of H°(X, L*) with respect to Hilb(h(k)):

. _ d _
Hilby,(h(k))(sa,55) = VZ/X sa5g h(k) dpn )

Let I(k), £(k) be the corresponding functionals on H(k):

SI(k) = — / 5o (k) duny ,  L(k) = —%I(k‘)jtlogdetoHilbk
k
Then (13) implies
~ d
(21) SL(k) = /X (560 Doy ~ pugo + ) dingy

Now apply this to h(k) = k¥ for some h € H. Then ¢(k) = ko, Ay, = %A, dppey = K" dpp,

(22) I(k)(¢(k)) = k-k"1()

- d
(23) OL(k) = A(5¢)<Aph(k)_kph(k)+k‘/vllz)dﬂh(k)

If f is a function on X write [f], = f — f where f is the average of f defined using the
measure dup. Then we can write this last identity as
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(24) 5L(k) = /X(5¢)[Aﬂh(k)—kPh(k)]hth(k)

We define pip, = >, Sa8ah® where Jx SaSadpn = dq3. Thus Ph(k)y = k™" phk s0

(25) 6Ly = / (00)[Apr,h — kprp)n dpn
X
Where Ly (h) = L(k)(h*). Now TYZ tells us pp = k" + 2=k""1 + -+ s0
1
A — - oo
[Apnky = kpnaln k o [s]n +

On the other hand, v = — fX[S]h dpp. Thus 5%’;£~k — 0V so

21
(26) k—nﬁk + A — v
for some A\, € C. The convergence is uniform over bounded subsets of H.

1.7. Proof of Theorem. Let hg € H be a base point and let us normalize I,v and
log det o Hilby by requiring

I(ho) =0, v(hg) =0 and logdet o Hilbg(ho(k)) =0
Then Ly (ho) = v(ho) = 0 for all k so we may take A\, = 0.

Note that

21 5 21 5 1 1

—— S < - . il -

T La(60) — S Lalon)| < suplon — dul-sup| s +0(G)

The second factor is uniformly bounded in £ when ¢; is in a bounded neighborhood of ¢g
in H.

Assume now that there exists weo € ¢1(L) with constant scalar curvature, corresponding
to some heo € H. The Donaldson’s theorem shows that there exists h(k) € Hy, a balanced
metric such that hj, = h(k)'/* = he.

2m

(27) L) — o

kn
Thus if h € H we have, for k large,

/jk(hoo) —0

2m = 2 ~ 2 ~
v(hoo) € T Lilhoe) + € < TrLalhn) +26 < ToLa(h) +2€

The first inequality follows from (26), the second from (27) and the third from the fact
that hy is the absolute minimum of £;. Taking the limit as K — oo we prove our theorem.
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2. APPENDIX

Let f : X — Y be a smooth maps between manifolds (which may be infinite dimensional).
Let z € X and let y = f(x). Then (6f)(z) : T,X — T, is a linear map. If dz € T, X.
Then we define

6(f(x)) = (6f)(z)(0x) € T,)Y
For example, 6(z?) = 2z - dz. If 2(¢) is a curve in X, then %f(:c(t)) = (0f)(x)(x).

The chain rule: Let f: X - Y and g : U — X. Then

6(f(g(u)) = (6)(g(u))(0g(u))

Now let Hy € M and let try, : M — R be the map try,(H) = )", H(Sa,5a). Moreover, if
we differentiate both sides of this last equation with respect to ¢ (so dH = H) we obtain

5(tI‘HOH) = tI‘H05H
Consider the map logdet : GL(n,C) — C*. Then
dlogdet(A) = tra(dA)
Let £ = logdet o Hilb. Then
6L(h) = trgapn) (6Hilb(h))
S0
(28)  6L(R)(ho) = trHib(h) (6 Hilb(h)(ho)) = (& tTmin(hy) (Hilb(h))(ho)

, , _ d o
= 52Hzlb(he ) (Sa, 5a) = V(SZ/Xsasahe S dptgy oo

Let hg € H and let (sq) be a Hilb(hg)-orthonormal basis. Then at the point h = hg
(29) OL(h) = trHipng) (6 Hilb(h)) = & (4T ip(ne) Hilb(h))

. _ _ d o
= 52H1lb(he ¢)(sa,sa) = Véz/xsasahe ‘bd,uhew



