SUMMARY OF SCALAR CURVARTURE AND PROJECTIVE EMBEDDINGS II

1. Introduction

In this paper Donaldson proves the following
Theorem 1. Suppose $\operatorname{Aut}(X, L)$ is discrete and the there is a cscK metric $\omega_{\infty} \in c_{1}(L)$. Then ω_{∞} minimizes ν, the Mabuchi K-energy in $c_{1}(L)$.

We sketch the idea of the proof: Donaldson introduces a sequence of functionals $\mathcal{L}_{k}: \mathcal{H} \rightarrow \mathbb{R}$ which have the following properties:
a) If $h \in \mathcal{H}$ then $\mathcal{L}_{k}(h) \rightarrow \nu(h)$ as $k \rightarrow \infty$. In fact, if $h_{k} \in \mathcal{H}$ and $h_{k} \rightarrow h$ then $\mathcal{L}_{k}\left(h_{k}\right) \rightarrow \nu(h)$.
b) If h_{k} is k-balanced, then \mathcal{L}_{k} reaches its minimum at h_{k}.

Property b) follows (indirectly) from the result of S . Zhang. And property a) follows from the Tian-Yau-Zelditch approximation theorem.

The hypothesis of the theorem implies (Donaldson's first paper) that there is a sequence of k-balanced metrics h_{k} such that $h_{k} \rightarrow h_{\infty}$, the cscK metric. Now assume a) and b). Let $h^{\prime} \in \mathcal{H}$. Property b) says $\mathcal{L}_{k}\left(h_{k}\right) \leq \mathcal{L}_{k}\left(h^{\prime}\right)$. Now, taking the limit as $k \rightarrow \infty$, property a) implies $\nu\left(h_{\infty}\right) \leq \nu\left(h^{\prime}\right)$.

Before presenting the details, we sketch the proof of property b) which relies on another functional $Z: M \rightarrow \mathbb{R}$, where M is the space of hermitian metrics on the finite dimensional vector space $H^{0}(X, L)$ (this is essentially the F^{0} functional, restricted to the Bergman space). It is not difficult to show that $\mathcal{L}\left(h^{\prime}\right) \geq Z\left(\operatorname{Hilb}\left(h^{\prime}\right)\right)$ for all $h^{\prime} \in \mathcal{H}$, with equality if h^{\prime} is balanced. On the other hand, (dropping the subscript k) if h is balanced, and if $H=\operatorname{Hilb}(h)$, Zhang's result says that $Z\left(H^{\prime}\right) \geq Z(H)$ for any $H^{\prime} \in M$. Thus we have

$$
\mathcal{L}\left(h^{\prime}\right) \geq Z\left(\operatorname{Hilb}\left(h^{\prime}\right)\right) \geq Z(\operatorname{Hilb}(h))=\mathcal{L}(h)
$$

1.1. The maps $F S$ and Hilb. Let

$$
\begin{gather*}
\mathcal{H}=\{h: \text { hermitian metric on } L: \omega=-i \partial \bar{\partial} h>0\} \tag{1}\\
M=\left\{H: \text { hermitian metric on } H^{0}(X, L)\right\} \tag{2}
\end{gather*}
$$

Define $F S: M \rightarrow \mathcal{H}$ by:

$$
\begin{equation*}
\sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} F H(H)=1 \text { if }\left(s_{\alpha}\right) \text { is } H \text {-orthonormal } \tag{3}
\end{equation*}
$$

Define Hilb: $\mathcal{H} \rightarrow M$ by

$$
\begin{equation*}
\operatorname{Hilb}(h)\left(s_{\alpha}, \bar{s}_{\beta}\right)=\frac{d}{V} \int_{X} s_{\alpha} \bar{s}_{\beta} h d \mu_{h} \tag{4}
\end{equation*}
$$

where $d \mu_{h}=\omega^{n} / n!$.
1.2. The Bergman approximation. Let $h \in \mathcal{H}$. Define $h_{b}=F S(\operatorname{Hilb}(h))$. Then h_{b} is called the Bergman approximation of h.

Proposition 1. Let $h \in \mathcal{H}$ and define ϕ by $h=e^{-\phi} h_{b}$. Then

$$
\begin{equation*}
\frac{1}{V} \int_{X} e^{-\phi} d \mu_{h}=1 \tag{5}
\end{equation*}
$$

We say that h is balanced if $h=h_{b}$, that is, if $\phi=0$.
Proof of Proposition. Let $\left(s_{\alpha}\right)$ be a $\operatorname{Hilb}(h)$-orthonormal basis so $\operatorname{Hilb}\left(s_{\alpha}, \bar{s}_{\beta}\right)=\delta_{\alpha \beta}$. Then
$d=\sum_{\alpha} \operatorname{Hilb}(h)\left(s_{\alpha}, \bar{s}_{\alpha}\right)=\frac{d}{V} \int_{X} \sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h d \mu_{h}=\frac{d}{V} \int_{X}\left(\sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h_{b}\right) e^{-\phi} d \mu_{h}=\frac{d}{V} \int_{X} e^{-\phi} d \mu_{h}$
1.3. The Functional I. Let $h_{0} \in \mathcal{H}$ so $\mathcal{H}=\left\{\phi: \omega_{0}+i \partial \bar{\partial} \phi>0\right\}$. Define $I: \mathcal{H} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\delta I=\int_{X} \delta \log h d \mu_{h}=-\int_{X} \delta \phi d \mu_{h} \tag{6}
\end{equation*}
$$

Thus if ϕ_{t} is a path in \mathcal{H} then

$$
\begin{equation*}
\frac{d}{d t} I\left(\phi_{t}\right)=-\int_{X} \dot{\phi} d \mu_{h} \text { and } \frac{d^{2}}{d t^{2}} I\left(\phi_{t}\right)=-\int_{X}(\ddot{\phi}+\dot{\phi} \Delta \dot{\phi}) d \mu_{h} \tag{7}
\end{equation*}
$$

Proposition 2. Let $h_{1}, h_{0} \in \mathcal{H}$ and write $h_{1}=h_{0} e^{-\phi}$. Then

$$
\begin{equation*}
\int_{X} \phi d \mu_{h_{0}} \geq I\left(h_{0}\right)-I\left(h_{1}\right) \geq \int_{X} \phi d \mu_{h_{1}} \tag{8}
\end{equation*}
$$

Proof. Let $h_{t}=h_{0} e^{-t \phi}$ so $\phi_{t}=t \phi$. Then $\ddot{\phi}=0$ so (7) implies $I\left(\phi_{t}\right)$ is convex. Thus

$$
I\left(h_{1}\right)-I\left(h_{0}\right)=\int_{0}^{1} \frac{d}{d t} I\left(\phi_{t}\right) d t
$$

The integrand reaches its max at $t=1$ and its min at $t=0$. This proves the proposition.
Proposition 3. Let $h \in \mathcal{H}$. Then

$$
\begin{equation*}
I(h) \leq I\left(h_{b}\right) \tag{9}
\end{equation*}
$$

Proof. Write $h=h_{b} e^{-\phi}$. Let $h_{1}=h$ and $h_{0}=h_{b}$. Then (5) implies (since log is concave)

$$
\int_{X} \phi d \mu_{h_{1}} \geq 0
$$

Thus (9) follows from (8).
1.4. The functionals $\tilde{\mathcal{L}}$ and \tilde{Z}. Define $\tilde{\mathcal{L}}: \mathcal{H} \rightarrow \mathbb{R}$ and $\tilde{Z}: M \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
\frac{1}{d} \tilde{\mathcal{L}} & =-\frac{1}{V} I+\frac{1}{d} \log \operatorname{det} \circ H i l b \\
\frac{1}{V} \tilde{Z} & =-\frac{1}{V} I \circ F S+\frac{1}{d} \log \operatorname{det}
\end{aligned}
$$

To define the map det, fix a basis $\left(s_{\alpha}\right)$ of $H^{0}(X, L)$. Then det : $M \rightarrow \mathbb{R}^{+}$is the map $H \mapsto \operatorname{det}\left(H\left(s_{\alpha}, \bar{s}_{\beta}\right)\right)$. Changing the basis $\left(s_{\alpha}\right)$ changes det by an additive constant.

We now have the following bounds: Let $h \in \mathcal{H}$ and $H \in M$. Then

$$
\begin{align*}
\frac{1}{d} \tilde{\mathcal{L}}(h) & \geq \frac{1}{V} \tilde{Z}(\operatorname{Hilb}(h)) \tag{10}\\
\frac{1}{d} \tilde{\mathcal{L}}(F S(H)) & \leq \frac{1}{V} \tilde{Z}(H) \tag{11}
\end{align*}
$$

Estimate (10) is a rephrasing of (9). For (11) we estimate:

$$
\begin{equation*}
\operatorname{det}(\operatorname{Hilb}(F S(H)))^{\frac{1}{d}} \leq \frac{1}{d} \operatorname{tr} \operatorname{Hilb}(F S(H))=\frac{1}{V} \int_{X} \sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} F S(H) d \mu_{h} \tag{12}
\end{equation*}
$$

Choosing now $\left(s_{\alpha}\right)$ to be H-orthonormal, the right side of (12) is one. Thus

$$
\operatorname{det}\left(H i l b\left(F S(H)\left(s_{\alpha}, \bar{s}_{\beta}\right)\right)^{\frac{1}{d}} \leq 1=\operatorname{det} H\left(s_{\alpha}, \bar{s}_{\beta}\right)\right.
$$

and this proves (11).
1.5. Balanced metrics. Let $h \in \mathcal{H}$ and $H \in M$. We say the pair (h, H) is balanced if $h=F S(H)$ and $H=\operatorname{Hilb}(h)$. Thus $h=F S\left(H i l b(h)\right.$) (in other words, if $h=h_{b}$) and $\operatorname{Hilb}(F S(H))=H$.

An equivalent characterization is the following: Let $h \in \mathcal{H}$. Choose a basis $\left(s_{\alpha}\right)$ satisfying

$$
\frac{d}{V} \int_{X} s_{\alpha} \bar{s}_{\beta} h d \mu_{h}=\delta_{\alpha \beta}
$$

(In other words, $\left(s_{\alpha}\right)$ is Hilb (h)-orthnormal). Then h is balanced if

$$
\rho_{h}(z)=\frac{d}{V} \sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h=\frac{d}{V}
$$

Remark: $\frac{1}{V} \int_{X} \rho_{h} d \mu_{h}=\frac{d}{V}$.

Theorem 2. Suppose $h \in \mathcal{H}$ is balanced and let $H=\operatorname{Hilb}(h)$.
(1) H is an absolute minimum of \tilde{Z}.
(2) h is an absolute minimum of $\tilde{\mathcal{L}}$

Proof. The first statement is the theorem of Zhang. For the second, let $h^{\prime} \in \mathcal{H}$:

$$
\frac{1}{d} \tilde{\mathcal{L}}\left(h^{\prime}\right) \geq \frac{1}{V} \tilde{Z}\left(\operatorname{Hilb}\left(h^{\prime}\right)\right) \geq \frac{1}{V} \tilde{Z}(\operatorname{Hilb}(h))=\frac{1}{d} \tilde{\mathcal{L}}(h)
$$

where the first inequality makes use of (10) and the second is a consequence of part (1).
Next we prove that the critical points of $\tilde{\mathcal{L}}$ and \tilde{Z} are precisely the balanced metrics. In fact we have the following more precise statement:

Theorem 3.

$$
\begin{gather*}
\delta \tilde{\mathcal{L}}=\int_{X}(\delta \phi)\left(\Delta \rho_{h}-\rho_{h}+\frac{d}{V}\right) d \mu_{h} \tag{13}\\
\delta \tilde{Z}=\sum_{\alpha, \beta}(\delta H)_{\alpha \bar{\beta}}\left(\int_{X} \bar{s}_{\alpha} s_{\beta} F S(H) d \mu_{F S(H)}-\frac{V}{d} \delta_{\alpha \beta}\right) \tag{14}
\end{gather*}
$$

Proof. Let $\mathcal{L}=\log \operatorname{det} \circ$ Hilb. Then

$$
\delta \mathcal{L}(h)=\operatorname{tr}_{H i l b(h)}(\delta H i l b(h))
$$

Let $h_{0} \in \mathcal{H}$ and let $\left(s_{\alpha}\right)$ be a $\operatorname{Hilb}\left(h_{0}\right)$-orthonormal basis. Then at the point $h=h_{0}$

$$
\begin{align*}
\delta \mathcal{L}(h) & =\operatorname{tr}_{H i l b\left(h_{0}\right)}(\delta \operatorname{Hilb}(h))=\delta\left(\operatorname{tr}_{H i l b\left(h_{0}\right)} \operatorname{Hilb}(h)\right) \tag{15}\\
& =\delta \sum_{\alpha} H i l b\left(h e^{-\phi}\right)\left(s_{\alpha}, \bar{s}_{\alpha}\right)=\frac{d}{V} \delta \sum_{\alpha} \int_{X} s_{\alpha} \bar{s}_{\alpha} h e^{-\phi} d \mu_{h e^{-\phi}}
\end{align*}
$$

The second equality follows from: $\delta \operatorname{tr}_{H_{0}} H=\delta \sum_{\alpha} H\left(s_{\alpha}, \bar{s}_{\alpha}\right)=\sum_{\alpha} \delta H\left(s_{\alpha}, \bar{s}_{\alpha}\right)$. Thus

$$
\delta \mathcal{L}(h)=\int_{X} \frac{d}{V} \sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h(-\delta \phi+\Delta \delta \phi) d \mu_{h}=\int_{X}(\delta \phi)\left(-\rho_{h}+\Delta \rho_{h}\right) d \mu_{h}
$$

Now we prove (14). Let (s_{α}) be H-orthonormal. Then $\sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} F S(H)=1$ so
$0=\sum_{\alpha}\left(\delta s_{\alpha} \bar{s}_{\alpha}+s_{\alpha} \overline{\delta s_{\alpha}}\right) F S(H)+\sum_{\alpha} s_{\alpha} \overline{s_{\alpha}} \delta F S(H)=\sum_{\alpha}\left(\delta s_{\alpha} \bar{s}_{\alpha}+s_{\alpha} \overline{\delta s_{\alpha}}\right) F S(H)+\frac{\delta F S(H)}{F S(H)}$
On the other hand, $H\left(s_{\alpha}, \bar{s}_{\beta}\right)=\delta_{\alpha \beta}$ so

$$
\begin{equation*}
0=\delta H\left(s_{\alpha}, \bar{s}_{\beta}\right)+H\left(\delta s_{\alpha}, \bar{s}_{\beta}\right)+H\left(s_{\alpha}, \delta \bar{s}_{\beta}\right)=\delta H_{\alpha \bar{\beta}}+H\left(\delta s_{\alpha}, \bar{s}_{\beta}\right)+H\left(s_{\alpha}, \delta \bar{s}_{\beta}\right) \tag{17}
\end{equation*}
$$

Next, if we write $\delta s_{\alpha}=\sum_{\beta} p_{\alpha \beta} s_{\beta}$ we see $p_{\alpha \beta}=H\left(\delta s_{\alpha}, \bar{s}_{\beta}\right)$ so

$$
\begin{equation*}
\delta s_{\alpha} \bar{s}_{\alpha}=\sum_{\alpha, \beta} H\left(\delta s_{\alpha}, \bar{s}_{\beta}\right) \bar{s}_{\alpha} s_{\beta} \tag{18}
\end{equation*}
$$

Combining (16), (17) and (18) we conclude

$$
\begin{equation*}
\delta \log F S(H)=\frac{\delta F S(H)}{F S(H)}=\sum_{\alpha, \beta}\left(\delta H_{\alpha \bar{\beta}}\right) \bar{s}_{\alpha} s_{\beta} F S(H) \tag{19}
\end{equation*}
$$

Since

$$
\begin{equation*}
\delta I(F S(H))=\int_{X} \delta \log F S(H) d \mu_{F S(H)} \tag{20}
\end{equation*}
$$

we obtain (14).
1.6. Raising the power of the line bundle. We now replace L by L^{k}, \mathcal{H} by the space $\mathcal{H}_{k}=\left\{h(k)\right.$: positive hermitian metrics on $\left.L^{k}\right\}=\left\{\phi(k): \omega_{0}(k)+i \partial \bar{\partial} \phi(k)>0\right\}$. Then

$$
\rho_{h(k)}(z)=\frac{d_{k}}{V_{k}} \sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h(k)
$$

where the s_{α} form an orthonormal basis of $H^{0}\left(X, L^{k}\right)$ with respect to $\operatorname{Hilb}_{k}(h(k))$:

$$
\operatorname{Hilb}_{k}(h(k))\left(s_{\alpha}, \bar{s}_{\beta}\right)=\frac{d_{k}}{V_{k}} \int_{X} s_{\alpha} \bar{s}_{\beta} h(k) d \mu_{h(k)}
$$

Let $I(k), \tilde{\mathcal{L}}(k)$ be the corresponding functionals on $\mathcal{H}(k)$:

$$
\delta I(k)=-\int \delta \phi(k) d \mu_{h(k)}, \quad \tilde{\mathcal{L}}(k)=-\frac{d_{k}}{V_{k}} I(k)+\log \operatorname{det} \circ H i l b_{k}
$$

Then (13) implies

$$
\begin{equation*}
\delta \tilde{\mathcal{L}}(k)=\int_{X}(\delta \phi(k))\left(\Delta_{k} \rho_{h(k)}-\rho_{h(k)}+\frac{d_{k}}{V_{k}}\right) d \mu_{h(k)} \tag{21}
\end{equation*}
$$

Now apply this to $h(k)=h^{k}$ for some $h \in \mathcal{H}$. Then $\phi(k)=k \phi, \Delta_{k}=\frac{1}{k} \Delta, d \mu_{h(k)}=k^{n} d \mu_{h}$

$$
\begin{gather*}
I(k)(\phi(k))=k \cdot k^{n} I(\phi) \tag{22}\\
\delta \tilde{\mathcal{L}}(k)=\int_{X}(\delta \phi)\left(\Delta \rho_{h(k)}-k \rho_{h(k)}+k \frac{d_{k}}{V_{k}}\right) d \mu_{h(k)} \tag{23}
\end{gather*}
$$

If f is a function on X write $[f]_{h}=f-\hat{f}$ where \hat{f} is the average of f defined using the measure $d \mu_{h}$. Then we can write this last identity as

$$
\begin{equation*}
\delta \tilde{\mathcal{L}}(k)=\int_{X}(\delta \phi)\left[\Delta \rho_{h(k)}-k \rho_{h(k)}\right]_{h} d \mu_{h(k)} \tag{24}
\end{equation*}
$$

We define $\rho_{k, h}=\sum_{\alpha} s_{\alpha} \bar{s}_{\alpha} h^{k}$ where $\int_{X} s_{\alpha} \bar{s}_{\alpha} d \mu_{h}=\delta_{\alpha \beta}$. Thus $\rho_{h(k)}=k^{-n} \rho_{h, k}$ so

$$
\begin{equation*}
\delta \tilde{\mathcal{L}}_{k}=\int_{X}(\delta \phi)\left[\Delta \rho_{k, h}-k \rho_{k, h}\right]_{h} d \mu_{h} \tag{25}
\end{equation*}
$$

Where $\tilde{\mathcal{L}}_{k}(h)=\tilde{\mathcal{L}}(k)\left(h^{k}\right)$. Now TYZ tells us $\rho_{k, h}=k^{n}+\frac{s}{2 \pi} k^{n-1}+\cdots$ so

$$
\left[\Delta \rho_{h(k)}-k \rho_{h(k)}\right]_{h}=-k^{n} \frac{1}{2 \pi}[s]_{h}+\cdots
$$

On the other hand, $\delta \nu=-\int_{X}[s]_{h} d \mu_{h}$. Thus $\delta \frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k} \rightarrow \delta \nu$ so

$$
\begin{equation*}
\frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}+\lambda_{k} \rightarrow \nu \tag{26}
\end{equation*}
$$

for some $\lambda_{k} \in \mathbb{C}$. The convergence is uniform over bounded subsets of \mathcal{H}.
1.7. Proof of Theorem. Let $h_{0} \in \mathcal{H}$ be a base point and let us normalize I, ν and $\log \operatorname{det} \circ \mathrm{Hilb}_{k}$ by requiring

$$
I\left(h_{0}\right)=0, \nu\left(h_{0}\right)=0 \text { and } \log \operatorname{det} \circ \operatorname{Hilb}_{k}\left(h_{0}(k)\right)=0
$$

Then $\tilde{\mathcal{L}}_{k}\left(h_{0}\right)=\nu\left(h_{0}\right)=0$ for all k so we may take $\lambda_{k}=0$.
Note that

$$
\left|\frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(\phi_{1}\right)-\frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(\phi_{0}\right)\right| \leq \sup \left|\phi_{1}-\phi_{0}\right| \cdot \sup \left|\frac{1}{2 \pi}[s]_{h}+O\left(\frac{1}{k}\right)\right|
$$

The second factor is uniformly bounded in k when ϕ_{1} is in a bounded neighborhood of ϕ_{0} in \mathcal{H}.

Assume now that there exists $\omega_{\infty} \in c_{1}(L)$ with constant scalar curvature, corresponding to some $h_{\infty} \in \mathcal{H}$. The Donaldson's theorem shows that there exists $h(k) \in \mathcal{H}_{k}$, a balanced metric such that $h_{k}=h(k)^{1 / k} \rightarrow h_{\infty}$.

$$
\begin{equation*}
\left|\frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(h_{k}\right)-\frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(h_{\infty}\right)\right| \rightarrow 0 \tag{27}
\end{equation*}
$$

Thus if $h \in \mathcal{H}$ we have, for k large,

$$
\nu\left(h_{\infty}\right) \leq \frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(h_{\infty}\right)+\epsilon \leq \frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}\left(h_{k}\right)+2 \epsilon \leq \frac{2 \pi}{k^{n}} \tilde{\mathcal{L}}_{k}(h)+2 \epsilon
$$

The first inequality follows from (26), the second from (27) and the third from the fact that h_{k} is the absolute minimum of $\tilde{\mathcal{L}}_{k}$. Taking the limit as $k \rightarrow \infty$ we prove our theorem.

2. Appendix

Let $f: X \rightarrow Y$ be a smooth maps between manifolds (which may be infinite dimensional). Let $x \in X$ and let $y=f(x)$. Then $(\delta f)(x): T_{x} X \rightarrow T_{y} Y$ is a linear map. If $\delta x \in T_{x} X$. Then we define

$$
\delta(f(x))=(\delta f)(x)(\delta x) \in T_{y} Y
$$

For example, $\delta\left(x^{2}\right)=2 x \cdot \delta x$. If $x(t)$ is a curve in X, then $\frac{d}{d t} f(x(t))=(\delta f)(x)(\dot{x})$.
The chain rule: Let $f: X \rightarrow Y$ and $g: U \rightarrow X$. Then

$$
\delta(f(g(u))=(\delta f)(g(u))(\delta g(u))
$$

Now let $H_{0} \in M$ and let $\operatorname{tr}_{H_{0}}: M \rightarrow \mathbb{R}$ be the map $\operatorname{tr}_{H_{0}}(H)=\sum_{\alpha} H\left(s_{\alpha}, \bar{s}_{\alpha}\right)$. Moreover, if we differentiate both sides of this last equation with respect to t (so $\delta H=\dot{H}$) we obtain

$$
\delta\left(\operatorname{tr}_{H_{0}} H\right)=\operatorname{tr}_{H_{0}} \delta H
$$

Consider the map $\log \operatorname{det}: G L(n, \mathbb{C}) \rightarrow \mathbb{C}^{*}$. Then

$$
\delta \log \operatorname{det}(A)=\operatorname{tr}_{A}(\delta A)
$$

Let $\mathcal{L}=\log \operatorname{det} \circ$ Hilb. Then

$$
\delta \mathcal{L}(h)=\operatorname{tr}_{\operatorname{Hilb}(h)}(\delta H i l b(h))
$$

So

$$
\begin{align*}
\delta \mathcal{L}(h)\left(h_{0}\right) & =\operatorname{tr}_{\operatorname{Hilb}\left(h_{0}\right)}\left(\delta \operatorname{Hilb}(h)\left(h_{0}\right)\right)=\left(\delta \operatorname{tr}_{\operatorname{Hilb}\left(h_{0}\right)}(\operatorname{Hilb}(h))\left(h_{0}\right)\right. \tag{28}\\
& =\delta \sum_{\alpha} \operatorname{Hilb}\left(h e^{-\phi}\right)\left(s_{\alpha}, \bar{s}_{\alpha}\right)=\frac{d}{V} \delta \sum_{\alpha} \int_{X} s_{\alpha} \bar{s}_{\alpha} h e^{-\phi} d \mu_{h e^{-\phi}}
\end{align*}
$$

Let $h_{0} \in \mathcal{H}$ and let $\left(s_{\alpha}\right)$ be a $\operatorname{Hilb}\left(h_{0}\right)$-orthonormal basis. Then at the point $h=h_{0}$

$$
\begin{align*}
\delta \mathcal{L}(h) & =\operatorname{tr}_{H i l b\left(h_{0}\right)}(\delta \operatorname{Hilb}(h))=\delta\left(\operatorname{tr}_{H i l b\left(h_{0}\right)} \operatorname{Hilb}(h)\right) \tag{29}\\
& =\delta \sum_{\alpha} \operatorname{Hilb}\left(h e^{-\phi}\right)\left(s_{\alpha}, \bar{s}_{\alpha}\right)=\frac{d}{V} \delta \sum_{\alpha} \int_{X} s_{\alpha} \bar{s}_{\alpha} h e^{-\phi} d \mu_{h e^{-\phi}}
\end{align*}
$$

