Elliptic partial differential equations
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1. INTRODUCTION

The theory of linear elliptic partial differential equations is formally analogous to the theory of
linear maps between finite dimensional vector spaces. To describe the analogy, we need some



notation: Let z, 2’ € R™". We view z, 2’ as n X 1 matrices. Define (z,2') = ‘wa’. Let L : R — R™
is a linear map. Then L(z) = Ax for some m x n matrix A. Note that

|L(z)| < ||Allns - |z]

where || A||}g = tr(‘AA). In particular, this shows that linear maps are (Lipshitz) continuous.

Let L* : R™ — R" be the adjoint map: Ly = ‘Ay. Then we have the basic formula:

(Lz,y) = (z,Ly)
for all z € R™ and y € R™. This implies Im(L) C ker(L*)*.

Theorem 1. Im(L) = ker(L*)* .

Discussion: If we fix yo € R™, the equation Lx = yy may not have a solution: in order for a
solution to exist, yo must satisfy the following obvious necessary condition: g € ker(L*)*. The
theorem says that the obvious necessary condition is also sufficient.

Discussion: Even if yy does not satisfy the obvious necessary condition, Im(L) C R™ is a linear
subspace so there is a unique L(z¢) € Im(L) such that

(1.1) |L(x0) —yo| < |L(z)—yo| for all z € R™

Proof of Theorem. Let yo € ker(L*)*. Let E : R® — R be the function E(x) = |Lx — yo|?>. Then
(1.1) implies that F achieves its minimum at some point zy € R™. In particular, if v € R" is
arbitrary, and f(t) = E(x¢ + tv) for t € R, then f achieves its minimum at ¢t = 0 so f’(0) = 0.
Thus

f(t) = (L(zo + tv) — yo, Lo + tv) = yo) = f(0) + 2t(L(v), L(zo) — yo) + O(t*)
0 = f(0) = 2(L(v), L(z0) —y0) = 2(v, L*(L(z0) — 30))
for all v € R®. We conclude L(z¢) — yo € ker(L*). But L(zg) € Im(L) C ker(L*)* and
Yo € ker(L*)* (by assumption) so

L(xo) —yo € ker(L*)Nker(L*)t = 0.

An linear elliptic PDE is an equation of the form

(1.2) Lu=f

Here L is a linear “elliptic operator” (e.g., the Laplacian), f is given, and w is the unknown.
The domain and range of L will be vector spaces, but unlike the linear algebra theory described
above, these vector spaces will be infinite dimensional, so the very simple techniques that work

in R™ do not directly apply. Part of the PDE “art” is choosing well adapted domains and ranges
(preferably Hilbert or Banach spaces).

The fundamental questions are:



(1) Existence: Under what conditions does a solution u to (1.2) exist?
(2) Regularity/Estimates: Suppose Lu = f and assume f is smooth. Is u smooth? Is the
)

inverse of L (viewed as a map from Im(L) — ker(L)= ) continuous?

The rough answers to these questions are as follows.

(1) Existence: equation (1.2) has a solution if f satisfies the “obvious necessary conditions”.
For example, if M is a compact Riemannian manifold, and f is a C° function on M, and
L = A, the Laplacian, then (1.2) has a solution u if and only if [,, f = 0. The solution
is unique if we require [, u = 0. In general, Im(L) = ker(L*)*.

(2) Regularity: The regularity is “the best one could hope for”. For example, if f € C** and
Au = f then u € C*+22 Moreover, if we normalize so that Jyy v =0, then u satisfies
the apriori estimate ||u||cr+2,0 < C| fl|gka, where C > 0 is a constant, independent of
f. If f € H* (the k*h Sobolev space) then u € H**2 and u satisfies the apriori estimate
llu|| sz < C||f|lgr. In general, L' is a continuous functional ker(L*)+ N HF — mH*+!
where

Equation (1.2) will be studied in two basic settings. The first is that of compact manifolds M
without boundary (i.e., 9M = ()) and the second is compact manifolds with boundary. The
second setting includes, as a very important special case, bounded domains in R™ with smooth
boundary.

We now make precise the “obvious necessary conditions” mentioned above: First assume OM = ().
If Lu = f then for every ¢ € C°°(M) integration by parts implies

(1.3) (f,¢) = (Lu,¢) = (u,L"¢)

where (g, h) is the L? inner product and L* is the dual of L (which will be another elliptic
operator). In the case L = A we have A* = A). Thus Lu = f implies f is orthogonal to ker L*
(which, as we shall see, is a finite dimensional vector space). It turns out that this necessary
condition is also sufficient: we will see that if f is orthogonal to ker L*, then Lu = f has a unique
solution u with the property: u is orthogonal to ker L.

If OM # (), then the situation is similar (although the proofs are more complicated). Equation
(1.3) still holds if we require that ¢ vanishes on the boundary (since, when one integrates by parts,
the boundary terms will then vanish ). The main theorem says that if we fix a smooth function
g on OM, then the there is a unique solution to Lu = f on M satisfying u|gys = ¢ provided f
satisfies the necessary condtion: f is orthogonal to the elements of ker L* which vanish on the
boundary. In the case L = A, this last condition is vacuous (there are no non-zero harmonic
functions which vanish on the boundary).

The goal of these notes is to prove the existence and regularity /estimates results described above.
Our treatment will be as follows: First we will prove the regularity theorems in the case M =
R™/Z™ (the so called “periodic case”). Second, we will apply the results from the periodic case

to treat the “local case”, that is, the case where M = U C R" is a bounded open subset. In
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particular, we will prove the local apriori estimates for bounded open subsets of R". Finally, we
will prove the regularity theorems for arbitrary compact manifolds without boundary.

After proving the regularity results, we turn our attention to the existence results. The main
theorem gives necessary and sufficient conditions for the existence of a solution to the equation
Lu = f where L is an elliptic operator between smooth vector bundles over a fixed compact
Riemannian manifold M.



2. ESTIMATES AND REGULARITY FOR THE TORUS
2.1. L? and C°.

We define the two basic spaces L?(M) and CO(M). The first is a Hilbert space. The second is
a Banach space. Each of these spaces fits into a natural family: We will introduce the Banach
cases CF for k € N (and C° will be the special case k = 0). We shall also introduce Hilbert
spaces H?®, known as Sobolev spaces. The space L? will then be (canonically isomorphic to) the
special case H?. First some notation.

For & = (&1,...,&,) € Z™ and x € R™ we let eg(x) = €. If ¢ : R® — C™ is a smooth function
and a € N" we let D% = (%)|a| f?& so that D% = {%e.

Oél «
x0Ty

Let M =R"/(27Z)" and dV = ﬁd:pl - dzy,. Let
L*(M,C™) = {¢: M — C™ | ¢ measurable and ||$||2, = / 9|2 dV < o0}
M

Then L? is a Hilbert space. The Hilbert space inner product in L? is given by the formula:
(0, 0) = [y, ip2pdV and the topology induced by || - || 2 is called the L2-topology. Let

Co%(M,C™) ={¢: M — C™ | ¢ is continuous }

Then C° is a Banach space with norm ||@||co = sup,, |#|. Note that the inclusion

C%(M,C™) — L*(M,C™)
is continuous. In fact, for ¢ € CY we have ||¢| ;2 < ||¢]|co-

For k > 0 we define, inductively,

CH(M,C™) = {¢ € C*"1(M,C™) : D*¢ exists and is continuous for all o with |a| = 1}

Then C* is a Banach space with norm ||¢||or = > laj<k SuPn [ D).

2.2. Fourier series. Let ¢ € L2(M,C). Define the Fourier transform ¢ : Z" — C as follows:

56 = (bree)s = /M b7 dV

More generally, let ¢ € L?(M,C™). Then ¢ = (¢!, ...,¢™) where ¢* € L?>(M,C). Define the
Fourier transform u = ¢ : Z" — C™ as follows: ut(£) = ¢H(€) for 1 < p < m.

Theorem 2. Let ¢ € L2(M,C™) and let u : Z™ — C™ be its Fourier transform. Then
(1) We have u € €2A(Z",Cm) that is, Y eegn lu(€)]? < oo.
(2) The map ¢ — ¢ defines an isomorphism of Hilbert spaces L*(M,C™) s (2(Z",C™).
(3) We have ¢ =3 ccyn (ﬁ({)eg where the convergence is in L.

(4) If € C°(M,C™) then ¢ = dezn gzg(f)eg where the convergence is in C* for all k > 0.
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2.3. Elementary estimates for Sobolev norms.

Lemma 1. If ¢ € C¥(M) then D%¢ € L? if |a] < k so >l + 1€12)*|ug|? < o0 if s < k. In
particular, if ¢ € C°(M,C™) then 3 (1 + 1€]2)|ug|® < oo for all s € R.

Problem 1. Prove Lemma 1. Then prove part (4) of Theorem 2. Hint: For part (4), first show
that if fx : (a,b) = R is in C, and if f;, — g uniformly for some function g : (a,b) — R, then
g=1r"

Hint: To show that

(2.4) ¢ € CF(M) = Y (1+ [¢)*|uel®* < o0 if s <k

we must first show

(25) Dg(€) = €*9(¢)

Let’s try this when n =1 so ¢ : [0, 27] — C is periodic. Then
1~ 1 2 ) 2 ‘ .
- - / —i€x - o —ir __
0 = 5m [ @i =~ [ @ige e = )

The general case of (2.5) follows in a similar fashion (please supply the details). Once we know
(2.5) holds for all |a| = aj + ---a, < k then, using the fact that D¢ € C° = D% € L? we
get

ST = D ID(O)) <
13 3

for all |a| < k. Now sum over all such o and try to use this to extablish (2.4). To complete the
proof of (4) you must show

(2.6) If ¢ € C°°(M) then D% = Y ¢ cpn G(§) D

We know that the derivative of a finite sum is the sum of the derivatives, but here we are dealing
with an infinite sum. Let fy be the N*® partial sum and f = limyx_,o fa the infinite sum. Then
by the previous step in this problem, we know that limy_,o, D®fx converges to some function
g. What we must show is ¢ = D®f. Try this first when n = 1. In fact, try to prove the following

more general lemma:
(2.7) fr: (a,b) = Ris in C', and f] — g uniformly then g = f’.

For this, you can use the fundamental theorem of calculus:
rT
lim fi(x) = lim / fr.(t)dt
k—o0 k—oo Jo

The result follows if you can justify switching the limit and the integral.

This motivates the definition the Sobolev spaces: Let s € R. Define

(28) Hy(C™) = {u:Z" - C™: uly, = Y (1+[E7)lue)* < oo} = L*(Z",C™;dps)
gezn

Here yu is the discrete measure on Z" defined by us(&) = (1 + |€[?)°.
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We have a natural hermitian pairing Hs x H; — C defined as follows. Let u € Hg,v € H;. Then
s+t —_—
(wyo) =Y (14677 u(€) -v(€)  sothat [(w,0)] < fulm, - [|v]m
3
Then Hj is a Hilbert space with respect to this inner product (in the case s = t). The collection

{e¢}eezn is an orthogonal basis of H,. The map f — f gives a Hilbert space isomorphism
L?(M) — Hy and, for all k > 0, continuous dense imbeddings C*(M) < Hj,. Moreover, H* and
H™? are dual with respect to this pairing.

If t < s then ||ul|; < ||u||s (why?) and

COO(M7(Cm) = Ho CH; CH CH

where Ho, = NgHg and H_, = UsH;. Moreover Hy — Hy is continuous (why?) Hg and H_; are
dual.

For |a| = k we define the map D% : Hy — Hs_j by (D%) (&) = £%u(§).

Proposition 1. (continuity of the derivative) If w € Hg and |o| = k then D € Hs_j, Moreover
the map D% : Hy — H,_ 1s continuous.

Let k£ be a non-negative integer and define
%% = {ue Hy: D e Hy for all |a| < k}

If u € (2% then we define

lulles = > 1D%ullo

| <k

Proposition 2. (Hy equivalence with {*¥) We have Hy, = (*>*. Moreover, there exist c(n, k) > 0
such that

(2.9) c(n, W)ullm, < Jullz + Y I1D%lo < Juller < e(n, k)" ull,

laf=k

Problem 2. Prove Proposition 2
Proposition 3. (Peter-Paul estimate). Lett € R, €,a,b > 0 with e € (0,1) and w € Hyyo. Then
ulle—p < llulls < l[ullt+a
Moreover
(210) ol < el + Sl
Problem 3. Show that
1S EHIER) + 51+ IRy

and use this to prove Proposition 3.



If u,v € H_, define

where w(€)v(n) = (u! (€0} (1), ., w™ (€)6" (1))-

Proposition 4. (Convolution estimate) Let s,p,q € R. Then there exists C = C(n,s) > 0 such
that

Juxvlls < C|:HuHs+|ps|||vH8—p + [ollstig—sillulls—q
Taking ¢ = s we get:

[uxvlls < C(n, s)llullollvlls + C(n,s)lullssp—sllvlls—p
If feC®(M) and p > 1 we get the “top sup bound”:

[folls < Cn, s)[ fllzellvlls + Clr, ) f s p-sillvlls—p
Plugging in p = 0 we get the two-absolute bound:
(2.11) [uxvlls < Cn, s)|ullyslv]ls

Problem 4. Assume x,y,s,p,q € R with z,y > 0. Show that
(I+z+9)° < Cln,s)| (1+2)" Pl (14+9)" 7 + (149014 y)se

Then use this inequality to prove Proposition 4.

Remark: If v € Hy then u is an L? function on M. If v € H_j;, with k > 0 then u is no longer
a function on M - it is, in the old language, a “generalized function” and, in modern language,
a “distribution”. More precisely, it is a distribution of order £ meaning that if ¢;,¢ € C°(M)
and D%¢; — D“¢ uniformly for all |o| < &, then (u, ¢;)n, = (u, ¢) H,-

2.4. Sobolev’s lemma. We have already noted the continuous dense inclusion C¥(M) — Hy.
Sobolev’s theorem is a kind of converse:

Theorem 3. Let s > k+ %. Then Hy — C*(M) is a continuous inclusion.

Proof. We first treat the case k = 0. Let u € H,. Note that

1/2

1
D luel = D1+ (€)Y Plugl - (L +1E7)7 < luglls ZW = C(s)lulla,
¢ ¢ ¢

and the last sum is finite since s > 7.

Problem 5. a) Why can we conclude u € C° and that Hs — C°(M) is a continuous map?
b) Prove Theorem for arbitrary k > 0.



Hint: We must show that if s > k + % then
| Dbl pe < c(n,s, k)|u|s forall o <k

To so this, start as follows:

|D7g] = (Z@@)e’if“’f
3

= \Zfa&f)e“
3

< 3 levu(e)]
3

and now use the same trick as in the case k£ = 0.

In the previous proof we made use of the following convergence criterion:

1 n
(2.12) e, < 0 = p>
P
2 T 2
To see this, we compare the sum to the integral [p, m dr = cp fooo m rLdr.

2.5. Newton quotients. Let h € R™ with h # 0. Define the translation map T}, : H; — Hg by
(Thu)(€)€ = eMEu(€). Define the Newton quotient map N, : Hy — H, by

1 Thu— 1 el —1 !
Na(w) = 5 = = 5 =), so N (@) = | =2

If w : Z" — C we define the derivative in the direction of h as follows: (Vju)e = %ug. Thus we
have, for each £ € Z", the following:

(2.13) %{% Nin(u)(§) = Viu(§)

Remark: If ¢ € C°°(M) then

o) = Sueet — L AL 5 e
3

3

and V¢ = %’tﬂ(b(x + t%)
Theorem 4. (Newton quotient theorem).

a) Let w € Hy. Then

u€ Hegy1 <= sup |[Np(u)lls < o0
0£heR™

b) If u € Hgyq then
Sl;pllNhul\i < || Dull? SnS:pHNhU\lg

where

1Dul? =) IDjuli = Y 1+ € IEPlu())”
i=1 ¢

Here Dju = D% where a = (0,0, ..., 1,0, ...0) where the 1 is the j' entry.
9



¢) If u € Hgyq then the following limit holds in the Hy topology.
lim N, =V
lim th(u) hu
Proof. Let u € Hg11. Then |sin(x)| < |z| implies
2sin(h-£/2) . |?
||

INa()ll3 = Y (1 + 1)
¢

u(§)

< D) AHEPPIEPI@ P < Hlulin < oo
¢

Conversely, if supopern || Nn(u)|ls = C' < oo then, letting by = (1,0, ..., 0) we have, for all M > 0,

> (L)

|€l<M
Taking the limit as ¢ — 0 and then taking the limit as M — oo we obtain

2sin(thy - £/2) |*

[thi

u(§)

> U+ EP PP < ¢
|€I<M
Replacing &; by & and summing over i we get

S A+ P IEPu@P < ne

|€§1<M

so [[ull2,; < |lul|? + nsup |[Npul|2. This proves a) and b).

Problem 6. Supply a proof for part c).

Hint: Note that the convergence is in the Hg topology. In other words, you must show
}1\1}5 [ Nen(u) — Vaulls =0

You will need (2.13) but you will also need some additional argument.

We summarize this discussion as follows:
Corollary 1. Let s € R. Then |Ju||s4+1 ~ ||ul|s + supy, | Npul|s-
2.6. Rellich Compactness.

Theorem 5. Let s > t. Then the map Hy — H; is super-compact, that is, if u; € Hy is a
bounded sequence, then there exists us, € Hy such that, after passing to a subsequence, uj — Uso
m Ht.

Proof. By assumption there is a C' > 0 such that for all j > 0 we have
DA+ EP P < C
3

Fix £ € Z". Then we have (1 + [£]%)%|u;(€)|*> < C so there exists uoo(£) such that, after passing

to a subsequence, u;(§) = ux(§). Using the diagonalization procedure, we may assume that the
10



subsequence does not depend on &, that is, u;(§) — ux(§) for all £&. From now on, we replace
the original sequence by this subsequence.

We claim that ue € Hs. To see this, fix N > 0. Then we have } oy (1 + 1€1%)5]u; (E)* < C.
Passing to the limit we see 3¢y (1 + €)% [uao (§)]> < C. Taking N — oo we conclude

ST+ EP lus© < ©
£

and the claim is proved. Fix N > 0. We estimate

luj = usollr, = D 1+ 16 1ug(€) —uose(€)* + > (14 €7 (1 + [€%)° u; (6) — uoe(€)?

l§l<N 1€1=N

The second term is bounded by N~ ||u; — Uoo |3y, < N~(=t(2C)2. The first term is less than
N for j sufficiently large (its a finite sum of terms which approach zero pointwise). Thus, for j
sufficiently large, we have

1
Hu] _UOOH%it — N stt

This shows that ||’/ — u™| g, — 0 as j — oco.

Problem 7. Let A > 0, let H be a hilbert space with countable orthonormal basis eq,es, ... and
let A1, Mg, ... € [0, A].

a) Show that there is a unique bounded linear transformation T : H — H with the property
T(ej) = Aje;.

b) Assume that \j — 0. Show that T is compact, that is, if 1,22, ... € H is a bounded sequence
then T(x1),T(x2),... has a convergent subsequence.

c) Use part b) to show that if s > t, then the map Hy — H; is compact, that is if u; € Hy is a
bounded sequence then T'(u;) has a bounded subsequence. Why isn’t this a second proof of Rellich
compactness.

Hint: In problem 7, the linear transformation 7" maps a Hilbert space H to itself. But the map
H, — H; is a map between two different Hilbert spaces. Thus, in order to apply problem 7,
you must first compose Hy — H; with a Hilbert space isomorphism K : H; — Hs and obtain
Hy, — H; — H,. Then apply Problem 7 to the composition Hy — H,. So the question becomes:
can we write down an explicit isomorphism K7

2.7. Elliptic estimates. A homogeneous differential operator P(D) on M = R"™/Z" of order
[ and rank one is a formal sum P(D) = >, aa(x)D* where aq(z) € C*°(M,C). Then we
have P(D) : C*(M,C) — C*(M,C): If ¢ € C*(M,C) then P(D)¢ = 3, aa(z)D*d().
Similarly we can define an elliptic operator P(D) on an open subset of R™.

11



For example, the following is an elliptic operator on R? of rank one with and order 4 and.

1 ) oo . &
:E%:L’% +1 63.7}181.7}3 821’1811‘261%‘3 82$182$3

P(D)p = — (129 + sin(z1€7?))
¢ N ¢ N o
a ——+a ———— +a =
More generally, if u € Hy then L = P(D)u € Hy; is defined by P(D)u = 37, aa(z)Du.
More precisely,

[P(D)u](&) := aaDu(§) := [aa&*u(§)] := £¥aq * u](§)
Here, as always, if f € C°°(M,C) and u € Hy(C) then fu:= f % u.
The map P(D) : Hy — Hs_; is continuous (by (3) of Proposition 1). In fact,
(2.14) [Lulls—1 < (L, s) - [lulls
where ¢(L, s) depends only on L and s. To see this we estimate

Luleet < 3 laa(@Dulet < 3 llaa(@)llapey I D%ulloi < [Zuaa )l l}uuus

|af=l |af=l |af=l

If L is a homogeneous elliptic operator we define Pr, : Z" — C°°(M), the symbol of L, as
follows. If & € R™ then Pr(§)(x) = >, aa(x)*. Thus Pr(§) is a smooth function on M
which is homogeneous of degree I. That is, P(\¢) = |A['P(€) for A € C. We sometimes write

Pr(&,z) = Pr(&)(z).

A homogeneous differential operator P(D) on M = R™/Z™ of order | and rank m is a matrix
P(D) = (P}(D))1<pp<m where P/(D) =, an(x)D® is a homogeneous differential operator of
order [ and rank one. Thus we may write P(D) =Y Ay (z)D* where Ay (x) = (ahy)1<pv<m 18
a matrix valued smooth function on M. The operator P(D) defines a map P(D) : C*°(M,C™) —
C°°(M,C™) in the usual way: (P(D)¢)* = P}(D)¢".

More generally, we can extend P(D) to a linear map P(D) : Hs(C™) — H,_;(C™) where
H,(C™) = Hy(C)™. More precisely

—

[P(D)u](§)" = alo£"u"(§) = &%[aba *u”](£)
If L is a homogeneous operator of order [ and rank m, then for £ € R™ we define

[PLO] = ag,()€”

Thus Pr(§) : M — End(C™) is a smooth function on M with values in End(C™). We sometimes
write Pr(€)(z) := Pr(€,x). We say that that P is elliptic if

Pr(€) : M — Aut(C™)
12



For example, if n =2 and a, b, c € R then consider
0? 0? 0?
= a—? + 2 ¢ c—f
81:1 8.1‘16.%’2 61’2
This is the most general homogeneous operator of rank one degree two with constant coefficients.
Assume that a > 0. The symbol is the 1 x 1 matrix

PO = at+2aeted = (@ &) (5 0)(8) wn @ er

P(D)é

To say that P is elliptic is the same as saying that a > 0 and ac — b?> > 0 which is the same as

saying that the two eigenvalues of are both positive (note the eigenvalues of a symmetric

a
b
real matrix are always real). In general, if a, b, ¢ are smooth functions of € M, and if a(xg) > 0

a(x) b(x)

at some point xg € M, then P is elliptic if the two eigenvalues of < b(z) c(x) are both positive
for every x € M. Alternatively, we can require that there exist A, A > 0 such that for all x € M

(o 1) = (6 &) <26 Y)

A differential operator L(D) on M of order [ and rank m is a sum L(D) = >y, P;(D) where
P;(D) is homogeneous of order j. We say that L(D) is an elliptic if Pj(D) is elliptic.

we have

Problem 8. Let Ly and Lo be differential operators of rank 1 and orders l1 and lo. Show
that Ly o Lo is a differential operator of rank m and order Iy + lo. Show that if m = 1 then
LioLy— Loo Ly is a differential operator of rank 1 and order at most Iy + 1o — 1.

Fix f € C°°(M) and fix L a homogeneous operator of order [. Then we can define a new operator
Lg(u) = L(fu) = fL(u).

Lemma 2. Ly is a differential operator of order | — 1:

Z ao()[DY(fu) — fDYu)

Proof.The product rule says that if a = [ then
D*(fu) = ) c(BND)DM) = fD%u+ Y e(B,7)(D (D7)
Bt+y=a Bty=a,|yl<l

where ¢(/3,7) are binomial coefficients. Thus

L(fu) =Y aa()D(fu) fZaa “u+ Y > e(BY)apey (@)D f | D

o=t IyI<t \{B:|B+~I=1}
Theorem 6. Let L be an elliptic order of order | and rank m on M. Let s,t € R with s+1 > t.
There exists C = C(L) > 0 with the following property. If w € Hsyy then Lu € Hs and we have
the apriori estimate

(2.15) lullsi < C(L, s, )| Lullm, + l[ullm,) for all w € Hyyy
13



Conversely, if u € H_o and if Lu € Hg then u € Hgyy.

Remark 1. The reverse inequality holds trivially: ||ulls4; > C'(||Lullm, + ||ullm,) -

Remark 2. We shall see that if u € ker(L*)* than we can drop the |ul|; term in (2.15).

Proof of theorem.

First assume that L is homogeneous and that L = P, has constant coefficients. Thus, for all
¢ € R" we have Pr,(¢)(z) € GL,(C) is independent of x € M. Moreover, for all u € Hs(C™) and
& € R" we have

(2.16) [P(D)u](§) = [Pr(&ul(§) € C™
To see this, recall that (D%u)(§) = £*u(&) for v € Hy(C). Thus if u = (u*)1<u<m we have

[(P(D)u)(O) = (apoDu)(E) = a,,£5u(&) = Pr(§),u(§) = P(§)u(§)
We claim that there exists ¢; > 0 satisfying the following. Let £ € R™ and v € C™. Then
(2.17) [PE)ul® > crl¢ ul?

for some 0 < ¢; < 1. Indeed, this follows by from the compactness of the unit sphere when
|€| = |u] = 1, and by homogeneity in general.

Now we estimate:
ILe|? = Z|P 21+ > cIZru PP (1 + 1€
ol > ClZIu +|€!)

!€|2l(1+|§| )+ +|«S\ ' > (1 [EF)H
We thus obtain (2.15) with C' = = C(s,t,1)

Problem 9. Let L = lej‘gl By, be an elliptic operator on M with constant coefficients.

a) Show that the map L : C*°(M,C) — C*>°(M,C) has a finite dimensional kernel.

b) Show that there is a complex vector subspace S C C°(M,C) of finite codimension (i.e.
C>®(M,C)/S is a finite dimensional vector space) such that for every f € S there exists ¢ €
C*°(M,C) such that Lo = f.

Hint: Use (2.16) and (2.17). First do the case where L is the laplace operator (which is homo-
geneous of order 2 and rank 1) and then do the general case.

Now we treat the general case. Let L = 21§ i<l P, be an elliptic operator on M and let p € M.
Let Ly = Pi(p). Then Ly is a homogeneous elliptic operator of order [ and degree m with constant
coefficients. Let U be an open neighborhood of p and let ¢ be a smooth function on M with
support in U. Then

[6lls+1 < C(s, 8, D[ Lo¢lls + lI9lle) < C(s,t, D([L]]s + [[(L = Lo)()ls + ll¢lle)
14



The leading term in L — L vanishes at p. The leading term is

[Pi(x) = Pp))(6) = Y _ (aa(x) — aa(p)) D¢ = > fa(z)D%

|af=l |af=l

Thus, shrinking U if necessary, we can guarantee that |f,| < e on the open set U.

Now we apply the convolution estimate
[faD%¢lls < Cn, s)l[ fallLe |1Dlls + C(n, 8)l| falls+p-s [ Dlls—p
<O, s)ell@llsr + Cnss)l[ fallstip—s 1D Dlls—p
Let N; = #{« : |a| =1}. Then, choosing p = s+ — 1, we obtain
I[P(z) = Pp)](@)] = C(n,s)eNil|[lsi + C(n, s)C1(L)[|[ DYl s11-1
Choose € so that C(n, s)eN; < 1. Then

C(n, s)I(L = Lo)()lls < 4||¢>Hs+z +C(n, s, L)||¢]ls+1-1
Now t < s+1—1 < s—+1 so Peter-Paul implies
1
Ol = Lo)@)ls < 5lllss1+ C'(n, sL)I6]e
This proves (2.15) in the case where ¢ has support in U.

For the general case, we cover M by a finite collection open sets U; as above and let 6; be a
partition of unity subordinate to the U;. Then

10]]s+1 = ”Zeﬂbns—i—l < Y l165gllss < D CUL@9) s + 116;6ll0)
: - A

j
Let L;j(¢) = L(6;¢) — (¢) Then L; is an operator of order [ — 1 and

I1L(0;0)lls < 10;L(D)lls + 1 Ljolls < Cln, 8)105ll21) |1 L(D)]s + Crll @l s41-1

1
19lls+i-1 < ell@llsr + —lIlle
10;¢ll: < Clio;ll2lI 01l
This completes the proof.
2.8. Elliptic Regularity.

Theorem 7. Let L be an elliptic operator on M of order . Assume that u € H_o, and the
Lu € Hy for somet. Then u € Hyy.

Before proving the theorem we recall some previous results that will be needed.

Continuity of PDO’s. Let L = a,D® be a PDO of order [ and rank m. Here a, €
C*°(M,End(C™)) for all || <. Then L : Hy — Hy_; is continuous: ||L(u)|[s—; < C(L)|lu|s
This follows from the convolution estimate. More precisely, if max, [|aal/2s) < A then

[L(u)lls— < C(A)|ulls
15



Translation operator. Let h € R"®. The T} : Hs — Hg is the continuous map

(Thu)(€) = €™ u(§)
We have the estimate
[Thulls = ulls

Newton quotient estimate. Let 0 # h € R™. Then Ny : H, — H, is the continuous map
Nyu = % More precisely,

) = (S5 e

To see that IV, is continuous we estimate

1 1
N, = —||Thu — < —2
Nl = D=l < pr2lul,
Since Hgsy1 C Hg we also have Np, : Hg11 — H, is continuous but this time
h
[INp(W)lls = [lu"lls < fluflsa
where u" := Nj(u). The estimate we need says the following. Let u € H, and assume

supy, |[u”||s < co. Then u € Hyyq. In fact

lulls + sup lu"lls < llulls+1 < Cln,s)(llulls + Sup "l

Elliptic estimate. Let L be an elliptic PDO of order . Let u € H;. Then
Julls < CL)(ILulls—t + [[ulls—1)

Proof. Claim: Let v € H;. Assume Lu € Hg_j41. Then u € Hgyg.

Assume the claim for the moment and let’s try to prove the theorem. Choose k& <[ € Z maximal
with the property v € Hy g If k <lthan k<l—1s0k—-14+1<0. Let s=t+k so

u € HS and Lu € Ht C Ht+k_l+1 = Hs_l_;’_l
The claim implies that v € Hg+1 = Hy4 41, a contradiction.

Now we prove the claim. Assume

o u € Hy
[ LU € HS*l+1'

We want to show v € Hyy 1. To do this we must prove
lu"ls < B < o0
for some constant B which is independent of A. But
lu"lls < CLYIL(") =1 + u"ls-1)
< CLY(IL(w)" 5=t + u"ls=1) + CLY(IL(") = L(w)"]|5-1)
<C

(D)L @) |11 + lJulls) + CL)(IL (") = L(w)*]ls-2)
16



Lemma 3. Let u € H_ and let L be a periodic operator with smooth coefficients. Then
(2.18) (Lu)h — L(u") = LM(Tyhu)
where L" = al D*.

Proof. First we treat the case u = ¢ € C*°(M). Then

(L&) = (L) (@ +h) — (L&) ()] = —[aalz + B)D6(x + h) — aa(x) D (x)]

~n] I
k2 ) =00 | ot 1 1) + aale)D° <W S W))

||
= L"Twp) + L(u™)

This proves (2.18) in the case where u is smooth. Now let v € H, and choose ¢; — u in H, with

¢; smooth. Apply (2.18) to ¢;. Since u +— u" and u — Tju is continuous in Hy for all s, we can
take the limit as 7 — oo in H,_; and the lemma is proved.

Let A = max|[|aq/2|s)+1- Then
max [|al |5y < A
Now we can estimate:
IL(u") = L(w)"| = = [LM(Thw)lls—r < C(A)|[Thulls = C(A)|ulls

Proposition 1 implies that the coefficients of L" are uniformly bounded in Hy for h # 0. Thus
are constants ci, co, independent of h such that

ILM(Thw)lls—t < er| Thulls < crealfulls

17



3. ESTIMATES AND INTERIOR REGULARITY FOR DOMAINS IN R"”

3.1. Apriori estimates. Let U C M be open. Define
C(U) ={u € C*®(M) : u has compact support in U }

C(U) = {u e C>®(M) : u vanishes outside U }
Thus ¢ € C°(U) if and only if y¢ = 0 for all x € C°°(M) such that x = 0 on U. Define

H(U) = Cpo(0) € H* (M)

H3(U) = Cgo(U) € H*(M)

Lemma 4. Let u € H*(M). Then u € HE(U) if and only if xu = 0 for all x € C°(M) such
that x =0 on U.

Proof. Let v € H3(U) and let x € C°°(M) such that x = 0 on U. Then ¢; — u for some

¢; € C(U) so xp; — xu. But x¢; = 0= yu =0.

Conversely, let u € H*(M) and assume xu = 0 for all y. Write M\U = Upen$,, a locally finite
countable union of open sets. Let x, be a partition of unity subordinate to €2,. Let ¢; — u
with ¢; € C>°(M). Then x1¢; = xmu = u and x1¢; vanishes on the suport of x;. Similarly,
X1X2¢; — w and x1x2 vanishes on supp(x1) Usupp(x2). Using the diagonalization process, we

obtain a sequence ¢; — u such that ¢; € C°(U).

Proposition 5. Let Uy C Uy. Then
(1) H3(Uy) C H(Us) € Hy(Ua).
(2) Hy(U)NCH (M) C C5(U).
(3) Let t <s. Then HY(U)NH*(M) C H3(U).

Proof. Part (1) follows from C°(U;) C C°(Us) C C°(Us).
For (2), let uw € H3(U) N C*(M) and let x € C°°(M) with x = 0 on U. We must show yu = 0.

To see this, let ¢; — u in H*(M) with ¢; € C3°(U). Then x¢; — xu. But x¢; = 0 and thus
xu = 0.

For (3), let u € HL(U)N H*(M) and x =0 on U. The xu =0 so u € H:(U).
The basic lemmas in §2.3 hold word for word, with H*(M) replaced by H3(U).

For example, since D : C°(U) — CS°(U) is continuous, taking closures we conclude that
D*: H3(U) — H:Y(U). Moreover, ||D%ul|s_; < ||ul|s when |a| =1 and v € H(U).

Also, if v € C®(M) let My : C®°(M) — C>*(M) be the map ¢ — ¢. Then we have the
estimate ||My(9)|ls < c(s,)||¢]|s so My, extends to a continuous map My, : H*(M) — H*(M).
Since My, : C°(U) — C°(U) we conclude that My : H3(U) — H3(U).

In particular, My, : H5(U) — H3(U) is a well defined continuous linear map for ¢» € C*°(U). To

see this, let ¢ € H3(U), that is 1 € C°(U’) for some U C U’ C M. Choose x € C°(U’) such

that x = 1 on U. Then ¢ = x1 € C°°(M) and it agrees with 1 on U (that is, ¢ is an extension
18



of ¥ from U to M). Now My : Hy(U) — Hj(U) is continuous and is the unique extension of
My : C(U) = C(U).

Combining these remarks, let L = (P}') satisfy the following: For each 1 < p,v < m we have
P = Y aj<1 @a()D* with aq € C®(U). Then L : H3(U) — Hy'(U) is continuous, that
is, ||Lu||s—i < cl|lu||s for some ¢ = ¢(s,L). Such an operator is elliptic if it satisfies the usual
condition: (P}'(x,€))1<uv<m is an invertible m x m matrix for all x € U and all 0 # £ € R™.

Theorem 5, when applied to U, takes the following form: H3(U) C CX(U) if s > k + %, where
CE(U) is the set of smooth functions on R™ which vanish on the complement on U.

To see this, note that for s > k+ 2 that H5(U) C H*(M) C C*(M). But now we can apply the
proposition which says H:(U) N C*(M) C CX(U).

Theorem 8. If s < t and u; € H:(U) is bounded, then there exists us € H*(U) such that
u; — uoo in HY(U).

Proof. We apply Theorem 5 to conclude that, after passing to a subsequence, there exist uy €
H#(M) such that u; — us in HY(M). Choose y vanishing on U. Then 0 = yuj; — Xuoo SO

xuj =0=u; € H3(U). O

Theorem 9. Let L be an elliptic operator of order | and rank m on U. Let s,t € R with s > t.
Then there exists C > 0 with the following property. If u € HSYY(U) then Lu € H(U) and

(3.19) Il g0y < CULullmgco + lul o)

Proof. For every p € U choose small open sets Vp, Up containing p with ‘71, C Up. Let ¢, € CX(U,)
be a cut-off function (i.e., 0 < ¢, < 1) such that ¢, = 1 on V,. Let L, = ¢,L + (1 — ¢,) L(p).

Lemma 5. For U, sufficiently small, Ep is an elliptic operator on M which agrees with L on V.
Proof. We write L = ao D and Ly, = aq(p)D®* so
Ly = [aa(p) + ¢p(2)(aa(z) — aa(p))|D*
PL(©) = aa(p)™ + ful2)® : C(M) - End(C™)
We wish to show Pj (&) : C*°(M) — Aut(C™). By homogeneity, we may assume |{| = 1. Then
for U, sufficiently small, |f(z)| < € and det(aq(p)£*) > 0 on M for all £ € M x S™~1. But
M x S"~1is a compact set so det(aq(p)€®) > > 0 for all (x,£) € S"~L. Since det is a continuous

function, we have det(aq (p)® + fa(2)€%) > §/2 > 0 for all (z,£) € M x S™ ! for e sufficiently
small. 0

Choose an open cover U C V), U--- UV, and let ¢; be a partition of unity subordinate to the
Vj so wjf/pj = ;L. Then

el gz = IS bgullmesonny < S gl s
J J

On the other hand,
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o5l ooy < Oyl g any Hlgularean) < COULgulreqan HIMgul e oy +Higl o)
where M; = I:jwj — wjij is an operator on M of order [ — 1.

Since ;L; = ;L we see ¢;Lju = ¢;Lu € H5(U). Thus

s Lyl zsany = s Lullsreqan < esllLullarsqan = sl Lull g
We also have

ljullgeary < cillull mean = ejllull mewy
Now we treat the M; term: Since M; is of order [ — 1, the continuity estimate give us

[1Mjullgsary < cjllullgsvi-san < €llull gsiany + Csllullmean = ellull gsv gy + Cillull myw)

Combining we obtain (3.19).
3.2. Interior regularity. We prove the following:

Theorem 10. Let u € H!(U) and L and elliptic operator of order | on U and let t < s + 1.
Assume that Lu € H3(U). Then ¢u € H3YY(U) for every ¢ € C(U).

Remark: The theorem shows that ¢u € H:+t (U). One might guess that in fact we have (the
stronger conclusion) u € H, g*l(U ), but this is only true if the boundary of U has some regularity
(C*° would suffice). This boundary regularity theorem will not be proved in these notes (the
proof is quite intricate).

Proof. As in the proof of Theorem 7, it suffices to prove the theorem in the caset = s+1—1. We
shall show that for every p € U there is an open set V,, with p € V,, C U such that the theorem
holds for all ¢ € C°(V,). This implies the general case: Let ¢ € C°(U) and let K be the
support of ¢. Choose p1,...,pn such that K C U;V),. Let 1; € C°(Vj) be such that Zj ;=1
on K. Then ;¢ has support in V; so ¥;éu € HsH(U). On the other hand, > ¥i¢ = ¢ so we
conclude ¢u € H:H(U).

Fix p € U and choose Vy open, p € Vj C U so that there exists a periodic elliptic operator L
on M which agrees with L on Vy. Thus ¢L = ¢L if ¢ € C°(Vp). Let V be open such that
peV CV CVyand fix ¢ € CX(V). Let u € H=1(V) and assume Lu € H:(V). Then
Lu € H3(V) implies

¢L(u) = ¢L(u) = ¢pLu € H3(V)
But ¢L(u) = L(¢u) + M(u) where M = ¢L — L¢ has order [ — 1. Since u € H*t=1(U) we have
M(u) € H*(U). We conclude L(¢u) € HS(U) and hence, by the periodic regularity theorem, we
see pu € H*T(M). But ¢u has compact support in U so ¢pu € HsH(U).

Corollary 2. Let u € H(U) and f € C°(U). Assume that Lu = f. Then u € C*°(U).
20



Remark: The boundary regularity theorem would imply v € C5°(U), but again, this conclusion
is only true with some additional regularity assumption on the boundary of U.
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4. ESTIMATES AND REGULARITY FOR COMPACT MANIFOLDS

Let M be a smooth manifold of dimension n. This means that we can write M = U,V, with
Vo € M open, and ¢4 : Vo = Uy € R™ a homeomorphism with the following property. The map
P = qﬁgl 0¢a : o5t (VaNV3) — ¢35t (VaNVp) is a diffeomorphism. The V, are called coordinate
neighborhoods on M.

Problem 10. Let f : R" — R be smooth, let M = {x € R™ : f(z) = 0} and assume V f, the
gradient of f, has the property V f(x) # 0 for all x € M. Show that M is a smooth manifold.

Let p € M and define
Tpy(M) = {v:(—€€) = M : v smooth and y(0) = p}/ ~
Here we say that 1 ~ 79 if there exists a such that p € V,, and ¢/(0) = 04(0) where
0j =¢a07j:(—€,€) = R"

Problem 11. Show that the equivalence relationship is independent of the chosen a. Show as well
that T,(M) has a well defined vector space structure (Hints were given in class). If F: M — N
is a smooth manifold, p € M and q = f(p), define DF : T,(M) — T4(N) by DF([y]) = [F o~].
Show that DF is a well defined linear map. Show that if ¢ € R™ that T,(R™) = R"™ (a canonical

isomorphism).

Problem 12. Let M be a smooth manifold and let T = {(p,v) : p € M,v € T,(M)}. Let
m: T — M be the map (p,v) — p. Suppose M = U,Vy and ¢o : Vo, — Uy are the coordinate
maps. Let Vo, = =Y (Vy) and define ¢o : Vo = Uq X R™ by (p,v) — (¢a(p), Dda(p)). Show that
T = U,V and ¢q give T the structure of a smooth manifold.

If V, is a coordinate neighborhood, and p € V,,, and ¢ (p) = (z*(p),...,2™(p)), then 27 : V, = R
are called the local coordinates on V. If 3/ : Us — R are local coordinates on V3, then

qbga(xl(p), e z™(p)) = (¥ (p), ..., y™(p)). Sometimes we simply write y = ®ga(T).

If #: N - M is a smooth map between manifolds, and V' C M an open set. We say that
s:V — N is a section of m over U if mos(p) =p forall pe U. If V. = M we say s is a global
section.

Let w : E — M a smooth complex vector bundle of rank m. This means that F is a smooth
manifold and 7 is a smooth map with the following properties.

1. For every p € M, E, := 7~ (p) is an m dimension vector space over C.

2. E is locally trivial. This means that there is an open cover M = U,V, and dif-
feomeorphisms F,, : By, = 7 }(V,) — Vi x R™ satisfying the following. If we write
Fy(z) = (p,v) then p = 7y (z) and F,, is linear on the fibers. This means v = A\, (p)(x)
where Ao (p) : E, — R™ is a linear isomorphism.

(a) o Fp=m

(b) If we write Fy(x) = (p, Aa(p)(x))
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3. some other

1. First item

2. Second item

2.1. First subitem
2.2. Second subitem
2.3. Third subitem
Third item

b

(1) For every p € M, E, := 7 !(p) is an m dimension vector space over C.

(2) There is an open cover M = U,V,, and diffeomeorphisms F, : By, = 7 1(V,) — Vo x R™
satisfying

(1) For every pg € M, E,, = 7 1(po) is an m dimension vector space over C.

(2) For every pg € M there exists and open set pg € V' C M and smooth sections ey, ..., €y,

of m over V such that {e1(p),...,em(p)} C E, is a basis of E, for all p € V.
The set ey, ..., ey, is called a local frame of E. Let I'(V) be the space of local sections over
V and u € I'(V). Then we can write u(p) = > uw/(p)e;j(p). If ¢(p) = z then u(¢p~1(z)) =
> uwl (¢~ H(x)ej(¢~ (). Let w/(x) = v/ (¢~ (x)). Then u = (ul,...,u™) € C°(U,C™) and we
have an isomorphism I'(V') = C*°(U,C™) and T'.(V') = C°(U,C™), where I'.(V') C T'(V') consists
of those sections of E over V which vanish outside a compact subset of V.

Let I'(M) ={s: M — E: mos = Id}, the space of global sections on M. If V' C M is and open
subset, then s|yy € I'(V). Let M be compact and M = U,V,, be a covering by small coordinate
neighborhoods and choose a frame for E over each V,,. Let 1, be a partition of unity subordinate
to {Vo}. If u € T'(E) then u = ) Yqu and ¢ou € T'e(V,) = C°(Uy,C™). Thus we have an
imbedding

I(M,E) — P C*(Ua,C™) € P Hi (U, C™)

If u e I'(M, E) we define

el s ar,y = D [0t s wa cm)

and define H%(M, E) to be the completion of I'(M, E) with respect to this norm. In particular,
we have

H*(M,E) C P H;(Ua, C™)

Note that if u € T'.(Uy,C™) &~ I'o(V,, E) then we extend by zero to all of M and view u €
I'(M, E). Thus I'.(U,,C™) — I'(M, E), which implies, upon taking completions,

H3 (U, C™) < H¥(M, E)
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Thus, if u € HS(U,, C™) then

lullzs < CUa, s)lull s w)

Proposition 6. Let E — M be a smooth vector bundle and s € R.

(1) The norms ||ull gs(ar, k) defined by different open coverings and local frames are equivalent.
(2) The inclusion map H:(U,) — H*(M, E) is continuous.
(8) The inclusion
H*(M,E) — @ H3(Ua,C™)
(0%

18 a homeomorphism onto its image.

4.1. Sobolev Theory for E — M. In this section we shall prove all the basic theorems for the
space H*(M, E). Let’s recall the set-up.

Let M =U,V, and ¢4 : Vo — U,.

Let m: E — M be a vector bundle of rank m such that

By, =1 1'Vy) = VoxC™ ~ U, xC"

where the diffeormorphisms are linear on fibers.

If V. C M is open then
I'V,E) = {s:V — E : s smooth and 7o s = Id}

is the “space of sections over V7.
We now have

IVy, E) = C*(U,,C™)
Let v, be a partition of unity with supp(¢o) C Vo. If w € T'(M) then You € T (V,) =
C®(Uy, C™) and

I'(M) < @ C(Ua, C™)

Taking completions, we get
H*(M,E) € P H;(U, C™)
«

and if w € H*(M, E) then
luls = > lvaull myw. cm)
[}
If M =U,V! and ), is a partition of unity, then for u € T'(M) we have
1
Zllulls < Julls < Alluls

Thus uy, € I'(M) is a cauchy sequence with respect to the |- ||s norm <= it is a cauchy sequence
with respect to the || - ||, norm. Hence H*(M, E) is independent of the choice of M = U, V.

Proposition 7. Let ¢y € C*°(M,C). Then the map My, : H*(M,E) — H*(M,E) defined by

My (u) = u is continuous.
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To see this, let v € C>*°(M, E) and u € I'(M, E). Then

bl s ar,ey = Y vl s, cmy < e, $)lullmsw,emy < O ey, 8)e(Uy, ) lull g(ar,m)
J J J

Similarly, one shows that Peter-Paul holds for the space H*(M, E).

Let u € H*(M,FE). Then we have you € HE(U,,C™) for all . We say u € C¥(M,E) if
Yau € CH(U,,C™) for all a.

Next we observe that the Sobolev lemma holds for H*(M, E).

Proposition 8. Assume s > k+ %. Then H*(M,E) C C*(M, E).

Proof. Let u € H¥(M, E). Then u = Y"_ ¥u and ¢ou € HE(U,, C™) C C¥(U,,C™) and hence
u € C*(M, E) (by definition).

Next we prove the Rellich compactness theorem.

Proposition 9. Let uy € H*(M, E) with ||ug||gs(avr,m) < C. Then there exists u € H*(M, E)
such that after passing to a subsequence, we have uy — u in H'(M, E) for all t < s.

Proof. First we recall the local version of Rellich compactness. Let U' C R" and vy € H5(U').
Assume [[vg]| gz () < C. Then there exists voo € H§(U’) such that v, — v in H{(U').

If U" C U then H§(U') € H3(U). Thus we conclude: Let vy € H3(U’). Assume |[vg | gs@ry < C.
Thenthere exists voo € H§(U) such that vy — ve in HE(U).

To prove Proposition 9, choose an open subset U/, C U, with the property supp(v,) C U/ C
U! C U,, and use U, instead of U, to define the open cover of M and the norm H*(M, E).

Thus
HUHIHS(M,E) = Z 1Yol 50y, cm)
«

We have 4 [|ull grs(ar,i) < [lulf) s,E) S Allu|| s (a1, ) for some A independent of w.
Let uy, € H*(M, E) with |lug| s,y < C. Then ouy, € H3(U,,C™) C H3(M, E) and

[aull s, cmy < Cillvaunlysarp) < Colluklysar,p) < CoA < C3

where Cj; is independent of k. Thus, by the local version of Rellich compactness, there exists
ul € H:(U,) C HY(M, E) such that ,uy converges in H:(U,) C HY(M, E) to v for all «
(after passing to a subsequence). In other words, Your € H*(M,E) and u, € HZ(M) and
Your — v in HY(M, E). This implies u := Y., u% € H5(M,E) and Y, Yauy = uy converges
t0 Uso in HY (M, E) for all t < s. Let u be the limit of uy so that u € H*(M,E). Thu € H¥(M, E)
since Yaup — You in HY(U,, C™) and the local version of Rellich says that you € HE(Uy,, C™)

for all a.
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Theorem 11. Let Eq, Es be vector bundles of rank m, equipped with smooth metrics, and let
L : T(M,E) — T'(M, Es) be an elliptic operator of order l. Let uw € H'(M, Ey) and assume
Lu € H*(M, Es). Then u € H**Y (M, Ey) and

(4.20) [ull st < C - ([[Lull s + lJull )

Moreover, the kernel of L : HST{(M, Ey) — H*(M, Es) is finite dimensional, independent of s,
and contained in T'(M, Ey). Finally, if u € H**' N (ker L)+, then

(4.21) [ull st < C- [ Lul| e
Corollary 3. Let u € H' (M, E) and suppose Lu € C*®°(M,E). Then u € C*°(M,E).

Proof. The estimate (4.20) follows from the analysis on R™: Let u € H**!. Then

ull grosiarmy = D [Vl s+, cmy < C D UL (o)l 1w cm) + 1ot e cm))

Now the definition of the H*(M, E) norm tells us that _ [[Yat g, cm) = llull g (ar,m). More-

over,

IL(pat) |5 wa,cmy < CallL(Waw)l as(ar,p) < CallbaL(W)llms ) + CallM (W)l s (r,E)

where M = oL — L), has order [ — 1. Since M is also continuous we obtain

||M(u)||HS(M,E) < C||U||Hs+lfl(M,E) < EH“HHSH(M,E) + C,HuHHf(M,E)

Since

Y el lmsm < C Y lval(w)lmsw,cmy = CILW)| me,5)

we obtain (4.20).

Now let v € H. If Lu = 0 then u is smooth, since it is in H* for every k. If ker(L) is infinite
dimensional, then there exists a sequence u, € ker(L) which is orthonormal in H**!. Applying
(4.20), with s replaced by s+ 1 and t = s + [, the sequence u,, is bounded in H3+tH+1 Rellich’s
theorem implies that, after passing to a subsequence, u, converges in H s+l But this contradicts
the fact that wu, is orthonormal in H¥. Thus ker(L) is finite dimensional.

Assume now that (4.21) fails. Then there exists u, € H** N (ker L)* with |ju,| gs+: = 1 and
| Ly s — 0. Rellich implies that after passing to a subsequence, there exists u., € H**! such
that u, — ueo in H*T'=1. Then Lu, — Lus in H*"1. On the other hand, ||Luyl gs—1 — 0 so
Lus, = 0, that is, us € ker L.

Now let v, = 1y — oo € H*!. Then || Lvp||gs — 0 and ||v, | gs—1 — 0. This implies ||v, || et — 0,
that is, up — Uoo in H5H. But up L . Thus us = 0. So u, — 0 in H*H! which contradicts

|upl| s+t = 1. This proves (4.21).
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5. EXISTENCE THEOREMS FOR COMPACT MANIFOLDS

5.1. Norms and inner products. Let V be a finite dimensional vector space over R. A norm
on V is a function
N:V R v+ N®©):=|vln
with the following properties:
(1) |lv]| > 0forallv e V and ||v]| =0 <= v=0.
(2) [Av]| = |v|-|lv]| forall A € R and v € V.
(3) |lv+w| < |v| + ||w| for all v,w € V.

A map h:V xV — R is called an inner product (or a metric) if
(1) h(v,w) = h(w,v) for all v,w e V.
(2) h(Av,w) = Ah(v,w) for all A\ € R and v,w € V.

(3) h(vy + v, w) = h(vy,w) + h(ve, w) for all vy, ve,w € V.
(4) h(v,v) > 0 with equality if and only if v =0

We shall often write h(v, w) = (v, w)p.

Problem 13. a) Let h be an inner product on 'V and define Np(v) = /(v,v). Show that Ny, is
a norm and the map N}% : V. — R is smooth.

b) Let N be a norm on V. Assume N2 :V — R is smooth. Show that there is a metric h = hy
on V' such that N = Ny,

Hint: Let (v,w)n = 3(|[v+w|/?—|Jv||*— ||w|*) and consider the Taylor expansion of the function
F(v,w) = (v,w).

Now let m : E — M be a vector bundle. A function N : £ — R is called a norm on FE if
N?: E — R is smooth and if N, = N|g, is a norm for each p € M. If s,t € I'(M, E) are smooth
sections, define (s,t) : M — R to be the funtion (s,t)(p) = (s(p),t(p))ny, -

Problem 14. Let 7 : E — M be a vector bundle of rank m.
a) Let s,t € I'(M, E). Show that (s,t) € C*°(M,R).

b) Show that for every point p € M there is an open setp € U C M and ey, ...,en € I'(U, E) such
that e1(x), ...,em () is a basis of Ey for every x € U. (we call ey, ..., en, a local frame for E).

¢) Let s € T (U, E) where U be as in part b). Show that s = s’e; where s7 € C®(U).

d) Let s,t € T'(M, E) and N a metric on E and s = sle;,t = tFe,, € T(U, M). Let hjr, = (ej, ex)n-
Show that (s,t) = hjjsit".

5.2. Linear Algebra. . Let V be a finite dimensional vector space over R of dimension m
and let V* = Homg(V,R). Thus if A € V* then A : V — R is a linear map. We often write
(v, \) = A(v). If ey, ..., e, is a basis of V then e!,...,e™ is a basis of V* where e” is defined by

the equation (e;, ek) = (5}“, the Kronecker §. Thus (55-“ = 1if j = k and is zero otherwise.
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Let k > 0. Then A¥(V) is a vector space of dimension (}) if k¥ < n and is zero otherwise. If
ve A V) and w € AYV) then v Aw € AM(V)and v Aw = (=) wAw. If ey, ..., ey is a basis
of V' then

(5.22) {eil/\eig/\---/\eik:i1<i2<---<ik}
is a basis of AF(V).

We have (A*V)* = A*V*. In fact, {e"t Ae2 A--- A€l 1 iy <ig < --- < iy} is the dual basis of
the basis (5.22).

Let f: V — W be a linear map between two vector spaces. Then f* : W* — W* is the dual
linear map and is defined as follows: f*(A) = Ao f. Similarly A*f : A¥V — AFW is the linear map
defined by vi A---vp = f(vi) A=+ fvg). If dim(V) = dim(W) = m, then A™f : AV — A"W
is a map between 1-dimensional vector spaces and is called det(f), the determinant of f.

Problem 15. Show that if eq, ....,ep, is a basis of V and w1, ...., uy, a basis of W then
flet A=~ ANew) =det(A)ur A Aup,
where A is the matriz associated to the linear transformation that is, f(e;) = A;?uk.

Hint: Note that left side of the above equation are invariant if we replace e; by e; + Aej and
similarly for the right side. Here i # j and A € R.

5.3. Operations on vector bundles. . Let 7 : E — M be a vector bundle of rank m.
Let E* = Upenr B and APE = Upe y AFE,,.

Problem 16. a) Show that E* can be given the structure of a vector bundle of rank m so that
the following property holds for all open sets U C M. If eq,...,en is a local frame for T(U, M)
let {e!(p),...,e™(p)} be the dual basis of {e1(p),...,em(p) for allp € U. Then e',...,e™ is a local
frame for E*.

b) Show that A*E can be given the structure of a vector bundle of rank (T,:”) over M so that the
following property holds for all open sets U C M. If eq,...,en is a local frame for T'(U, M) Then
{eig Neiy Ao+ Ney, iy <idg < - < i} alocal frame for AFE (here (ei; Aeiy, A+ Nei,)(p) ==
€iy (p) Neig N Nejgy, (p))

Let M be a manifold of dimension n and p € M. Let f be a real valued smooth function
defined in some neighborhood U; of p and let g be a real valued smooth function defined in some
neighborhood Us of p. We say f ~ g if f = g on some open neighborhood p € U3 C Uy N Us.
This is an equivalence relation and we call an equivalence class a germ at p. Let G, be the set of
all germs at p. Then G, is a ring.

Let 6 : G, — R be a derivation. This means 6(f) = 0 if f is constant, that 6(f+g) = d(f) +(g)

and §(fg) = f(p)o(g) + g(p)d(f). Let Der,(M) be the set of derivations of G,.
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Problem 17. a) Show that the map TyM — Der,(M) given by [y] — 0 where §(f) = (fov)'(0)
18 an isomorphism.

b) Define T'M = UpDer,(M), let U C M be open and let 6 : U — T'M be a function with
the property 6(p) € Der,(M) for allp € M. We say 6 is a smooth section over U if for every
feC>®(U) the map p— d(p)(f) is a smooth function on U. Show that T'M is the structure of
a vector bundle with the following property: T'(U,T'M) is the set of all smooth sections over U.

¢) Show that if ¢ : U — V is a coordinate map that 8%1" 2 s a local frame for T'M.

o

This problem shows T'M is isomorphic to 1M so we shall often write TM instead of T'M.

5.4. Existence of solutions. Let E, I be vector bundles over M of rank m and let L : I'(E) —
['(F) be a linear map. We say that L is a partial differential operator if there is an open
cover M = UyecaV by coordinate neighborhoods ¢y : V' — U such that Ey = U x C™ and
F|y = UxC™ for all V, and there is a partial differential operator Ly : C*(U,C™) — C*°(U,C™)
with the following properties. For every s € I'(E) we have L(s)|y = Ly (s|y). We say L is elliptic
if Ly is elliptic for all V.

Now let L : I'(E) — I'(F) be a differential operator of order [ between two vector bundles of rank

m and let h, h be metrics on ¥ and F. Let dV be a fixed volume form on M. Then the adjoint
of L is the differential operator L* : T'(F') — I'(E) which is characterized by

/(LU,T>h2dV = /<J,L*T>h1 dV
M

M
for all 0 € T'(Fy) and 7 € T'(Ey). Thus, Im(L) C ker(L*)*. If L is elliptic one easily sees that L*
is elliptic.

Let 0 € C°°(M) and let

lol2 = / (0,0)ndV
M

Then ||o||2 ~ HU||§{0(M gy Ho,Te (V) we let we let

@ = [ ohav
M
Then for every s € R we have (0, 7)n < Cllo| gs(a,m) |7l -+ (ar,5)- In particular, we can extend
to a pairing H*(M, E) x H™%(M, E) — C with the property
(u,v)n < Cllullgsa,ey - 1Vl E-5 (0, B)

for all w € H¥(M,E) and v € H *(M, E). Moreover, if o — v in H® and 7, — v in H~* then
(ks i) = (U, )
Let 0 € I'(M, Ey) and 7 € I'(M, E3). Then

(Lo, T)p, = (o, L*T)p,
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If u e H(M,Ey) and v € H(M, Ey) we let 0; — w in H*(M, Ey) and and 7, — v in HO(M, Es).
Taking limits we conclude
(Lu,v)p, = (u, L*0)p,

Theorem 12. Let L be an elliptic operator from Vi to Vo and L and elliptic operator. Assume
that V1, Va are equipped with metrics. Then ker L,ker L* are finite dimensional and Im(L) =
(ker L*)+

Proof. Let f € (ker L*)* NT(V2) and choose u; € H (Vi) Nker(L)* such that

Lu; — by — 4 = inf Lu — .
| J f”HO(M,E,hg) K ueHl(Vl)H f||H0(M,E,h2)

We claim that u; is a cauchy sequence in H !, To see this, we use the parallelogram identity:

Uj + Uk
2

1L — Lo gy + 411LC )= Fl%e = 201Zu; — £ + 2] Lug — f1%0

=)

ILuj — Luglfre < 2| Luy — flifro + 2| Luk — fllFo — 4p
Taking the limit we see that Lu; is cauchy in H(M, E5). Thus the u; are cauchy in H' so there
exist us € H' (V1) Nker(L)* such that u; — ue in H'. In particular, || Luc — f| g0 = p.

Now let ¢ € I'(V4) be arbitrary. Then

d *
0= = [IL{us +1t¢) — iy = (L, Ltios = fln, = (&, L*(Luoe — f))ny
t=0
Since this holds for all ¢, we see that Lus, — f € ker(L*). On the other hand, Lus, — f € ker(L*)*L.

This shows Lus, = f. Since f is smooth, then elliptic regularity imples us is smooth as well.
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6. THE HODGE THEOREM

6.1. Vector Bundles. Let E, M be smooth manifolds and 7 : E — M a smooth map. We say
FE is a vector bundle of rank m over M if the following conditions hold.

(1) For every p € M, the set Ej, is vector space of dimension m.

(2) There is an open cover M = U,V, and smooth sections ef,...,e € I'(V,) such that

m

ef(p), ....en (p) is a basis of E, for every p € V,

In this section we give an alternate definition of a vector bundle which will be useful in practice.

First, let us recall the definition of a manifold. A manifold of dimension n is an equivalence class
of triples (M, {V,},{¢a}) where M is a set, {V,} is a family of subsets of M, ¢, : Vo, — R" is a
family of functions satisfying the following.

(1) M = UV,

(2) Let Uy = ¢pa(Va) CR™ , let Usg = ¢a(VaNV3), and let ¢gq : Usg — Usq be the function
Ppa = ¢ 0 ¢g'. Then ¢z, is a smooth map for all a, 3.

(3) M is Hausdorff with respect to the topology generated by the ¢, (i.e. the smallest
topology for which the ¢, are homeomorphisms).

We say that (M,{V,},{¢a}) and (M,{V.},{#,}) are equivalent if there is a diffeomorphism
between them.

Now we give an alternate definition of a vector bundle. A smooth vector bundle of rank m is
an equivalence class of six-tuples (M, {Va},{¢a}, E,m, {e},...,e%}) where (M,{V,},{¢a}) is a
smooth manifold, E' is a set, 7 : £ — M is a function and e} : V, — 7~1(V,) are functions
satisfying the following.

(1) For every p € M, the set E, = m—{p} is a vector space over R of dimension m.
(2) For every p € Vi, the set {e{ (p),...,ef,(p)} is a basis of E,.
(3) If p € Vo NV we write ef(p) = ai(p)e;?‘. Then a], € C®(V, NVp).

Remark: If we let Ag, = (ai)lﬁmkﬁm then Ag, € GL(m,C*(V,NVg)). Moreover, the following
cocycle relation is satisfied: A,, = A,3Ags. We say that A is a cocycle on M with values in
GL(m). If Cy € GL(m,C>(V,)) is any collection, then Ag, = C5Az,C5" satisfies the cocycle
relation. We say that A is equivalent to A. Let H'(M,GL(m)) be the equivalence classes
of cocycles. Then there is a one-to-one correspondence between isomorphism classes of vector
bundles of rank m over M and the set H!(M,GL(m)).

6.2. The Tangent Bundle. Let M be a smooth manifold and let p € M. If f,g € C®°(M)
we say f ~ g if there is an open set p € V' C M such that f|y = gly. Let Cp° = C*(M)/ ~.
We call C;°(M) the ring of smooth germs at p. Note that C;°(V') = Cp°(M) for every open set
peV CM.

If F: M — N is a smooth map and F(p) = ¢, then the map F* : C7°(N) — Cp;°(M) is a ring
homomorphism.
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A derivation is a map v : Cp;°(M) — R satisfying: v(f + g) = vf +vg for all f,g € Cp° and
v(fg) = f(p)vg + g(p)vf. The set T)(M) of derivations of Cp°(M) is a vector space over R.

If F: M — N is a smooth map and F'(p) = ¢ then DF : T,(M) — T,(N) is a linear map, where
DF(v)(g) = v(F"g)
If F is a diffeomorphism then DF is an vector space isomorphism.

Proposition 10. Let U be an open set in R"™ and let a € U. Let 0j, : C3° — R be the map
Ojaf = %(a). Then 0jq € T,(U). Moreover, 01,4, ..., Onq 15 a basis of C°(U) over R.

Proof. Let f € Cg°. Then f = f(a)+3_;0pf - (27 —a’) +D ik cjr(x)(2* — a*)(z7 — a*) for some

cjk € Cg°. Let v € T,U and let v =v(z'). Then vf = v'0; of s0 v = v'; 4 = v* 8‘;.

Let U C R™ and U’ C R™ be open sets and Let F : U — U’ be a smooth map. Write
y = F(z) = (FY(z), ..., F™(x)) where z = (2!, ...,2") € U and y = (y',...,y") € U'. Fixa € U
and let b = F(a) € U’. Then the linear map DF : T,U — T,(U’) is the map

-0 .0
) i oyt =
Y or e oy~

where F* = %F?
xr

Example: Let 7 : (—¢,€) — M be smooth with v(0) = p. Define X = +/(0) € T,(M) as follows:
Xf=(fov)(0). Every element X € T,,M is of the form X = +/(0) for some ~.

Let TM = {(p,v)lp € M,v € T,(M)} and = : TM — M the map (p,v) — p. We give TM
the structure of a smooth vector bundle as follows. Let M = U,V,, be a covering by coordinate
neighborhoods equipped with coordinate maps ¢ : Vo, — U,. Define eq, ..., e, : Vo, — 77 1(V,,) as

follows: Let p € V,, and f € Cp°(M). Then e§(p)(f) = 9j(fody") = % where x = ¢,(p). To

see that this defines the structure of a smooth vector bundle, we need only check that the cocycle
is smooth. To do this, let’s fix & and 3 and let x = ¢4 (p) and y = ¢g(p). Then y = ¢go(x) and

Ofoopt 9 fo(z)_l oy*
Uod!)_ ( i ) L = W) ()

g%l; where y = ¢gq(x) is a smooth function. Since the derivative of a smooth function
k

is again smooth, we see that the cocycle A = (aj

§(P)(f) = 0i(foda') =

and aé? =
) is smooth.

Remark on notation: If V, is as above and X € T'(V,TM) then X(p) = Xj(p)ejo-‘(p) for some
smooth functions X7 € C®(V). If ¢, : Vo — U, is the local coordinate mapping, then let us
write D¢o(X)(z) = X () (this is an abuse of notation). Then we have X (z) = X7(x)d; where
T = ¢o(p) and X7 € C=(U,).

6.3. Tensor bundles. Recall that if V and W are vector spaces of dimensions m and n, then
V @ W is a vector space spanned by {v ® wlv € V,w € W}. The elements v ® w satisfy the
relations (a1via202) @ w = a1v1 @ w + azvy ® w and v ® (bywy + bows) = b1v ® wy + bev ® ws.

Let e1,...,en and f1,..., fp be bases of V and W. Then e; ® f; is a basis of V@ W.
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We let V* = Hom(V,R). If ey, ..., e, is a basis of V, let el, ..., e™ be the dual basis: e’(e;) = (5;
The map V* ® V — R defined by v* ® v — v*(v) = (v*,v) is called the contraction map.

For 0 < r < m, the vector space A"V has dimension (T) It is spanned by {v1 A+ Av, :v; € V]
The wedge product is multilinear and alternating: If we fix vg, ...., v, then (av +bw) Avg A--- A
Um = a0 AUy A Avp +bw Avg A--- Av,.. Moreover, if o is a permutation of {1,...,r} then
Vg(1)\*+  NVg(p) = sign(o)viA- - -Avp. Ifeq, ..., e, is a basis for V then {e;, A---¢€;, 141 <ig < ---4p}

r

is a basis for A"V. If I = {iy,...,4,} then we write e; =e;; A---¢;

o

Note that (E® F)* = E*®@ F* and (A"V)* = A"(V*). To see that last identity, we need to define
the pairing A"V* x A"V — R by

(’Uf /\---/\U:,’Ul /\"'/\Ur) — Z Sign(a) (U;‘(,'Ua(j))
cESy

In particular (e!,e;) = 6% so {e!} is the dual basis of {er}.

Now let h : V x V — R be a metric on V and let eq, ..., e, be an orthonormal basis of V. Let

el,...,e™ be the dual basis of V*. Then we define a metric h* on V* as follows: If ey, ..., e, is an

orthonormal basis of V' with respect to h, then the dual basis €', ..., e™ is an orthonormal basis
of V* with respect to the metric h*. We also define A"h on A"V by requiring that {e;, A---Ae;, :

i1 < --- < i,} be orthonormal for A"h.

Now let £ — M and F' — M be vector bundles of ranks m and n. Then we define £ @ F — M
as follows: If p € M then (E ® F), = E, ® F,. Moreover, if ey, ...,en, and fi,..., f, are local
frames for ' and F, then {e; ® f;j : 1 <i <m,1 < j < n} is a local frames for for £ ® F. We
need only check that the transition functions are smooth. Let €}, ....,el, and fi, ..., f,, be frames
over V' and write e, = afe; and fi= bé-fl with af and bé- smooth. Then e} ® f; = afbéek ® fi
and afbé- is smooth (since the product of smooth functions is smooth).

Similarly, we define E* by defining (E}) = (E,)* and requiring e',...,e™ to be a smooth frame
for E*. We define A"E by defining (A"E), = A"(E,) and requiring {e;; A---€;. i1 < - < iy} to
be a smooth frame for A"FE.

(o

Example. The bundle M has local frame %, e a%. We call the dual frame dz', ..., dz". Thus

dz'(9;) = (5; Then a local frame for APT*M is given by dz’* A- - -Adx®. Sections of APT*M — M
are called differential p-forms. If n is a differential p-form, then locally on V,, C M we can write

n= Z nil...ipdacil A Adx®
1< <ip

for some unique smooth 7;,...;, € C*°(Uy).

6.4. Ellipticity. Let E — M and F' — M be smooth vector bundles and L : T'(E) — I'(F) a
differential operator of order I. Let p € M and § € T;(M). Then o(§) : E, — Fy is a linear
map, called the symbol of L. It is defined as follows: Choose local frames eq, ..., e,, for E and

fiyeeey fn for F over V.C M. Let V — U be a coordinate map. Then I'(V, E) = C*°(U,R™),
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[(V,F) = C®(U,R™) and L : C®°(U,R™) — C®(U,R™) is given by L = (P!(x, D))1<ij<m.
Here P(z,D) = |4 <;aa(z)D?. For £ € R™ we let P(z,&) = >4 aa(2)§" so P(z,§) is a
homogeneous polynomial of degree [ in the variable £&. Then o (x,§) = (PZJ (x,€)). We say L is
elliptic if for every x € M and every 0 # £ € R™ and 0 # v € R", we have o(z,§)v # 0.

Alternatively, we can define the symbol as follows: Let s, € E, and let s € I'(E) be such that
s(p) = sp. Let ¢ € C°>°(M) be such that ¢(p) = 0 and dp(p) = £. Then

L(6'5)(p) = 0(€)(sy)

We say L is elliptic if o7,(€) : E, — F}, is invertible for all p and all &.
Note that if hg and hp are metrics on E and F', then o (§)* = op+(§).

Let Ey, ..., Ex be smooth vector bundles over M equipped with smooth metrics hg, ..., hny. Let
Ly : T'(Ey) — I'(Eky1) be a sequence of differential operators. Let V = @p>0F9 and let
W = ®r>0F2k+11

Proposition 11. Assume that for each p € M and each § € Ty M the sequence
0— (Ep)p = (Er)p —---— (En)p— 0

is exact, where the maps are o, (§) : (Ex)p = (Egt1)p. Then

L+L":V—->W and L+L* W >V

are elliptic operators.

Proof. Assume that (o + 0*)(D>_; ar) = 0 where xg), € (Ea)p. We must show zo;, = 0 for all £.
Since oxop, + 0 x99 = 0 for all £ we conclude o*oxar, = 0 so
oxgy, € ker(o*) NIm(o) C ker(c*) Nker(c*)t =0

Similarly ¢*xor o = 0 and, replacing k by k — 1, 0*x9r, = 0.

Now z9; € ker(o) implies, by exactness, that zor = o(yar—1) for some yor_1. Then 0 = o*x9 =
0*0(yar—1) 80 0(y2r—1) € ker(c*) NIm(c) = 0 as before. Thus zo = 0 and this proves (o + o)
an injective map from V), to W),. Since these two spaces have the same dimension, we see that
(o + o) is also surjective, that is, L + L* is elliptic.

Corollary 4. Assume Lo L =0. Then LL* + L*L : E;, — FEy is elliptic for all0 < k < N.

6.5. The d operator. Let A¥ = A*T*M and let A¥(M) be the space of differential k-forms We
define a first order differential operator d : I'(A*) — T'(A¥*1) as follows:
dn = Z kal...ikd:ck Adxt A A date
11 <<t

If £ € R™ then the symbol map o(§) : A’; — A’;“ is the map 7 — £ A n where & = £;da7.

Proposition 12. Let p € M. The sequence of vector spaces 0 — Ag — All) — =AY = 0,

with maps given by the symbols o (&), is exact.
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Let ZP = ker{d : AP — APT'} and BP? = Im{d : AP~! — AP}. Then BP C ZP and we define

HgR(M) =Z?/B?
We define the cup product

HE (M) x Hig(M) — HEFI(M)
by the formula: (n+ B?,w + BY) — n Aw + BPT.

Let M be a compact manifold and g a metric on TM. We say that (M,g) is a Riemannian
manifold and call g a Riemannian metric. Let A = dd* + d*d. Then A : AP — AP is elliptic.

Theorem 13.

(1) Let HP =ker(A). Then HP is a finite dimensional vector space over R.
(2) HP = ker(d) Nker(d*)

(3) AP = HP @ Im(d) & Im(d*) = ZP @ Im(d*)

(4) ZP = H? @ BP? = H? & Im(d). In particular, H5, ~ HP.

Proof. The first statement just says that the kernel of an elliptic operator is finite dimensional.
For the second, assume n € HP. Then

0 = ((dd” +d"d)n,n) = (dn, dn) + (d"n,d"n)
For the third statement, observe that H?, Im(d) and Im(d*) are mutually orthogonal, so we have
H? & Im(d) & Im(d*) C AP. On the other hand, A? = HP $Im(A) and Im(A) C Im(d) & Im(d*).
Finally, ker(d) = Im(d*)*.

6.6. Poincare duality. We wish to show that dim(H} (M)) = dim(Hz"(M)). Moreover, the
cup product pairing is perfect.

To do this, we need to define the Hodge * operator. We first review some linear algebra. Let V'
be a vector space of dimension m over R. Then A™V\{0} has two components which are called
orientations of V. An oriented vectors space is a pair (V,C) where V is a vector space and C' is
a connected component of A™V\{0}. Let V be an oriented vector space over R and h a metric
on V. Then there is a unique element dV}, of A™ which is positively oriented and of norm one.
This element is called the volume form of V. Thus, is e, ..., e, is an oriented orthornomal basis
of V., then dV, = e A--- Aey.

We define % : AFV — A" FV as follows: Let ey, ...,em, be an orthonormal basis of V' and let
l=n—k. Then

*(eil/\"'eik) :6'(€j1 /\"'/\ejl)
where {i1, ..., j1, -, Ji} = {1,2,...,n} and € € {1, —1} is chosen so that

€-ejy N---Nej, Neyy N---ej, =ert N---Nep = dVy,
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A coordinate free characterization of  is given as follows: If w € AFV then sw is the unique
element of A%V satsifying

vAsw = (v,w)p - dVj,
One easily checks that s = (—1)?("~P) and (—1)" * A = Ax.
Proposition 13. We have the following formula for d*:
d* = (=1)@tDO=PF ()
Proof.
Jtnwav, = [annio) = [ o) (-1rpndew) = [0 0P P

Corollary 5. (Poincaré duality)
(1) If w € HP then xw € H" P. Moreover, the map x : H? — H"™P is an isomorphism.
(2) The map
HP x H"? — R
given by (n,w) — [N Aw is a perfect pairing. In particular, the cup product
HLp (M) x Hip (M) — R

s a perfect pairing.

7. THE SPECTRAL THEOREM

Let M be a compact manifold, E — M a smooth vector bundle, and L : I'(F) — I'(E) an elliptic
operator. Fix h a metric on F and dV a volume form on M.

Theorem 14. Assume L = L*. Let A ={\ € R: Ls = \s for some non-zero s € I'(E)}. Then
all the elements of A are non-negative. Furthermore, Vy = {s € I'(E) : Ls = As } is finite
dimensional and

LQ(M7 E) = @ Vi
A€A
s an orthogonal direct sum.

Proof. Consider the map L : H*'(M, E) — H*(M, E). Let
Hi={ue H®: (u, f) =0}
for all f € ker(L)}. Then L, : Hi™ — H§ and then there exists C' > 0 such that

1
cllulls < llulls < Cll Luls
so Lg is an isomorphism of Hilbert spaces.

Consider Lal : H° — H'. Then Lal is also an isomorphism. On the other hand, ¢ : H' — HY is

a compact operator. Thus G = to L L. L% — L% is a compact operator (known as the Green’s
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operator). If follows from functional analysis that the set {u} of eigenvalues of G form a sequence
which converges to zero and L% = ®&W,, where W, is the u eigenspace of G. But W, = V) where
A=pt

8. THE PETER-WEYL THEOREM.

Now let M = G, a compact Lie group. A representation of GG is a continuous homomorphism

m:G— GL(n,C)

We write () = (af;(7)) so the matrix coeficients af; are continuous functions on G. Let

R C L*(G) be the vector space spanned by {af; : m irreducible, 1 <4, j <d(m)}
Theorem 15. The space R C L?(G) is dense.
Proof. Let g be a riemannian metric on G which is G invariant and let A : C*°(G) — C*°(G) be

the Laplacian. Then for every v € G and every f € C*°(G) we have

A(for) = (Af)on
where (f ov)(g) = f(g7). In particular, if f € V) then f o~y € V) for all 7 since

A(foy) = (Af)oy = (Af)oy = A(for)
This means that G acts on V) so V), = @V, where the V, are irreducible representations of G.
Let ¢1, ..., ¢4 be a basis of V;. Then

$i(97) =D aij(7)eil9)
Taking g = 1 € G we see that ¢; € R.

Remark: In fact, one can show that the af; form an orthogonal basis of L?*(G). Thus, if ¥ is the
set of all irreducible representation of G then

12(6) = @i

TEY
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