
Elliptic partial differential equations
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1. Introduction

The theory of linear elliptic partial differential equations is formally analogous to the theory of

linear maps between finite dimensional vector spaces. To describe the analogy, we need some



notation: Let x, x′ ∈ Rn. We view x, x′ as n×1 matrices. Define 〈x, x′〉 = txx′. Let L : Rn → Rm

is a linear map. Then L(x) = Ax for some m× n matrix A. Note that

|L(x)| ≤ ‖A‖HS · |x|
where ‖A‖2HS = tr(tAA). In particular, this shows that linear maps are (Lipshitz) continuous.

Let L∗ : Rm → Rn be the adjoint map: Ly = tAy. Then we have the basic formula:

〈Lx, y〉 = 〈x, L∗y〉
for all x ∈ Rn and y ∈ Rm. This implies Im(L) ⊆ ker(L∗)⊥.

Theorem 1. Im(L) = ker(L∗)⊥.

Discussion: If we fix y0 ∈ Rm, the equation Lx = y0 may not have a solution: in order for a

solution to exist, y0 must satisfy the following obvious necessary condition: y0 ∈ ker(L∗)⊥. The

theorem says that the obvious necessary condition is also sufficient.

Discussion: Even if y0 does not satisfy the obvious necessary condition, Im(L) ⊆ Rm is a linear

subspace so there is a unique L(x0) ∈ Im(L) such that

(1.1) |L(x0)− y0| ≤ |L(x)− y0| for all x ∈ Rn

Proof of Theorem. Let y0 ∈ ker(L∗)⊥. Let E : Rn → R be the function E(x) = |Lx− y0|2. Then

(1.1) implies that E achieves its minimum at some point x0 ∈ Rn. In particular, if v ∈ Rn is

arbitrary, and f(t) = E(x0 + tv) for t ∈ R, then f achieves its minimum at t = 0 so f ′(0) = 0.

Thus

f(t) = 〈L(x0 + tv)− y0, L(x0 + tv)− y0〉 = f(0) + 2t〈L(v), L(x0)− y0〉+O(t2)

so

0 = f ′(0) = 2〈L(v), L(x0)− y0〉 = 2〈v, L∗(L(x0)− y0)〉
for all v ∈ Rn. We conclude L(x0) − y0 ∈ ker(L∗). But L(x0) ∈ Im(L) ⊆ ker(L∗)⊥ and

y0 ∈ ker(L∗)⊥ (by assumption) so

L(x0)− y0 ∈ ker(L∗) ∩ ker(L∗)⊥ = 0 .

An linear elliptic PDE is an equation of the form

(1.2) Lu = f

Here L is a linear “elliptic operator” (e.g., the Laplacian), f is given, and u is the unknown.

The domain and range of L will be vector spaces, but unlike the linear algebra theory described

above, these vector spaces will be infinite dimensional, so the very simple techniques that work

in Rn do not directly apply. Part of the PDE “art” is choosing well adapted domains and ranges

(preferably Hilbert or Banach spaces).

The fundamental questions are:
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(1) Existence: Under what conditions does a solution u to (1.2) exist?

(2) Regularity/Estimates: Suppose Lu = f and assume f is smooth. Is u smooth? Is the

inverse of L (viewed as a map from Im(L)→ ker(L)⊥ ) continuous?

The rough answers to these questions are as follows.

(1) Existence: equation (1.2) has a solution if f satisfies the “obvious necessary conditions”.

For example, if M is a compact Riemannian manifold, and f is a C0 function on M , and

L = ∆, the Laplacian, then (1.2) has a solution u if and only if
∫
M f = 0. The solution

is unique if we require
∫
M u = 0. In general, Im(L) = ker(L∗)⊥.

(2) Regularity: The regularity is “the best one could hope for”. For example, if f ∈ Ck,α and

∆u = f then u ∈ Ck+2,α. Moreover, if we normalize so that
∫
M u = 0, then u satisfies

the apriori estimate ‖u‖Ck+2,α ≤ C‖f‖Ck,α , where C > 0 is a constant, independent of

f . If f ∈ Hk (the kth Sobolev space) then u ∈ Hk+2 and u satisfies the apriori estimate

‖u‖Hk+2 ≤ C‖f‖Hk . In general, L−1 is a continuous functional ker(L∗)⊥ ∩Hk → Hk+l

where

Equation (1.2) will be studied in two basic settings. The first is that of compact manifolds M

without boundary (i.e., ∂M = ∅) and the second is compact manifolds with boundary. The

second setting includes, as a very important special case, bounded domains in Rn with smooth

boundary.

We now make precise the “obvious necessary conditions” mentioned above: First assume ∂M = ∅.
If Lu = f then for every φ ∈ C∞(M) integration by parts implies

(1.3) 〈f, φ〉 = 〈Lu, φ〉 = 〈u, L∗φ〉

where 〈g, h〉 is the L2 inner product and L∗ is the dual of L (which will be another elliptic

operator). In the case L = ∆ we have ∆∗ = ∆). Thus Lu = f implies f is orthogonal to kerL∗

(which, as we shall see, is a finite dimensional vector space). It turns out that this necessary

condition is also sufficient: we will see that if f is orthogonal to kerL∗, then Lu = f has a unique

solution u with the property: u is orthogonal to kerL.

If ∂M 6= ∅, then the situation is similar (although the proofs are more complicated). Equation

(1.3) still holds if we require that φ vanishes on the boundary (since, when one integrates by parts,

the boundary terms will then vanish ). The main theorem says that if we fix a smooth function

g on ∂M , then the there is a unique solution to Lu = f on M satisfying u|∂M = g provided f

satisfies the necessary condtion: f is orthogonal to the elements of kerL∗ which vanish on the

boundary. In the case L = ∆, this last condition is vacuous (there are no non-zero harmonic

functions which vanish on the boundary).

The goal of these notes is to prove the existence and regularity/estimates results described above.

Our treatment will be as follows: First we will prove the regularity theorems in the case M =

Rn/Zn (the so called “periodic case”). Second, we will apply the results from the periodic case

to treat the “local case”, that is, the case where M = U ⊆ Rn is a bounded open subset. In
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particular, we will prove the local apriori estimates for bounded open subsets of Rn. Finally, we

will prove the regularity theorems for arbitrary compact manifolds without boundary.

After proving the regularity results, we turn our attention to the existence results. The main

theorem gives necessary and sufficient conditions for the existence of a solution to the equation

Lu = f where L is an elliptic operator between smooth vector bundles over a fixed compact

Riemannian manifold M .
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2. Estimates and regularity for the torus

2.1. L2 and C0.

We define the two basic spaces L2(M) and C0(M). The first is a Hilbert space. The second is

a Banach space. Each of these spaces fits into a natural family: We will introduce the Banach

cases Ck for k ∈ N (and C0 will be the special case k = 0). We shall also introduce Hilbert

spaces Hs, known as Sobolev spaces. The space L2 will then be (canonically isomorphic to) the

special case H0. First some notation.

For ξ = (ξ1, ..., ξn) ∈ Zn and x ∈ Rn we let eξ(x) = eiξ·x. If φ : Rn → Cm is a smooth function

and α ∈ Nn we let Dαφ =
(

1
i

)|α| ∂|α|φ
∂x
α1
1 ···∂x

αn
n

so that Dαeξ = ξαeξ.

Let M = Rn/(2πZ)n and dV = 1
(2π)ndx1 · · · dxn. Let

L2(M,Cm) = {φ : M → Cm | φ measurable and ‖φ‖2L2 =

∫
M
|φ|2 dV <∞}

Then L2 is a Hilbert space. The Hilbert space inner product in L2 is given by the formula:

〈φ, ψ〉 =
∫
M

tφψ̄dV and the topology induced by ‖ · ‖L2 is called the L2-topology. Let

C0(M,Cm) = {φ : M → Cm | φ is continuous }

Then C0 is a Banach space with norm ‖φ‖C0 = supM |φ|. Note that the inclusion

C0(M,Cm) ↪→ L2(M,Cm)

is continuous. In fact, for φ ∈ C0 we have ‖φ‖L2 ≤ ‖φ‖C0 .

For k > 0 we define, inductively,

Ck(M,Cm) = {φ ∈ Ck−1(M,Cm) : Dαφ exists and is continuous for all α with |α| = 1}

Then Ck is a Banach space with norm ‖φ‖Ck =
∑
|α|≤k supM |Dαφ|.

2.2. Fourier series. Let φ ∈ L2(M,C). Define the Fourier transform φ̂ : Zn → C as follows:

φ̂(ξ) = 〈φ, eξ〉L2 =

∫
M
φēξ dV

More generally, let φ ∈ L2(M,Cm). Then φ = t(φ1, ..., φm) where φµ ∈ L2(M,C). Define the

Fourier transform u = φ̂ : Zn → Cm as follows: uµ(ξ) = φ̂µ(ξ) for 1 ≤ µ ≤ m.

Theorem 2. Let φ ∈ L2(M,Cm) and let u : Zn → Cm be its Fourier transform. Then

(1) We have u ∈ `2(Zn,Cm) that is,
∑

ξ∈Zn |u(ξ)|2 <∞.

(2) The map φ 7→ φ̂ defines an isomorphism of Hilbert spaces L2(M,Cm) 7→ `2(Zn,Cm).

(3) We have φ =
∑

ξ∈Zn φ̂(ξ)eξ where the convergence is in L2.

(4) If φ ∈ C∞(M,Cm) then φ =
∑

ξ∈Zn φ̂(ξ)eξ where the convergence is in Ck for all k ≥ 0.
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2.3. Elementary estimates for Sobolev norms.

Lemma 1. If φ ∈ Ck(M) then Dαφ ∈ L2 if |α| ≤ k so
∑

ξ(1 + |ξ|2)s|uξ|2 < ∞ if s ≤ k. In

particular, if φ ∈ C∞(M,Cm) then
∑

ξ(1 + |ξ|2)s|uξ|2 <∞ for all s ∈ R.

Problem 1. Prove Lemma 1. Then prove part (4) of Theorem 2. Hint: For part (4), first show

that if fk : (a, b) → R is in C1, and if f ′k → g uniformly for some function g : (a, b) → R, then

g = f ′.

Hint: To show that

(2.4) φ ∈ Ck(M) =⇒
∑

ξ(1 + |ξ|2)s|uξ|2 <∞ if s ≤ k

we must first show

(2.5) D̂αφ(ξ) = ξαφ̂(ξ)

Let’s try this when n = 1 so φ : [0, 2π]→ C is periodic. Then

1

i
f̂ ′(ξ) =

1

2πi

∫ 2π

0
f ′(x)e−iξx dx = − 1

2πi

∫ 2π

0
f(x)(−iξ)e−iξx = ξf̂(ξ)

The general case of (2.5) follows in a similar fashion (please supply the details). Once we know

(2.5) holds for all |α| = α1 + · · ·αn ≤ k then, using the fact that Dαφ ∈ C0 =⇒ Dαφ ∈ L2 we

get ∑
ξ

|ξαφ̂(ξ)|2 =
∑
ξ

|D̂αφ(ξ)|2 < ∞

for all |α| ≤ k. Now sum over all such α and try to use this to extablish (2.4). To complete the

proof of (4) you must show

(2.6) If φ ∈ C∞(M) then Dαφ =
∑

ξ∈Zn φ̂(ξ)Dαeξ

We know that the derivative of a finite sum is the sum of the derivatives, but here we are dealing

with an infinite sum. Let fN be the N th partial sum and f = limN→∞ fN the infinite sum. Then

by the previous step in this problem, we know that limN→∞D
αfN converges to some function

g. What we must show is g = Dαf . Try this first when n = 1. In fact, try to prove the following

more general lemma:

(2.7) fk : (a, b)→ R is in C1, and f ′k → g uniformly then g = f ′.

For this, you can use the fundamental theorem of calculus:

lim
k→∞

fk(x) = lim
k→∞

∫ x

0
f ′k(t) dt

The result follows if you can justify switching the limit and the integral.

This motivates the definition the Sobolev spaces: Let s ∈ R. Define

(2.8) Hs(Cm) = {u : Zn → Cm : ‖u‖2Hs =
∑
ξ∈Zn

(1 + |ξ|2)s|uξ|2 < ∞} = L2(Zn,Cm; dµs)

Here µs is the discrete measure on Zn defined by µs(ξ) = (1 + |ξ|2)s.
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We have a natural hermitian pairing Hs ×Ht → C defined as follows. Let u ∈ Hs, v ∈ Ht. Then

〈u, v〉 =
∑
ξ

(1 + |ξ|2)
s+t
2 u(ξ) · v(ξ) so that |〈u, v〉| ≤ ‖u‖Hs · ‖v‖Ht

Then Hs is a Hilbert space with respect to this inner product (in the case s = t). The collection

{eξ}ξ∈Zn is an orthogonal basis of Hs. The map f 7→ f̂ gives a Hilbert space isomorphism

L2(M)→ H0 and, for all k ≥ 0, continuous dense imbeddings Ck(M) ↪→ Hk. Moreover, Hs and

H−s are dual with respect to this pairing.

If t ≤ s then ‖u‖t ≤ ‖u‖s (why?) and

C∞(M,Cm) = H∞ ⊆ Hs ⊆ Ht ⊆ H−∞
where H∞ = ∩sHs and H−∞ = ∪sHs. Moreover Hs → Ht is continuous (why?) Hs and H−s are

dual.

For |α| = k we define the map Dα : Hs → Hs−k by (Dαu)(ξ) = ξαu(ξ).

Proposition 1. (continuity of the derivative) If u ∈ Hs and |α| = k then Dαu ∈ Hs−k Moreover

the map Dα : Hs → Hs−k is continuous.

Let k be a non-negative integer and define

`2,k = {u ∈ H0 : Dαu ∈ H0 for all |α| ≤ k}

If u ∈ `2,k then we define

‖u‖`2,k =
∑
|α|≤k

‖Dαu‖0

Proposition 2. (Hk equivalence with `2,k) We have Hk = `2,k. Moreover, there exist c(n, k) > 0

such that

(2.9) c(n, k)‖u‖Hk ≤ ‖u‖L2 +
∑
|α|=k

‖Dαu‖0 ≤ ‖u‖`2,k ≤ c(n, k)−1‖u‖Hk

Problem 2. Prove Proposition 2

Proposition 3. (Peter-Paul estimate). Let t ∈ R, ε, a, b > 0 with ε ∈ (0, 1) and u ∈ Ht+a. Then

‖u‖t−b ≤ ‖u‖t ≤ ‖u‖t+a

Moreover

(2.10) ‖u‖2t ≤ εa|u‖2t+a +
1

εb
‖u‖2t−b

Problem 3. Show that

1 ≤ εa(1 + |ξ|2)a +
1

εb
(1 + |ξ|2)−b

and use this to prove Proposition 3.
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If u, v ∈ H−∞ define

u ∗ v(ξ) =
∑
η∈Zn

u(ξ − η)v(η)

where u(ξ)v(η) = (u1(ξ)v1(η), ..., um(ξ)vn(η)).

Proposition 4. (Convolution estimate) Let s, p, q ∈ R. Then there exists C = C(n, s) > 0 such

that

‖u ∗ v‖s ≤ C

[
‖u‖s+|p−s|‖v‖s−p + ‖v‖s+|q−s|‖u‖s−q

]
Taking q = s we get:

‖u ∗ v‖s ≤ C(n, s)‖u‖0‖v‖s + C(n, s)‖u‖s+|p−s|‖v‖s−p

If f ∈ C∞(M) and p ≥ 1 we get the “top sup bound”:

‖fv‖s ≤ C(n, s)‖f‖L∞‖v‖s + C(n, s)‖f‖s+|p−s|‖v‖s−p

Plugging in p = 0 we get the two-absolute bound:

(2.11) ‖u ∗ v‖s ≤ C(n, s)‖u‖2|s|‖v‖s

Problem 4. Assume x, y, s, p, q ∈ R with x, y ≥ 0. Show that

(1 + x+ y)s ≤ C(n, s)

[
(1 + x)s+|p−s|(1 + y)s−p + (1 + y)s+|q−s|(1 + y)s−q

]
Then use this inequality to prove Proposition 4.

Remark: If u ∈ H0 then u is an L2 function on M . If u ∈ H−k with k > 0 then u is no longer

a function on M - it is, in the old language, a “generalized function” and, in modern language,

a “distribution”. More precisely, it is a distribution of order k meaning that if φj , φ ∈ C∞(M)

and Dαφj → Dαφ uniformly for all |α| ≤ k, then 〈u, φj〉H0 → 〈u, φ〉H0 .

2.4. Sobolev’s lemma. We have already noted the continuous dense inclusion Ck(M) ↪→ Hk.

Sobolev’s theorem is a kind of converse:

Theorem 3. Let s > k + n
2 . Then Hs ↪→ Ck(M) is a continuous inclusion.

Proof. We first treat the case k = 0. Let u ∈ Hs. Note that

∑
ξ

|uξ| =
∑
ξ

(1 + |ξ|2)s/2|uξ| · (1 + |ξ|2)−s/2 ≤ ‖uξ‖s ·

∑
ξ

1

(1 + |ξ|2)s

1/2

= C(s)‖u‖Hs

and the last sum is finite since s > n
2 .

Problem 5. a) Why can we conclude u ∈ C0 and that Hs → C0(M) is a continuous map?

b) Prove Theorem for arbitrary k ≥ 0.
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Hint: We must show that if s > k + n
2 then

‖Dαφ‖L∞ ≤ c(n, s, k)‖u‖s for all |α| ≤ k

To so this, start as follows:

‖Dαφ‖ =

∣∣∣∣∑
ξ

D̂αφ(ξ)eiξ·x
∣∣∣∣ =

∣∣∣∣∑
ξ

ξαφ̂(ξ)eiξ·x
∣∣∣∣ ≤ ∑

ξ

|ξαu(ξ)|

and now use the same trick as in the case k = 0.

In the previous proof we made use of the following convergence criterion:

(2.12)
∑
ξ∈Zn

1

(1 + |ξ|2)p
< ∞ ⇐⇒ p >

n

2

To see this, we compare the sum to the integral
∫
Rn

1
(1+|x|2)p

dx = cn
∫∞

0
1

(1+r2)p
rn−1 dr.

2.5. Newton quotients. Let h ∈ Rn with h 6= 0. Define the translation map Th : Hs → Hs by

(Thu)(ξ)ξ = eih·ξu(ξ). Define the Newton quotient map Nh : Hs → Hs by

Nh(u) =
1

i
· Thu− u
|h|

=
1

i
· e

ih·ξ − 1

|h|
u(ξ), so |Nh(u)(ξ)| =

∣∣∣∣2 sin(h·ξ2 )

|h|
uξ

∣∣∣∣
If u : Zn → C we define the derivative in the direction of h as follows: (∇hu)ξ = h·ξ

|h| uξ. Thus we

have, for each ξ ∈ Zn, the following:

(2.13) lim
t↘0

Nth(u)(ξ) = ∇hu(ξ)

Remark: If φ ∈ C∞(M) then

φ(x) =
∑
ξ

uξe
iξ·x =⇒ 1

i
· φ(x+ h)− φ(x)

|h|
=
∑
ξ

Nh(u)(ξ)eiξ·x

and ∇hφ = d
dt

∣∣
t=0
φ(x+ t h|h|).

Theorem 4. (Newton quotient theorem).

a) Let u ∈ Hs. Then

u ∈ Hs+1 ⇐⇒ sup
06=h∈Rn

‖Nh(u)‖s < ∞

b) If u ∈ Hs+1 then

sup
h
‖Nhu‖2s ≤ ‖Du‖2s ≤ n sup

h
‖Nhu‖2s

where

‖Du‖2s :=

n∑
j=1

‖Dju‖2s =
∑
ξ

(1 + |ξ|2)s|ξ|2|u(ξ)|2

Here Dju = Dαu where α = (0, 0, ..., 1, 0, ...0) where the 1 is the jth entry.
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c) If u ∈ Hs+1 then the following limit holds in the Hs topology.

lim
t↘0

Nth(u) = ∇hu

Proof. Let u ∈ Hs+1. Then | sin(x)| ≤ |x| implies

‖Nh(u)‖s2 =
∑
ξ

(1 + |ξ|2)s
∣∣∣∣2 sin(h · ξ/2)

|h|
u(ξ)

∣∣∣∣2 ≤ ∑
ξ

(1 + |ξ|2)s
∣∣∣∣h · ξ|h| u(ξ)

∣∣∣∣2
≤
∑
ξ

(1 + |ξ|2)s|ξ|2|u(ξ)|2 ≤ ‖u‖2s+1 < ∞

Conversely, if sup06=h∈Rn ‖Nh(u)‖s = C <∞ then, letting h1 = (1, 0, ..., 0) we have, for all M > 0,

∑
|ξ|≤M

(1 + |ξ|2)s
∣∣∣∣2 sin(th1 · ξ/2)

|th1|
u(ξ)

∣∣∣∣2 ≤ C

Taking the limit as t→ 0 and then taking the limit as M →∞ we obtain∑
|ξ|≤M

(1 + |ξ|2)s|ξ1|2|u(ξ)|2 ≤ C

Replacing ξ1 by ξi and summing over i we get∑
|ξ|≤M

(1 + |ξ|2)s|ξ|2|u(ξ)|2 ≤ nC

so ‖u‖2s+1 ≤ ‖u‖2s + n sup ‖Nhu‖2s. This proves a) and b).

Problem 6. Supply a proof for part c).

Hint: Note that the convergence is in the Hs topology. In other words, you must show

lim
t↘0
‖Nth(u)−∇hu‖s = 0

You will need (2.13) but you will also need some additional argument.

We summarize this discussion as follows:

Corollary 1. Let s ∈ R. Then ‖u‖s+1 ∼ ‖u‖s + suph ‖Nhu‖s.

2.6. Rellich Compactness.

Theorem 5. Let s > t. Then the map Hs → Ht is super-compact, that is, if uj ∈ Hs is a

bounded sequence, then there exists u∞ ∈ Hs such that, after passing to a subsequence, uj → u∞
in Ht.

Proof. By assumption there is a C > 0 such that for all j > 0 we have∑
ξ

(1 + |ξ|2)s|uj(ξ)|2 ≤ C

Fix ξ ∈ Zn. Then we have (1 + |ξ|2)s|uj(ξ)|2 ≤ C so there exists u∞(ξ) such that, after passing

to a subsequence, uj(ξ)→ u∞(ξ). Using the diagonalization procedure, we may assume that the
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subsequence does not depend on ξ, that is, uj(ξ) → u∞(ξ) for all ξ. From now on, we replace

the original sequence by this subsequence.

We claim that u∞ ∈ Hs. To see this, fix N > 0. Then we have
∑
|ξ|≤N (1 + |ξ|2)s|uj(ξ)|2 ≤ C.

Passing to the limit we see
∑
|ξ|≤N (1 + |ξ|2)s|u∞(ξ)|2 ≤ C. Taking N →∞ we conclude

∑
ξ

(1 + |ξ|2)s|u∞(ξ)|2 ≤ C

and the claim is proved. Fix N > 0. We estimate

‖uj − u∞‖2Ht =
∑
|ξ|<N

(1 + |ξ|2)t|uj(ξ)− u∞(ξ)|2 +
∑
|ξ|≥N

(1 + |ξ|2)t−s(1 + |ξ|2)s|uj(ξ)− u∞(ξ)|2

The second term is bounded by N−(s−t)‖uj−u∞‖2Hs ≤ N
−(s−t)(2C)2. The first term is less than

1
N for j sufficiently large (its a finite sum of terms which approach zero pointwise). Thus, for j

sufficiently large, we have

‖uj − u∞‖2Ht ≤
1

N
+

(2C)2

N s−t

This shows that ‖uj − u∞‖Ht → 0 as j →∞.

Problem 7. Let A > 0, let H be a hilbert space with countable orthonormal basis e1, e2, ... and

let λ1, λ2, ... ∈ [0, A].

a) Show that there is a unique bounded linear transformation T : H → H with the property

T (ej) = λjej.

b) Assume that λj → 0. Show that T is compact, that is, if x1, x2, ... ∈ H is a bounded sequence

then T (x1), T (x2), ... has a convergent subsequence.

c) Use part b) to show that if s > t, then the map Hs → Ht is compact, that is if uj ∈ Hs is a

bounded sequence then T (uj) has a bounded subsequence. Why isn’t this a second proof of Rellich

compactness.

Hint: In problem 7, the linear transformation T maps a Hilbert space H to itself. But the map

Hs → Ht is a map between two different Hilbert spaces. Thus, in order to apply problem 7,

you must first compose Hs → Ht with a Hilbert space isomorphism K : Ht → Hs and obtain

Hs → Ht → Hs. Then apply Problem 7 to the composition Hs → Hs. So the question becomes:

can we write down an explicit isomorphism K?

2.7. Elliptic estimates. A homogeneous differential operator P (D) on M = Rn/Zn of order

l and rank one is a formal sum P (D) =
∑
|α|=l aα(x)Dα where aα(x) ∈ C∞(M,C). Then we

have P (D) : C∞(M,C) → C∞(M,C): If φ ∈ C∞(M,C) then P (D)φ =
∑
|α|=l aα(x)Dαφ(x).

Similarly we can define an elliptic operator P (D) on an open subset of Rn.
11



For example, the following is an elliptic operator on R3 of rank one with and order 4 and.

P (D)φ =
1

x2
3x

8
2 + 1

∂4φ

∂3x1∂1x3
− (x1x2 + sin(x1e

x3))
∂4φ

∂2x1∂1x2∂1x3
+ 7

∂3φ

∂2x1∂2x3

= a(3,0,1)
∂4φ

∂3x1∂1x3
+ a(2,1,1)

∂4φ

∂2x1∂1x2∂1x3
+ a(2,0,2)

∂3φ

∂2x1∂2x3

More generally, if u ∈ Hs then L = P (D)u ∈ Hs−l is defined by P (D)u =
∑
|α|=l aα(x)Dαu.

More precisely,

[P (D)u](ξ) := aαD
αu(ξ) := [aαξ

αu(ξ)] := ξα[âα ∗ u](ξ)

Here, as always, if f ∈ C∞(M,C) and u ∈ Hs(C) then fu := f̂ ∗ u.

The map P (D) : Hs → Hs−l is continuous (by (3) of Proposition 1). In fact,

(2.14) ‖Lu‖s−l ≤ c(L, s) · ‖u‖s

where c(L, s) depends only on L and s. To see this we estimate

‖Lu‖s−l ≤
∑
|α|=l

‖aα(x)Dαu‖s−l ≤
∑
|α|=l

‖aα(x)‖2|s−l|‖Dαu‖s−l ≤
[ ∑
|α|=l

‖aα(x)‖2|s−l|
]
‖u‖s

If L is a homogeneous elliptic operator we define PL : Zn → C∞(M), the symbol of L, as

follows. If ξ ∈ Rn then PL(ξ)(x) =
∑

α aα(x)ξα. Thus PL(ξ) is a smooth function on M

which is homogeneous of degree l. That is, P (λξ) = |λ|lP (ξ) for λ ∈ C. We sometimes write

PL(ξ, x) := PL(ξ)(x).

A homogeneous differential operator P (D) on M = Rn/Zn of order l and rank m is a matrix

P (D) = (Pµν (D))1≤µ,ν≤m where P νµ (D) =
∑

α a
µ
α,ν(x)Dα is a homogeneous differential operator of

order l and rank one. Thus we may write P (D) =
∑

αAα(x)Dα where Aα(x) = (aµα,ν)1≤µ,ν≤m is

a matrix valued smooth function on M . The operator P (D) defines a map P (D) : C∞(M,Cm)→
C∞(M,Cm) in the usual way: (P (D)φ)µ = Pµν (D)φν .

More generally, we can extend P (D) to a linear map P (D) : Hs(Cm) → Hs−l(Cm) where

Hs(Cm) = Hs(C)m. More precisely

[P (D)u](ξ)µ := aµν,αξ
αuν(ξ) := ξα[âµν,α ∗ uν ](ξ)

If L is a homogeneous operator of order l and rank m, then for ξ ∈ Rn we define

[PL(ξ)]µν = aµα,ν(x)ξα

Thus PL(ξ) : M → End(Cm) is a smooth function on M with values in End(Cm). We sometimes

write PL(ξ)(x) := PL(ξ, x). We say that that P is elliptic if

PL(ξ) : M → Aut(Cm)
12



For example, if n = 2 and a, b, c ∈ R then consider

P (D)φ = a
∂2φ

∂x2
1

+ 2b
∂2φ

∂x1∂x2
+ c

∂2φ

∂x2
2

This is the most general homogeneous operator of rank one degree two with constant coefficients.

Assume that a ≥ 0. The symbol is the 1× 1 matrix

P (ξ) = aξ2
1 + 2bξ1ξ2 + cξ2

2 =
(
ξ1 ξ2

)(a b
b c

)(
ξ1

ξ1

)
with (ξ1, ξ2) ∈ R2

To say that P is elliptic is the same as saying that a > 0 and ac − b2 > 0 which is the same as

saying that the two eigenvalues of

(
a b
b c

)
are both positive (note the eigenvalues of a symmetric

real matrix are always real). In general, if a, b, c are smooth functions of x ∈M , and if a(x0) ≥ 0

at some point x0 ∈M , then P is elliptic if the two eigenvalues of

(
a(x) b(x)
b(x) c(x)

)
are both positive

for every x ∈M . Alternatively, we can require that there exist λ,Λ > 0 such that for all x ∈M
we have

λ

(
1 0
0 1

)
≤
(
a(x) b(x)
b(x) c(x)

)
≤ Λ

(
1 0
0 1

)
A differential operator L(D) on M of order l and rank m is a sum L(D) =

∑
0≤j≤l Pj(D) where

Pj(D) is homogeneous of order j. We say that L(D) is an elliptic if Pl(D) is elliptic.

Problem 8. Let L1 and L2 be differential operators of rank 1 and orders l1 and l2. Show

that L1 ◦ L2 is a differential operator of rank m and order l1 + l2. Show that if m = 1 then

L1 ◦ L2 − L2 ◦ L1 is a differential operator of rank 1 and order at most l1 + l2 − 1.

Fix f ∈ C∞(M) and fix L a homogeneous operator of order l. Then we can define a new operator

Lf (u) = L(fu)− fL(u).

Lemma 2. Lf is a differential operator of order l − 1:

Lf (u) =
∑
α

aα(x)[Dα(fu)− fDαu]

Proof.The product rule says that if α = l then

Dα(fu) =
∑

β+γ=α

c(β, γ)(Dβf)(Dγu) = fDαu+
∑

β+γ=α,|γ|<l

c(β, γ)(Dβf)(Dγu)

where c(β, γ) are binomial coefficients. Thus

L(fu) =
∑
|α|=l

aα(x)Dα(fu) = f
∑
α

aα(x)Dαu +
∑
|γ|<l

 ∑
{β:|β+γ|=l}

c(β, γ)aβ+γ(x)Dβf

Dγu

Theorem 6. Let L be an elliptic order of order l and rank m on M . Let s, t ∈ R with s+ l ≥ t.
There exists C = C(L) > 0 with the following property. If u ∈ Hs+l then Lu ∈ Hs and we have

the apriori estimate

(2.15) ‖u‖s+l ≤ C(L, s, t)(‖Lu‖Hs + ‖u‖Ht) for all u ∈ Hs+l

13



Conversely, if u ∈ H−∞ and if Lu ∈ Hs then u ∈ Hs+l.

Remark 1. The reverse inequality holds trivially: ‖u‖s+l ≥ C ′(‖Lu‖Hs + ‖u‖Ht) .

Remark 2. We shall see that if u ∈ ker(L∗)⊥ than we can drop the ‖u‖t term in (2.15).

Proof of theorem.

First assume that L is homogeneous and that L = Pl has constant coefficients. Thus, for all

ξ ∈ Rn we have PL(ξ)(x) ∈ GLn(C) is independent of x ∈M . Moreover, for all u ∈ Hs(Cm) and

ξ ∈ Rn we have

(2.16) [P (D)u](ξ) = [PL(ξ)u](ξ) ∈ Cm

To see this, recall that (Dαu)(ξ) = ξαu(ξ) for u ∈ Hs(C). Thus if u = (uµ)1≤µ≤m we have

[(P (D)u)(ξ)]νµ = (aνµ,αD
αuµ)(ξ) = aνµ,αξ

αuµ(ξ) = PL(ξ)νµu
µ(ξ) = P (ξ)u(ξ)

We claim that there exists c1 > 0 satisfying the following. Let ξ ∈ Rn and u ∈ Cm. Then

(2.17) |P (ξ)u|2 ≥ c1|ξ|2l|u|2

for some 0 < c1 < 1. Indeed, this follows by from the compactness of the unit sphere when

|ξ| = |u| = 1, and by homogeneity in general.

Now we estimate:

‖Lφ‖2s =
∑
ξ

|P (ξ)u(ξ)|2(1 + |ξ|2)s ≥ c1

∑
ξ

|u(ξ)|2|ξ|2l(1 + |ξ|2)s

‖φ‖2t ≥ c1

∑
ξ

|u(ξ)|2(1 + |ξ|2)t

|ξ|2l(1 + |ξ|2)s + (1 + |ξ|2)t ≥ c2(1 + |ξ|2)s+l

We thus obtain (2.15) with C = 1
c1c2

= C(s, t, l)

Problem 9. Let L =
∑

1≤j≤l Pl be an elliptic operator on M with constant coefficients.

a) Show that the map L : C∞(M,C)→ C∞(M,C) has a finite dimensional kernel.

b) Show that there is a complex vector subspace S ⊆ C∞(M,C) of finite codimension (i.e.

C∞(M,C)/S is a finite dimensional vector space) such that for every f ∈ S there exists φ ∈
C∞(M,C) such that Lφ = f .

Hint: Use (2.16) and (2.17). First do the case where L is the laplace operator (which is homo-

geneous of order 2 and rank 1) and then do the general case.

Now we treat the general case. Let L =
∑

1≤j≤l Pl be an elliptic operator on M and let p ∈M .

Let L0 = Pl(p). Then L0 is a homogeneous elliptic operator of order l and degree m with constant

coefficients. Let U be an open neighborhood of p and let φ be a smooth function on M with

support in U . Then

‖φ‖s+l ≤ C(s, t, l)(‖L0φ‖s + ‖φ‖t) ≤ C(s, t, l)(‖Lφ‖s + ‖(L− L0)(φ)‖s + ‖φ‖t)
14



The leading term in L− L0 vanishes at p. The leading term is

[Pl(x)− Pl(p)](φ) =
∑
|α|=l

(aα(x)− aα(p))Dαφ =
∑
|α|=l

fα(x)Dαφ

Thus, shrinking U if necessary, we can guarantee that |fα| ≤ ε on the open set U .

Now we apply the convolution estimate

‖fαDαφ‖s ≤ C(n, s)‖fα‖L∞‖Dαφ‖s + C(n, s)‖fα‖s+|p−s|‖Dαφ‖s−p
≤ C(n, s)ε‖φ‖s+l + C(n, s)‖fα‖s+|p−s|‖Dαφ‖s−p

Let Nl = #{α : |α| = l}. Then, choosing p = s+ l − 1, we obtain

‖[Pl(x)− Pl(p)](φ)‖ ≤ C(n, s)εNl‖φ‖s+l + C(n, s)C1(L)‖Dαφ‖s+l−1

Choose ε so that C(n, s)εNl ≤ 1
4 . Then

C(n, s)‖(L− L0)(φ)‖s ≤
1

4
‖φ‖s+l + C(n, s, L)‖φ‖s+l−1

Now t ≤ s+ l − 1 ≤ s+ l so Peter-Paul implies

C‖(L− L0)(φ)‖s ≤
1

2
‖φ‖s+l + C ′(n, sL)‖φ‖t

This proves (2.15) in the case where φ has support in U .

For the general case, we cover M by a finite collection open sets Uj as above and let θj be a

partition of unity subordinate to the Uj . Then

‖φ‖s+l = ‖
∑
j

θjφ‖s+l ≤
∑
j

‖θjφ‖s+l ≤
∑
j

C(‖L(θjφ)‖s + ‖θjφ‖t)

Let Lj(φ) = L(θjφ)− θjL(φ). Then Lj is an operator of order l − 1 and

‖L(θjφ)‖s ≤ ‖θjL(φ)‖s + ‖Ljφ‖s ≤ C(n, s)‖θj‖2|s|‖L(φ)‖s + C1‖φ‖s+l−1

‖φ‖s+l−1 ≤ ε‖φ‖s+l +
1

ε
‖φ‖t

‖θjφ‖t ≤ C‖θj‖2|t|‖φ‖t
This completes the proof.

2.8. Elliptic Regularity.

Theorem 7. Let L be an elliptic operator on M of order l. Assume that u ∈ H−∞ and the

Lu ∈ Ht for some t. Then u ∈ Ht+l.

Before proving the theorem we recall some previous results that will be needed.

Continuity of PDO’s. Let L = aαD
α be a PDO of order l and rank m. Here aα ∈

C∞(M,End(Cm)) for all |α| ≤ l. Then L : Hs → Hs−l is continuous: ‖L(u)‖s−l ≤ C(L)‖u‖s
This follows from the convolution estimate. More precisely, if maxα ‖aα‖2|s| ≤ A then

‖L(u)‖s−l ≤ C(A)‖u‖s
15



Translation operator. Let h ∈ Rn. The Th : Hs → Hs is the continuous map

(Thu)(ξ) = eiξ·xu(ξ)

We have the estimate

‖Thu‖s = ‖u‖s

Newton quotient estimate. Let 0 6= h ∈ Rn. Then Nh : Hs → Hs is the continuous map

Nhu = Thu−u
|h| . More precisely,

(Nhu)(ξ) =

(
eiξ·x − 1

h

)
u(ξ)

To see that Nh is continuous we estimate

‖Nhu‖s =
1

|h|
‖Thu− u‖s ≤

1

|h|
2‖u‖s

Since Hs+1 ⊆ Hs we also have Nh : Hs+1 → Hs is continuous but this time

‖Nh(u)‖s = ‖uh‖s ≤ ‖u‖s+1

where uh := Nh(u). The estimate we need says the following. Let u ∈ Hs and assume

suph ‖uh‖s <∞. Then u ∈ Hs+1. In fact

‖u‖s + sup
h
‖uh‖s ≤ ‖u‖s+1 ≤ C(n, s)(‖u‖s + sup

h
‖uh‖s)

Elliptic estimate. Let L be an elliptic PDO of order l. Let u ∈ Hs. Then

‖u‖s ≤ C(L)(‖Lu‖s−l + ‖u‖s−l)

Proof. Claim: Let u ∈ Hs. Assume Lu ∈ Hs−l+1. Then u ∈ Hs+1.

Assume the claim for the moment and let’s try to prove the theorem. Choose k ≤ l ∈ Z maximal

with the property u ∈ Ht+k. If k < l than k ≤ l − 1 so k − l + 1 ≤ 0. Let s = t+ k so

u ∈ Hs and Lu ∈ Ht ⊆ Ht+k−l+1 = Hs−l+1

The claim implies that u ∈ Hs+1 = Ht+k+1, a contradiction.

Now we prove the claim. Assume

• u ∈ Hs

• Lu ∈ Hs−l+1.

We want to show u ∈ Hs+1. To do this we must prove

‖uh‖s ≤ B <∞

for some constant B which is independent of h. But

‖uh‖s ≤ C(L)(‖L(uh)‖s−l + ‖uh‖s−1)

≤ C(L)(‖L(u)h‖s−l + ‖uh‖s−1) + C(L)(‖L(uh)− L(u)h‖s−l)

≤ C(L)(‖L(u)‖s−l+1 + ‖u‖s) + C(L)(‖L(uh)− L(u)h‖s−l)
16



Lemma 3. Let u ∈ H−∞ and let L be a periodic operator with smooth coefficients. Then

(2.18) (Lu)h − L(uh) = Lh(Thu)

where Lh = ahαD
α.

Proof. First we treat the case u = φ ∈ C∞(M). Then

(Lφ)h =
1

|h|
[(Lφ)(x+ h)− (Lφ)(x)] =

1

|h|
[aα(x+ h)Dαφ(x+ h)− aα(x)Dαφ(x)]

=

[
aα(x+ h)− aα(x)

|h|

]
Dα[φ(x+ h)] + aα(x)Dα

(
φ(x+ h)− φ(x)

|h|

)
= Lh(Thφ) + L(uh)

This proves (2.18) in the case where u is smooth. Now let u ∈ Hr and choose φj → u in Hr with

φj smooth. Apply (2.18) to φj . Since u 7→ uh and u 7→ Thu is continuous in Hs for all s, we can

take the limit as j →∞ in Hr−l and the lemma is proved.

Let A = max ‖aα‖2|s|+1. Then

max ‖ahα‖2|s| ≤ A

Now we can estimate:

‖L(uh)− L(u)h‖s−l = ‖Lh(Thu)‖s−l ≤ C(A)‖Thu‖s = C(A)‖u‖s
Proposition 1 implies that the coefficients of Lh are uniformly bounded in Hs for h 6= 0. Thus

are constants c1, c2, independent of h such that

‖Lh(Thu)‖s−l ≤ c1‖Thu‖s ≤ c1c2‖u‖s

17



3. Estimates and Interior Regularity for domains in Rn

3.1. Apriori estimates. Let U ⊆M be open. Define

C∞o (U) = {u ∈ C∞(M) : u has compact support in U }

C∞o (Ū) = {u ∈ C∞(M) : u vanishes outside Ū }
Thus φ ∈ C∞o (Ū) if and only if χφ = 0 for all χ ∈ C∞(M) such that χ = 0 on U . Define

Hs
o(U) = C∞o (U) ⊆ Hs(M)

Hs
o(Ū) = C∞o (Ū) ⊆ Hs(M)

Lemma 4. Let u ∈ Hs(M). Then u ∈ Hs
o(Ū) if and only if χu = 0 for all χ ∈ C∞(M) such

that χ = 0 on U .

Proof. Let u ∈ Hs
o(Ū) and let χ ∈ C∞(M) such that χ = 0 on U . Then φj → u for some

φj ∈ C∞o (Ū) so χφj → χu. But χφj = 0 =⇒ χu = 0.

Conversely, let u ∈ Hs(M) and assume χu = 0 for all χ. Write M\Ū = ∪p∈NΩµ, a locally finite

countable union of open sets. Let χp be a partition of unity subordinate to Ωµ. Let φj → u

with φj ∈ C∞(M). Then χ1φj → χmu = u and χ1φj vanishes on the suport of χ1. Similarly,

χ1χ2φj → u and χ1χ2 vanishes on supp(χ1) ∪ supp(χ2). Using the diagonalization process, we

obtain a sequence φj → u such that φj ∈ C∞c (Ū).

Proposition 5. Let Ū1 ⊆ U2. Then

(1) Hs
o(Ū1) ⊆ Hs

o(U2) ⊆ Hs
o(Ū2).

(2) Hs
o(Ū) ∩ Ck(M) ⊆ Cko (Ū).

(3) Let t ≤ s. Then Ht
o(Ū) ∩Hs(M) ⊆ Hs

o(Ū).

Proof. Part (1) follows from C∞o (Ū1) ⊆ C∞o (U2) ⊆ C∞o (Ū2).

For (2), let u ∈ Hs
o(Ū) ∩ Ck(M) and let χ ∈ C∞(M) with χ = 0 on U . We must show χu = 0.

To see this, let φj → u in Hs(M) with φj ∈ C∞o (Ū). Then χφj → χu. But χφj = 0 and thus

χu = 0.

For (3), let u ∈ Ht
o(Ū) ∩Hs(M) and χ = 0 on U . The χu = 0 so u ∈ Hs

o(Ū).

The basic lemmas in §2.3 hold word for word, with Hs(M) replaced by Hs
o(U).

For example, since Dα : C∞o (U) → C∞o (U) is continuous, taking closures we conclude that

Dα : Hs
o(U)→ Hs−l

o (U). Moreover, ‖Dαu‖s−l ≤ ‖u‖s when |α| = l and u ∈ Hs
o(U).

Also, if ψ ∈ C∞(M) let Mψ : C∞(M) → C∞(M) be the map φ 7→ ψφ. Then we have the

estimate ‖Mψ(φ)‖s ≤ c(s, ψ)‖φ‖s so Mψ extends to a continuous map Mψ : Hs(M) → Hs(M).

Since Mψ : C∞c (U)→ C∞c (U) we conclude that Mψ : Hs
o(U)→ Hs

o(U).

In particular, Mψ : Hs
o(U)→ Hs

o(U) is a well defined continuous linear map for ψ ∈ C∞(Ū). To

see this, let ψ ∈ Hs
o(Ū), that is ψ ∈ C∞(U ′) for some Ū ⊆ U ′ ⊆ M . Choose χ ∈ C∞c (U ′) such

that χ = 1 on Ū . Then ψ̃ = χψ ∈ C∞(M) and it agrees with ψ on Ū (that is, ψ̃ is an extension
18



of ψ from Ū to M). Now Mψ̃ : Hs
o(U) → Hs

o(U) is continuous and is the unique extension of

Mψ : C∞o (U)→ C∞o (U).

Combining these remarks, let L = (Pµν ) satisfy the following: For each 1 ≤ µ, ν ≤ m we have

Pµν =
∑
|α|≤l aα(x)Dα with aα ∈ C∞(Ū). Then L : Hs

o(U) → Hs−l
o (U) is continuous, that

is, ‖Lu‖s−l ≤ c‖u‖s for some c = c(s, L). Such an operator is elliptic if it satisfies the usual

condition: (Pµν (x, ξ))1≤µ,ν≤m is an invertible m×m matrix for all x ∈ Ū and all 0 6= ξ ∈ Rn.

Theorem 5, when applied to U , takes the following form: Hs
o(Ū) ⊆ Cko (Ū) if s > k + n

2 , where

Ck0 (U) is the set of smooth functions on Rn which vanish on the complement on U .

To see this, note that for s > k + n
2 that Hs

o(Ū) ⊆ Hs(M) ⊆ Ck(M). But now we can apply the

proposition which says Hs
o(Ū) ∩ Ck(M) ⊆ Cko (Ū).

Theorem 8. If s < t and uj ∈ Hs
o(Ū) is bounded, then there exists u∞ ∈ Hs(Ū) such that

uj → u∞ in Ht
o(Ū).

Proof. We apply Theorem 5 to conclude that, after passing to a subsequence, there exist u∞ ∈
Hs(M) such that uj → u∞ in Ht(M). Choose χ vanishing on U . Then 0 = χuj → χu∞ so

χuj = 0 =⇒ uj ∈ Hs
o(Ū). �

Theorem 9. Let L be an elliptic operator of order l and rank m on Ū . Let s, t ∈ R with s ≥ t.

Then there exists C > 0 with the following property. If u ∈ Hs+l
o (U) then Lu ∈ Hs

o(U) and

(3.19) ‖u‖Hs+l
o (U) ≤ C(‖Lu‖Hs

o(U) + ‖u‖Ht
o(U))

Proof. For every p ∈ Ū choose small open sets Vp, Up containing p with V̄p ⊆ Up. Let φp ∈ C∞c (Up)

be a cut-off function (i.e., 0 ≤ φp ≤ 1) such that φp = 1 on Vp. Let L̃p = φpL+ (1− φp)L(p).

Lemma 5. For Up sufficiently small, L̃p is an elliptic operator on M which agrees with L on Vp.

Proof. We write L = aαD
α and Lp = aα(p)Dα so

L̃p = [aα(p) + φp(x)(aα(x)− aα(p))]Dα

PL̃p(ξ) = aα(p)ξα + fα(x)ξα : C∞(M)→ End(Cm)

We wish to show PL̃p(ξ) : C∞(M)→ Aut(Cm). By homogeneity, we may assume |ξ| = 1. Then

for Up sufficiently small, |fα(x)| ≤ ε and det(aα(p)ξα) > 0 on M for all ξ ∈ M × Sn−1. But

M×Sn−1 is a compact set so det(aα(p)ξα) ≥ δ > 0 for all (x, ξ) ∈ Sn−1. Since det is a continuous

function, we have det(aα(p)ξα + fα(x)ξα) ≥ δ/2 > 0 for all (x, ξ) ∈ M × Sn−1 for ε sufficiently

small. �

Choose an open cover U ⊆ Vp1 ∪ · · · ∪ VpN and let ψj be a partition of unity subordinate to the

Vj so ψjL̃pj = ψjL. Then

‖u‖Hs+l
o (U) = ‖

∑
j

ψju‖Hs+l(M) ≤
∑
j

‖ψju‖Hs+l(M)

On the other hand,
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‖ψju‖Hs+l(M) ≤ C(‖L̃jψju‖Hs(M)+‖ψju‖Ht(M)) ≤ C(‖ψjL̃ju‖Hs(M)+‖Mju‖Hs(M)+‖ψju‖Ht(M))

where Mj = L̃jψj − ψjL̃j is an operator on M of order l − 1.

Since ψjL̃j = ψjL we see ψjL̃ju = ψjLu ∈ Hs
o(U). Thus

‖ψjL̃ju‖Hs(M) = ‖ψjLu‖Hs(M) ≤ cj‖Lu‖Hs(M) = cj‖Lu‖Hs
o(U)

We also have

‖ψju‖Ht(M) ≤ cj‖u‖Ht(M) = cj‖u‖Ht
o(U)

Now we treat the Mj term: Since Mj is of order l − 1, the continuity estimate give us

‖Mju‖Hs(M) ≤ cj‖u‖Hs+l−1(M) ≤ ε‖u‖Hs+l(M) + Cj‖u‖Ht(M) = ε‖u‖Hs+l
o (U) + Cj‖u‖Ht

o(U)

Combining we obtain (3.19).

3.2. Interior regularity. We prove the following:

Theorem 10. Let u ∈ Ht
o(U) and L and elliptic operator of order l on Ū and let t < s + l.

Assume that Lu ∈ Hs
o(U). Then φu ∈ Hs+l

o (U) for every φ ∈ C∞c (U).

Remark: The theorem shows that φu ∈ Hs+l
o (U). One might guess that in fact we have (the

stronger conclusion) u ∈ Hs+l
o (U), but this is only true if the boundary of U has some regularity

(C∞ would suffice). This boundary regularity theorem will not be proved in these notes (the

proof is quite intricate).

Proof. As in the proof of Theorem 7, it suffices to prove the theorem in the case t = s+ l−1. We

shall show that for every p ∈ U there is an open set Vp with p ∈ Vp ⊆ U such that the theorem

holds for all φ ∈ C∞c (Vp). This implies the general case: Let φ ∈ C∞c (U) and let K be the

support of φ. Choose p1, ..., pN such that K ⊆ ∪jVpj . Let ψj ∈ C∞c (Vj) be such that
∑

j ψj = 1

on K. Then ψjφ has support in Vj so ψjφu ∈ Hs+l
o (U). On the other hand,

∑
j ψjφ = φ so we

conclude φu ∈ Hs+l
o (U).

Fix p ∈ U and choose V0 open, p ∈ V0 ⊆ U so that there exists a periodic elliptic operator L̃

on M which agrees with L on V0. Thus φL̃ = φL if φ ∈ C∞c (V0). Let V be open such that

p ∈ V ⊆ V̄ ⊆ V0 and fix φ ∈ C∞c (V ). Let u ∈ Hs+l−1
o (V ) and assume Lu ∈ Hs

o(V ). Then

Lu ∈ Hs
o(V ) implies

φL̃(u) = φL(u) = φLu ∈ Hs
o(V )

But φL̃(u) = L̃(φu) +M(u) where M = φL̃− L̃φ has order l− 1. Since u ∈ Hs+l−1
o (U) we have

M(u) ∈ Hs
o(U). We conclude L̃(φu) ∈ Hs

o(U) and hence, by the periodic regularity theorem, we

see φu ∈ Hs+l(M). But φu has compact support in U so φu ∈ Hs+l
o (U).

Corollary 2. Let u ∈ Ht
o(U) and f ∈ C∞o (U). Assume that Lu = f . Then u ∈ C∞(U).
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Remark: The boundary regularity theorem would imply u ∈ C∞o (U), but again, this conclusion

is only true with some additional regularity assumption on the boundary of U .
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4. Estimates and Regularity for compact manifolds

Let M be a smooth manifold of dimension n. This means that we can write M = ∪αVα with

Vα ⊆M open, and φα : Vα → Uα ⊆ Rn a homeomorphism with the following property. The map

φβα = φ−1
β ◦φα : φ−1

α (Vα∩Vβ)→ φ−1
α (Vα∩Vβ) is a diffeomorphism. The Vα are called coordinate

neighborhoods on M .

Problem 10. Let f : Rn → R be smooth, let M = {x ∈ Rn : f(x) = 0} and assume ∇f , the

gradient of f , has the property ∇f(x) 6= 0 for all x ∈M . Show that M is a smooth manifold.

Let p ∈M and define

Tp(M) = {γ : (−ε, ε)→M : γ smooth and γ(0) = p}/ ∼

Here we say that γ1 ∼ γ2 if there exists α such that p ∈ Vα and σ′1(0) = σ′2(0) where

σj = φα ◦ γj : (−ε, ε)→ Rn

Problem 11. Show that the equivalence relationship is independent of the chosen α. Show as well

that Tp(M) has a well defined vector space structure (Hints were given in class). If F : M → N

is a smooth manifold, p ∈ M and q = f(p), define DF : Tp(M) → Tq(N) by DF ([γ]) = [F ◦ γ].

Show that DF is a well defined linear map. Show that if q ∈ Rn that Tq(Rn) = Rn (a canonical

isomorphism).

Problem 12. Let M be a smooth manifold and let T = {(p, v) : p ∈ M, v ∈ Tp(M)}. Let

π : T → M be the map (p, v) 7→ p. Suppose M = ∪αVα and φα : Vα → Uα are the coordinate

maps. Let Ṽα = π−1(Vα) and define φ̃α : Ṽα → Uα × Rn by (p, v) 7→ (φα(p), Dφα(p)). Show that

T = ∪αṼα and φ̃α give T the structure of a smooth manifold.

If Vα is a coordinate neighborhood, and p ∈ Vα, and φα(p) = (x1(p), ..., xm(p)), then xj : Vα → R
are called the local coordinates on Vα. If yj : Uβ → R are local coordinates on Vβ, then

φβα(x1(p), ..., xm(p)) = (y1(p), ..., ym(p)). Sometimes we simply write y = φβα(x).

If π : N → M is a smooth map between manifolds, and V ⊆ M an open set. We say that

s : V → N is a section of π over U if π ◦ s(p) = p for all p ∈ U . If V = M we say s is a global

section.

Let π : E → M a smooth complex vector bundle of rank m. This means that E is a smooth

manifold and π is a smooth map with the following properties.

1. For every p ∈M , Ep := π−1(p) is an m dimension vector space over C.

2. E is locally trivial. This means that there is an open cover M = ∪αVα and dif-

feomeorphisms Fα : EVα = π−1(Vα) → Vα × Rm satisfying the following. If we write

Fα(x) = (p, v) then p = πα(x) and Fα is linear on the fibers. This means v = λα(p)(x)

where λα(p) : Ep → Rm is a linear isomorphism.

(a) πα ◦ Fα = π

(b) If we write Fα(x) = (p, λα(p)(x))
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3. some other

1. First item

2. Second item

2.1. First subitem

2.2. Second subitem

2.3. Third subitem

3. Third item

(1) For every p ∈M , Ep := π−1(p) is an m dimension vector space over C.

(2) There is an open cover M = ∪αVα and diffeomeorphisms Fα : EVα = π−1(Vα)→ Vα×Rm

satisfying

(1) For every p0 ∈M , Ep0 = π−1(p0) is an m dimension vector space over C.

(2) For every p0 ∈ M there exists and open set p0 ∈ V ⊆ M and smooth sections e1, ..., em
of π over V such that {e1(p), ..., em(p)} ⊆ Ep is a basis of Ep for all p ∈ V .

The set e1, ..., em is called a local frame of E. Let Γ(V ) be the space of local sections over

V and u ∈ Γ(V ). Then we can write u(p) =
∑
uj(p)ej(p). If φ(p) = x then u(φ−1(x)) =∑

j u
j(φ−1(x)ej(φ

−1(x)). Let uj(x) = uj(φ−1(x)). Then u = (u1, ..., um) ∈ C∞(U,Cm) and we

have an isomorphism Γ(V ) ≈ C∞(U,Cm) and Γc(V ) ≈ C∞c (U,Cm), where Γc(V ) ⊆ Γ(V ) consists

of those sections of E over V which vanish outside a compact subset of V .

Let Γ(M) = {s : M → E : π ◦ s = Id}, the space of global sections on M . If V ⊆M is and open

subset, then s|V ∈ Γ(V ). Let M be compact and M = ∪αVα be a covering by small coordinate

neighborhoods and choose a frame for E over each Vα. Let ψα be a partition of unity subordinate

to {Vα}. If u ∈ Γ(E) then u =
∑

α ψαu and ψαu ∈ Γc(Vα) ≈ C∞c (Uα,Cm). Thus we have an

imbedding

Γ(M,E) ↪→
⊕
α

C∞c (Uα,Cm) ⊆
⊕

Hs
o(Uα,Cm)

If u ∈ Γ(M,E) we define

‖u‖Hs(M,E) =
∑
α

‖ψαu‖Hs
o(Uα,Cm)

and define Hs(M,E) to be the completion of Γ(M,E) with respect to this norm. In particular,

we have

Hs(M,E) ⊆
⊕
α

Hs
o(Uα,Cm)

Note that if u ∈ Γc(Uα,Cm) ≈ Γc(Vα, E) then we extend by zero to all of M and view u ∈
Γ(M,E). Thus Γc(Uα,Cm) ↪→ Γ(M,E), which implies, upon taking completions,

Hs
o(Uα,Cm) ↪→ Hs(M,E)
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Thus, if u ∈ Hs
o(Uα,Cm) then

‖u‖Hs ≤ C(Uα, s)‖u‖Hs
o(Uα)

Proposition 6. Let E →M be a smooth vector bundle and s ∈ R.

(1) The norms ‖u‖Hs(M,E) defined by different open coverings and local frames are equivalent.

(2) The inclusion map Hs
o(Uα)→ Hs(M,E) is continuous.

(3) The inclusion

Hs(M,E) ↪→
⊕
α

Hs
o(Uα,Cm)

is a homeomorphism onto its image.

4.1. Sobolev Theory for E →M . In this section we shall prove all the basic theorems for the

space Hs(M,E). Let’s recall the set-up.

Let M = ∪αVα and φα : Vα → Uα.

Let π : E →M be a vector bundle of rank m such that

EVα := π−1(Vα) ≈ Vα × Cm ≈ Uα × Cm

where the diffeormorphisms are linear on fibers.

If V ⊆M is open then

Γ(V,E) = {s : V → E : s smooth and π ◦ s = Id}

is the “space of sections over V ”.

We now have

Γ(Vα, E) = C∞(Uα,Cm)

Let ψα be a partition of unity with supp(ψα) ⊆ Vα. If u ∈ Γ(M) then ψαu ∈ Γc(Vα) =

C∞c (Uα,Cm) and

Γ(M) ↪→
⊕
α

C∞c (Uα,Cm)

Taking completions, we get

Hs(M,E) ⊆
⊕
α

Hs
o(Uα,Cm)

and if u ∈ Hs(M,E) then

‖u‖s =
∑
α

‖ψαu‖Hs
o(Uα,Cm)

If M = ∪αV ′α and ψ′α is a partition of unity, then for u ∈ Γ(M) we have

1

A
‖u‖s ≤ ‖u‖′s ≤ A‖u‖s

Thus uk ∈ Γ(M) is a cauchy sequence with respect to the ‖·‖s norm ⇐⇒ it is a cauchy sequence

with respect to the ‖ · ‖′s norm. Hence Hs(M,E) is independent of the choice of M = ∪αVα.

Proposition 7. Let ψ ∈ C∞(M,C). Then the map Mψ : Hs(M,E) → Hs(M,E) defined by

Mψ(u) = ψu is continuous.
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To see this, let ψ ∈ C∞(M,E) and u ∈ Γ(M,E). Then

‖ψu‖Hs(M,E) =
∑
j

‖ψjψu‖Hs
o(Uj ,Cm) ≤

∑
j

c(ψj , s)‖u‖Hs
o(Uj ,Cm) ≤ (

∑
j

c(ψj , s)c(Uj , s))‖u‖Hs(M,E)

Similarly, one shows that Peter-Paul holds for the space Hs(M,E).

Let u ∈ Hs(M,E). Then we have ψαu ∈ Hs
o(Uα,Cm) for all α. We say u ∈ Ck(M,E) if

ψαu ∈ Cko (Uα,Cm) for all α.

Next we observe that the Sobolev lemma holds for Hs(M,E).

Proposition 8. Assume s > k + n
2 . Then Hs(M,E) ⊆ Ck(M,E).

Proof. Let u ∈ Hs(M,E). Then u =
∑

α ψαu and ψαu ∈ Hs
o(Uα,Cm) ⊆ Cko (Uα,Cm) and hence

u ∈ Ck(M,E) (by definition).

Next we prove the Rellich compactness theorem.

Proposition 9. Let uk ∈ Hs(M,E) with ‖uk‖Hs(M,E) ≤ C. Then there exists u ∈ Hs(M,E)

such that after passing to a subsequence, we have uk → u in Ht(M,E) for all t < s.

Proof. First we recall the local version of Rellich compactness. Let U ′ ⊆ Rn and vk ∈ Hs
o(U ′).

Assume ‖vk‖Hs
o(U ′) ≤ C. Then there exists v∞ ∈ Hs

0(Ū ′) such that vk → v∞ in Ht
0(Ū ′).

If Ū ′ ⊆ U then Hs
0(Ū ′) ⊆ Hs

o(U). Thus we conclude: Let vk ∈ Hs
o(U ′). Assume ‖vk‖Hs

o(U ′) ≤ C.

Thenthere exists v∞ ∈ Hs
0(U) such that vk → v∞ in Ht

0(U).

To prove Proposition 9, choose an open subset U ′α ⊆ Uα with the property supp(ψα) ⊆ U ′α ⊆
Ū ′α ⊆ Uα, and use U ′α instead of Uα to define the open cover of M and the norm Hs(M,E).

Thus

‖u‖′Hs(M,E) =
∑
α

‖ψαu‖Hs
o(U ′α,Cm)

We have 1
A‖u‖Hs(M,E) ≤ ‖u‖′Hs(M,E) ≤ A‖u‖Hs(M,E) for some A independent of u.

Let uk ∈ Hs(M,E) with ‖uk‖Hs(M,E) ≤ C. Then ψαuk ∈ Hs
o(U ′α,Cm) ⊆ Hs

o(M,E) and

‖ψαuk‖Hs
o(U ′α,Cm) ≤ C1‖ψαuk‖′Hs(M,E) ≤ C2‖uk‖′Hs(M,E) ≤ C2A ≤ C3

where Ci is independent of k. Thus, by the local version of Rellich compactness, there exists

uα∞ ∈ Hs
o(Uα) ⊆ Ht(M,E) such that ψαuk converges in Ht

o(Uα) ⊆ Ht(M,E) to uα∞ for all α

(after passing to a subsequence). In other words, ψαuk ∈ Hs(M,E) and uα∞ ∈ Hs
o(M) and

ψαuk → uα∞ in Ht
o(M,E). This implies u∞ :=

∑
α u

α
∞ ∈ Hs(M,E) and

∑
α ψαuk = uk converges

to u∞ in Ht(M,E) for all t < s. Let u be the limit of uk so that u ∈ Ht(M,E). Th u ∈ Hs(M,E)

since ψαuk → ψαu in Ht
o(Uα,Cm) and the local version of Rellich says that ψαu ∈ Hs

o(Uα,Cm)

for all α.
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Theorem 11. Let E1, E2 be vector bundles of rank m, equipped with smooth metrics, and let

L : Γ(M,E1) → Γ(M,E2) be an elliptic operator of order l. Let u ∈ Ht(M,E1) and assume

Lu ∈ Hs(M,E2). Then u ∈ Hs+l(M,E1) and

(4.20) ‖u‖Hs+l ≤ C · (‖Lu‖Hs + ‖u‖Ht)

Moreover, the kernel of L : Hs+l(M,E1) → Hs(M,E2) is finite dimensional, independent of s,

and contained in Γ(M,E1). Finally, if u ∈ Hs+l ∩ (kerL)⊥, then

(4.21) ‖u‖Hs+l ≤ C · ‖Lu‖Hs

Corollary 3. Let u ∈ Ht(M,E) and suppose Lu ∈ C∞(M,E). Then u ∈ C∞(M,E).

Proof. The estimate (4.20) follows from the analysis on Rn: Let u ∈ Hs+l. Then

‖u‖Hs+l(M,E) =
∑
α

‖ψαu‖Hs+l
o (Uα,Cm) ≤ C

∑
α

(‖L(ψαu)‖Hs
o(Uα,Cm) + ‖ψαu‖Ht

o(Uα,Cm))

Now the definition of the Ht(M,E) norm tells us that
∑

α ‖ψαu‖Ht
o(Uα,Cm) = ‖u‖Ht(M,E). More-

over,

‖L(ψαu)‖Hs
o(Uα,Cm) ≤ Cα‖L(ψαu)‖Hs(M,E) ≤ Cα‖ψαL(u)‖Hs(M,E) + Cα‖M(u)‖Hs(M,E)

where M = ψαL− Lψα has order l − 1. Since M is also continuous we obtain

‖M(u)‖Hs(M,E) ≤ C‖u‖Hs+l−1(M,E) ≤ ε‖u‖Hs+l(M,E) + C ′‖u‖Ht(M,E)

Since

∑
α

‖ψαL(u)‖Hs(M,E) ≤ C
∑
α

‖ψαL(u)‖Hs
o(Uα,Cm) = C‖L(u)‖Hs(M,E)

we obtain (4.20).

Now let u ∈ Ht. If Lu = 0 then u is smooth, since it is in Hk for every k. If ker(L) is infinite

dimensional, then there exists a sequence up ∈ ker(L) which is orthonormal in Hs+l. Applying

(4.20), with s replaced by s + 1 and t = s + l, the sequence up is bounded in Hs+l+1. Rellich’s

theorem implies that, after passing to a subsequence, up converges in Hs+l. But this contradicts

the fact that up is orthonormal in Hk. Thus ker(L) is finite dimensional.

Assume now that (4.21) fails. Then there exists up ∈ Hs+l ∩ (kerL)⊥ with ‖up‖Hs+l = 1 and

‖Lup‖Hs → 0. Rellich implies that after passing to a subsequence, there exists u∞ ∈ Hs+l such

that up → u∞ in Hs+l−1. Then Lup → Lu∞ in Hs−1. On the other hand, ‖Lup‖Hs−1 → 0 so

Lu∞ = 0, that is, u∞ ∈ kerL.

Now let vp = up−u∞ ∈ Hs+l. Then ‖Lvp‖Hs → 0 and ‖vp‖Hs−1 → 0. This implies ‖vp‖Hs+l → 0,

that is, up → u∞ in Hs+l. But up ⊥ u∞. Thus u∞ = 0. So up → 0 in Hs+l which contradicts

‖up‖Hs+l = 1. This proves (4.21).
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5. Existence Theorems for compact manifolds

5.1. Norms and inner products. Let V be a finite dimensional vector space over R. A norm

on V is a function

N : V → R v 7→ N(v) := ‖v‖N
with the following properties:

(1) ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 ⇐⇒ v = 0.

(2) ‖λv‖ = |v| · ‖v‖ for all λ ∈ R and v ∈ V .

(3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

A map h : V × V → R is called an inner product (or a metric) if

(1) h(v, w) = h(w, v) for all v, w ∈ V .

(2) h(λv,w) = λh(v, w) for all λ ∈ R and v, w ∈ V .

(3) h(v1 + v2, w) = h(v1, w) + h(v2, w) for all v1, v2, w ∈ V .

(4) h(v, v) ≥ 0 with equality if and only if v = 0

We shall often write h(v, w) = 〈v, w〉h.

Problem 13. a) Let h be an inner product on V and define Nh(v) =
√
〈v, v〉h. Show that Nh is

a norm and the map N2
h : V → R is smooth.

b) Let N be a norm on V . Assume N2 : V → R is smooth. Show that there is a metric h = hN
on V such that N = Nh.

Hint: Let 〈v, w〉N = 1
2(‖v+w‖2−‖v‖2−‖w‖2) and consider the Taylor expansion of the function

F (v, w) = 〈v, w〉.

Now let π : E → M be a vector bundle. A function N : E → R is called a norm on E if

N2 : E → R is smooth and if Np = N |Ep is a norm for each p ∈M . If s, t ∈ Γ(M,E) are smooth

sections, define 〈s, t〉 : M → R to be the funtion 〈s, t〉(p) = 〈s(p), t(p)〉hNp .

Problem 14. Let π : E →M be a vector bundle of rank m.

a) Let s, t ∈ Γ(M,E). Show that 〈s, t〉 ∈ C∞(M,R).

b) Show that for every point p ∈M there is an open set p ∈ U ⊆M and e1, ..., em ∈ Γ(U,E) such

that e1(x), ..., em(x) is a basis of Ex for every x ∈ U . (we call e1, ..., em a local frame for E).

c) Let s ∈ Γ(U,E) where U be as in part b). Show that s = sjej where sj ∈ C∞(U).

d) Let s, t ∈ Γ(M,E) and N a metric on E and s = sjej , t = tkek ∈ Γ(U,M). Let hjk = 〈ej , ek〉N .

Show that 〈s, t〉 = hjks
jtk.

5.2. Linear Algebra. . Let V be a finite dimensional vector space over R of dimension m

and let V ∗ = HomR(V,R). Thus if λ ∈ V ∗ then λ : V → R is a linear map. We often write

〈v, λ〉 = λ(v). If e1, ..., em is a basis of V then e1, ..., em is a basis of V ∗ where ek is defined by

the equation 〈ej , ek〉 = δkj , the Kronecker δ. Thus δkj = 1 if j = k and is zero otherwise.
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Let k ≥ 0. Then Λk(V ) is a vector space of dimension
(
n
k

)
if k ≤ n and is zero otherwise. If

v ∈ Λk(V ) and w ∈ Λl(V ) then v ∧w ∈ Λk+l(V ) and v ∧w = (−1)kl w ∧ v. If e1, ..., em is a basis

of V then

(5.22) {ei1 ∧ ei2 ∧ · · · ∧ eik : i1 < i2 < · · · < ik}

is a basis of Λk(V ).

We have (ΛkV )∗ = ΛkV ∗. In fact, {ei1 ∧ ei2 ∧ · · · ∧ eik : i1 < i2 < · · · < ik} is the dual basis of

the basis (5.22).

Let f : V → W be a linear map between two vector spaces. Then f∗ : W ∗ → W ∗ is the dual

linear map and is defined as follows: f∗(λ) = λ◦f . Similarly Λkf : ΛkV → ΛkW is the linear map

defined by v1 ∧ · · · vk 7→ f(v1) ∧ · · · f(vk). If dim(V ) = dim(W ) = m, then Λmf : ΛmV → ΛmW

is a map between 1-dimensional vector spaces and is called det(f), the determinant of f .

Problem 15. Show that if e1, ...., em is a basis of V and u1, ...., um a basis of W then

f(e1 ∧ · · · ∧ em) = det(A)u1 ∧ · · · ∧ um

where A is the matrix associated to the linear transformation that is, f(ej) = Akjuk.

Hint: Note that left side of the above equation are invariant if we replace ei by ei + λej and

similarly for the right side. Here i 6= j and λ ∈ R.

5.3. Operations on vector bundles. . Let π : E →M be a vector bundle of rank m.

Let E∗ = ∪p∈ME∗p and ΛkE = ∪p∈MΛkEp.

Problem 16. a) Show that E∗ can be given the structure of a vector bundle of rank m so that

the following property holds for all open sets U ⊆ M . If e1, ..., em is a local frame for Γ(U,M)

let {e1(p), ..., em(p)} be the dual basis of {e1(p), ..., em(p) for all p ∈ U . Then e1, ..., em is a local

frame for E∗.

b) Show that ΛkE can be given the structure of a vector bundle of rank
(
m
k

)
over M so that the

following property holds for all open sets U ⊆M . If e1, ..., em is a local frame for Γ(U,M) Then

{ei1 ∧ ei2 ∧ · · · ∧ eik : i1 < i2 < · · · < ik} a local frame for ΛkE (here (ei1 ∧ ei2 ∧ · · · ∧ eik)(p) :=

ei1(p) ∧ ei2 ∧ · · · ∧ eik(p)).

Let M be a manifold of dimension n and p ∈ M . Let f be a real valued smooth function

defined in some neighborhood U1 of p and let g be a real valued smooth function defined in some

neighborhood U2 of p. We say f ∼ g if f = g on some open neighborhood p ∈ U3 ⊆ U1 ∩ U2.

This is an equivalence relation and we call an equivalence class a germ at p. Let Gp be the set of

all germs at p. Then Gp is a ring.

Let δ : Gp → R be a derivation. This means δ(f) = 0 if f is constant, that δ(f + g) = δ(f) + δ(g)

and δ(fg) = f(p)δ(g) + g(p)δ(f). Let Derp(M) be the set of derivations of Gp.
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Problem 17. a) Show that the map TpM → Derp(M) given by [γ] 7→ δγ where δγ(f) = (f ◦γ)′(0)

is an isomorphism.

b) Define T ′M = ∪pDerp(M), let U ⊆ M be open and let δ : U → T ′M be a function with

the property δ(p) ∈ Derp(M) for all p ∈ M . We say δ is a smooth section over U if for every

f ∈ C∞(U) the map p 7→ δ(p)(f) is a smooth function on U . Show that T ′M is the structure of

a vector bundle with the following property: Γ(U, T ′M) is the set of all smooth sections over U .

c) Show that if φ : U → V is a coordinate map that ∂
∂x1

, ... ∂
∂xn

is a local frame for T ′M .

This problem shows TM is isomorphic to T ′M so we shall often write TM instead of T ′M .

5.4. Existence of solutions. Let E,F be vector bundles over M of rank m and let L : Γ(E)→
Γ(F ) be a linear map. We say that L is a partial differential operator if there is an open

cover M = ∪V ∈AV by coordinate neighborhoods φV : V → U such that EV = U × Cm and

F |V = U×Cm for all V , and there is a partial differential operator LV : C∞(U,Cm)→ C∞(U,Cm)

with the following properties. For every s ∈ Γ(E) we have L(s)|V = LU (s|V ). We say L is elliptic

if LV is elliptic for all V .

Now let L : Γ(E)→ Γ(F ) be a differential operator of order l between two vector bundles of rank

m and let h, h̃ be metrics on E and F . Let dV be a fixed volume form on M . Then the adjoint

of L is the differential operator L∗ : Γ(F )→ Γ(E) which is characterized by∫
M
〈Lσ, τ〉h2 dV =

∫
M
〈σ, L∗τ〉h1 dV

for all σ ∈ Γ(E1) and τ ∈ Γ(E2). Thus, Im(L) ⊆ ker(L∗)⊥. If L is elliptic one easily sees that L∗

is elliptic.

Let σ ∈ C∞(M) and let

‖σ‖2h =

∫
M
〈σ, σ〉h dV

Then ‖σ‖2h ∼ ‖σ‖2Ho(M,E). If σ, τ ∈ Γ(V ) we let we let

(σ, τ)h =

∫
M
〈σ, τ〉h dV

Then for every s ∈ R we have (σ, τ)h ≤ C‖σ‖Hs(M,E)‖τ‖H−s(M,E). In particular, we can extend

to a pairing Hs(M,E)×H−s(M,E)→ C with the property

(u, v)h ≤ C‖u‖Hs(M,E) · ‖v‖H−s(M,E)

for all u ∈ Hs(M,E) and v ∈ H−s(M,E). Moreover, if σk → u in Hs and τk → v in H−s then

(σk, τk)h → (u, v)h.

Let σ ∈ Γ(M,E1) and τ ∈ Γ(M,E2). Then

(Lσ, τ)h2 = (σ, L∗τ)h1
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If u ∈ H l(M,E1) and v ∈ H0(M,E2) we let σj → u in Hs(M,E1) and and τk → v in H0(M,E2).

Taking limits we conclude

(Lu, v)h2 = (u, L∗v)h1

Theorem 12. Let L be an elliptic operator from V1 to V2 and L and elliptic operator. Assume

that V1, V2 are equipped with metrics. Then kerL, kerL∗ are finite dimensional and Im(L) =

(kerL∗)⊥

Proof. Let f ∈ (kerL∗)⊥ ∩ Γ(V2) and choose uj ∈ H l(V1) ∩ ker(L)⊥ such that

‖Luj − f‖H0(M,E;h2) → µ = inf
u∈Hl(V1)

‖Lu− f‖H0(M,E;h2)

We claim that uj is a cauchy sequence in H l. To see this, we use the parallelogram identity:

‖Luj − Luk‖2H0(M,E;h2) + 4 ‖L(
uj + uk

2
)− f‖2H0 = 2 ‖Luj − f‖2H0 + 2 ‖Luk − f‖2H0

so

‖Luj − Luk‖2H0 ≤ 2 ‖Luj − f‖2H0 + 2 ‖Luk − f‖2H0 − 4µ

Taking the limit we see that Luj is cauchy in H0(M,E2). Thus the uj are cauchy in H l so there

exist u∞ ∈ H l(V1) ∩ ker(L)⊥ such that uj → u∞ in H l. In particular, ‖Lu∞ − f‖H0 = µ.

Now let φ ∈ Γ(V1) be arbitrary. Then

0 =
d

dt

∣∣∣∣
t=0

‖L(u∞ + tφ)− f‖2h2 = 〈Lφ,Lu∞ − f〉h2 = (φ,L∗(Lu∞ − f))h1

Since this holds for all φ, we see that Lu∞−f ∈ ker(L∗). On the other hand, Lu∞−f ∈ ker(L∗)⊥.

This shows Lu∞ = f . Since f is smooth, then elliptic regularity imples u∞ is smooth as well.
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6. The Hodge Theorem

6.1. Vector Bundles. Let E,M be smooth manifolds and π : E → M a smooth map. We say

E is a vector bundle of rank m over M if the following conditions hold.

(1) For every p ∈M , the set Ep is vector space of dimension m.

(2) There is an open cover M = ∪αVα and smooth sections eα1 , ..., e
m
α ∈ Γ(Vα) such that

eα1 (p), ..., emα (p) is a basis of Ep for every p ∈ Vα
In this section we give an alternate definition of a vector bundle which will be useful in practice.

First, let us recall the definition of a manifold. A manifold of dimension n is an equivalence class

of triples (M, {Vα}, {φα}) where M is a set, {Vα} is a family of subsets of M , φα : Vα → Rn is a

family of functions satisfying the following.

(1) M = ∪αVα
(2) Let Uα = φα(Vα) ⊆ Rn , let Uαβ = φα(Vα∩Vβ), and let φβα : Uαβ → Uβα be the function

φβα = φβ ◦ φ−1
α . Then φβα is a smooth map for all α, β.

(3) M is Hausdorff with respect to the topology generated by the φα (i.e. the smallest

topology for which the φα are homeomorphisms).

We say that (M, {Vα}, {φα}) and (M, {V ′α}, {φ′α}) are equivalent if there is a diffeomorphism

between them.

Now we give an alternate definition of a vector bundle. A smooth vector bundle of rank m is

an equivalence class of six-tuples (M, {Vα}, {φα}, E, π, {eα1 , ..., eαm}) where (M, {Vα}, {φα}) is a

smooth manifold, E is a set, π : E → M is a function and eαj : Vα → π−1(Vα) are functions

satisfying the following.

(1) For every p ∈M , the set Ep = π−1{p} is a vector space over R of dimension m.

(2) For every p ∈ Vα, the set {eα1 (p), ..., eαm(p)} is a basis of Ep.

(3) If p ∈ Vα ∩ Vβ we write eβk(p) = ajk(p)e
α
j . Then ajk ∈ C

∞(Vα ∩ Vβ).

Remark: If we let Aβα = (ajk)1≤j,k≤m then Aβα ∈ GL(m,C∞(Vα ∩ Vβ)). Moreover, the following

cocycle relation is satisfied: Aγα = AγβAβα. We say that A is a cocycle on M with values in

GL(m). If Cα ∈ GL(m,C∞(Vα)) is any collection, then Ãβα = CβAβαC
−1
α satisfies the cocycle

relation. We say that Ã is equivalent to A. Let H1(M,GL(m)) be the equivalence classes

of cocycles. Then there is a one-to-one correspondence between isomorphism classes of vector

bundles of rank m over M and the set H1(M,GL(m)).

6.2. The Tangent Bundle. Let M be a smooth manifold and let p ∈ M . If f, g ∈ C∞(M)

we say f ∼ g if there is an open set p ∈ V ⊆ M such that f |V = g|V . Let C∞p = C∞(M)/ ∼.

We call C∞p (M) the ring of smooth germs at p. Note that C∞p (V ) = C∞p (M) for every open set

p ∈ V ⊆M .

If F : M → N is a smooth map and F (p) = q, then the map F ∗ : C∞q (N) → C∞p (M) is a ring

homomorphism.
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A derivation is a map v : C∞p (M) → R satisfying: v(f + g) = vf + vg for all f, g ∈ C∞p and

v(fg) = f(p)vg + g(p)vf . The set Tp(M) of derivations of C∞p (M) is a vector space over R.

If F : M → N is a smooth map and F (p) = q then DF : Tp(M)→ Tq(N) is a linear map, where

DF (v)(g) = v(F ∗g)

If F is a diffeomorphism then DF is an vector space isomorphism.

Proposition 10. Let U be an open set in Rn and let a ∈ U . Let ∂j,a : C∞a → R be the map

∂j,af = ∂f
∂xj

(a). Then ∂j,a ∈ Tp(U). Moreover, ∂1,a, ..., ∂n,a is a basis of C∞a (U) over R.

Proof. Let f ∈ C∞a . Then f = f(a) +
∑

j ∂j,pf · (xj − aj) +
∑

j,k cjk(x)(xi− ai)(xj − ak) for some

cjk ∈ C∞a . Let v ∈ TaU and let vi = v(xi). Then vf = vi∂i,af so v = vi∂i,a = vi ∂
∂xi

.

Let U ⊆ Rn and U ′ ⊆ Rm be open sets and Let F : U → U ′ be a smooth map. Write

y = F (x) = (F 1(x), ..., Fm(x)) where x = (x1, ..., xn) ∈ U and y = (y1, ..., yn) ∈ U ′. Fix a ∈ U
and let b = F (a) ∈ U ′. Then the linear map DF : TaU → Tb(U

′) is the map

vi
∂

∂xi
7→ Fαi v

i ∂

∂yα

where Fαi = ∂Fα

∂xi
.

Example: Let γ : (−ε, ε) → M be smooth with γ(0) = p. Define X = γ′(0) ∈ Tp(M) as follows:

Xf = (f ◦ γ)′(0). Every element X ∈ TpM is of the form X = γ′(0) for some γ.

Let TM = {(p, v)|p ∈ M,v ∈ Tp(M)} and π : TM → M the map (p, v) 7→ p. We give TM

the structure of a smooth vector bundle as follows. Let M = ∪αVα be a covering by coordinate

neighborhoods equipped with coordinate maps φα : Vα → Uα. Define e1, ..., en : Vα → π−1(Vα) as

follows: Let p ∈ Vα and f ∈ C∞p (M). Then eαj (p)(f) = ∂j(f ◦φ−1
α ) = ∂f◦φ−1

α

∂xj
where x = φα(p). To

see that this defines the structure of a smooth vector bundle, we need only check that the cocycle

is smooth. To do this, let’s fix α and β and let x = φα(p) and y = φβ(p). Then y = φβα(x) and

eαj (p)(f) = ∂j(f ◦ φ−1
α ) =

∂(f ◦ φ−1
α )

∂xj
=
∂(f ◦ φ−1

β )

∂yk
· ∂y

k

∂xj
= akj (p)e

β
k(p)(f)

and akj = ∂yk

∂xj
where y = φβα(x) is a smooth function. Since the derivative of a smooth function

is again smooth, we see that the cocycle A = (akj ) is smooth.

Remark on notation: If Vα is as above and X ∈ Γ(V, TM) then X(p) = Xj(p)eαj (p) for some

smooth functions Xj ∈ C∞(V ). If φα : Vα → Uα is the local coordinate mapping, then let us

write Dφα(X)(x) = X(x) (this is an abuse of notation). Then we have X(x) = Xj(x)∂j where

x = φα(p) and Xj ∈ C∞(Uα).

6.3. Tensor bundles. Recall that if V and W are vector spaces of dimensions m and n, then

V ⊗W is a vector space spanned by {v ⊗ w|v ∈ V,w ∈ W}. The elements v ⊗ w satisfy the

relations (a1v+a2v2) ⊗ w = a1v1 ⊗ w + a2v2 ⊗ w and v ⊗ (b1w1 + b2w2) = b1v ⊗ w1 + b2v ⊗ w2.

Let e1, ..., em and f1, ..., fn be bases of V and W . Then ei ⊗ fj is a basis of V ⊗W .
32



We let V ∗ = Hom(V,R). If e1, ..., em is a basis of V , let e1, ..., em be the dual basis: ei(ej) = δij .

The map V ∗ ⊗ V → R defined by v∗ ⊗ v 7→ v∗(v) = (v∗, v) is called the contraction map.

For 0 ≤ r ≤ m, the vector space ΛrV has dimension
(
m
r

)
. It is spanned by {v1∧· · ·∧vr : vi ∈ V }.

The wedge product is multilinear and alternating: If we fix v2, ...., vm then (av+ bw)∧ v2 ∧ · · · ∧
vm = av ∧ v2 ∧ · · · ∧ vr + bw ∧ v2 ∧ · · · ∧ vr. Moreover, if σ is a permutation of {1, ..., r} then

vσ(1)∧· · ·∧vσ(r) = sign(σ)v1∧· · ·∧vr. If e1, ..., em is a basis for V then {ei1∧· · · eir : i1 < i2 < · · · ir}
is a basis for ΛrV . If I = {i1, ..., ir} then we write eI = ei1 ∧ · · · eir .

Note that (E⊗F )∗ = E∗⊗F ∗ and (ΛrV )∗ = Λr(V ∗). To see that last identity, we need to define

the pairing ΛrV ∗ × ΛrV → R by

(v∗1 ∧ · · · ∧ v∗r , v1 ∧ · · · ∧ vr) 7→
∑
σ∈Sr

sign(σ) (v∗j , vσ(j))

In particular (eI , eJ) = δIJ so {eI} is the dual basis of {eI}.

Now let h : V × V → R be a metric on V and let e1, ..., em be an orthonormal basis of V . Let

e1, ..., em be the dual basis of V ∗. Then we define a metric h∗ on V ∗ as follows: If e1, ..., em is an

orthonormal basis of V with respect to h, then the dual basis e1, ..., em is an orthonormal basis

of V ∗ with respect to the metric h∗. We also define Λrh on ΛrV by requiring that {ei1 ∧· · ·∧eir :

i1 < · · · < ir} be orthonormal for Λrh.

Now let E →M and F →M be vector bundles of ranks m and n. Then we define E ⊗ F →M

as follows: If p ∈ M then (E ⊗ F )p = Ep ⊗ Fp. Moreover, if e1, ..., em and f1, ..., fn are local

frames for E and F , then {ei ⊗ fj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a local frames for for E ⊗ F . We

need only check that the transition functions are smooth. Let e′1, ...., e
′
m and f ′1, ..., f

′
n be frames

over V ′ and write e′i = aki ek and f ′j = bljfl with aki and blj smooth. Then e′i ⊗ f ′j = aki b
l
jek ⊗ fl

and aki b
l
j is smooth (since the product of smooth functions is smooth).

Similarly, we define E∗ by defining (E∗p) = (Ep)
∗ and requiring e1, ..., em to be a smooth frame

for E∗. We define ΛrE by defining (ΛrE)p = Λr(Ep) and requiring {ei1 ∧ · · · eir : i1 < · < ir} to

be a smooth frame for ΛrE.

Example. The bundle M has local frame ∂
∂x1

, ...., ∂
∂xn . We call the dual frame dx1, ..., dxn. Thus

dxi(∂j) = δij . Then a local frame for ΛpT ∗M is given by dxi1∧· · ·∧dxip . Sections of ΛpT ∗M →M

are called differential p-forms. If η is a differential p-form, then locally on Vα ⊆M we can write

η =
∑

i1<···<ip

ηi1···ipdx
i1 ∧ · · · ∧ dxip

for some unique smooth ηi1···ip ∈ C∞(Uα).

6.4. Ellipticity. Let E → M and F → M be smooth vector bundles and L : Γ(E) → Γ(F ) a

differential operator of order l. Let p ∈ M and ξ ∈ T ∗p (M). Then σ(ξ) : Ep → Fp is a linear

map, called the symbol of L. It is defined as follows: Choose local frames e1, ..., em for E and

f1, ..., fm for F over V ⊆ M . Let V → U be a coordinate map. Then Γ(V,E) = C∞(U,Rm),
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Γ(V, F ) = C∞(U,Rm) and L : C∞(U,Rm) → C∞(U,Rm) is given by L = (P ji (x,D))1≤i,j≤m.

Here P (x,D) =
∑
|α|≤l aα(x)Dα. For ξ ∈ Rn we let P (x, ξ) =

∑
|α|=l aα(x)ξα so P (x, ξ) is a

homogeneous polynomial of degree l in the variable ξ. Then σL(x, ξ) = (P ji (x, ξ)). We say L is

elliptic if for every x ∈M and every 0 6= ξ ∈ Rm and 0 6= v ∈ Rn, we have σ(x, ξ)v 6= 0.

Alternatively, we can define the symbol as follows: Let sp ∈ Ep and let s ∈ Γ(E) be such that

s(p) = sp. Let φ ∈ C∞(M) be such that φ(p) = 0 and dφ(p) = ξ. Then

L(φls)(p) =
1

l!
σL(ξ)(sp)

We say L is elliptic if σL(ξ) : Ep → Fp is invertible for all p and all ξ.

Note that if hE and hF are metrics on E and F , then σL(ξ)∗ = σL∗(ξ).

Let E0, ..., EN be smooth vector bundles over M equipped with smooth metrics h0, ..., hN . Let

Lk : Γ(Ek) → Γ(Ek+1) be a sequence of differential operators. Let V = ⊕k≥0E2k and let

W = ⊕k≥0E2k+1

Proposition 11. Assume that for each p ∈M and each ξ ∈ T ∗pM the sequence

0→ (E0)p → (E1)p → · · · → (EN )p → 0

is exact, where the maps are σLk(ξ) : (Ek)p → (Ek+1)p. Then

L+ L∗ : V →W and L+ L∗ : W → V

are elliptic operators.

Proof. Assume that (σ + σ∗)(
∑

k x2k) = 0 where x2k ∈ (E2k)p. We must show x2k = 0 for all k.

Since σx2k + σ∗x2k+2 = 0 for all k we conclude σ∗σx2k = 0 so

σx2k ∈ ker(σ∗) ∩ Im(σ) ⊆ ker(σ∗) ∩ ker(σ∗)⊥ = 0

Similarly σ∗x2k+2 = 0 and, replacing k by k − 1, σ∗x2k = 0.

Now x2k ∈ ker(σ) implies, by exactness, that x2k = σ(y2k−1) for some y2k−1. Then 0 = σ∗x2k =

σ∗σ(y2k−1) so σ(y2k−1) ∈ ker(σ∗) ∩ Im(σ) = 0 as before. Thus x2k = 0 and this proves (σ + σ∗)

an injective map from Vp to Wp. Since these two spaces have the same dimension, we see that

(σ + σ∗) is also surjective, that is, L+ L∗ is elliptic.

Corollary 4. Assume L ◦ L = 0. Then LL∗ + L∗L : Ek → Ek is elliptic for all 0 ≤ k ≤ N .

6.5. The d operator. Let Ak = ΛkT ∗M and let Ak(M) be the space of differential k-forms We

define a first order differential operator d : Γ(Ak)→ Γ(Ak+1) as follows:

dη =
∑

i1<···<ik

∂kηi1···ikdx
k ∧ dxi1 ∧ · · · ∧ dxik

If ξ ∈ Rn then the symbol map σ(ξ) : Akp → Ak+1
p is the map η 7→ ξ ∧ η where ξ = ξjdx

j .

Proposition 12. Let p ∈ M . The sequence of vector spaces 0 → A0
p → A1

p → · · · → Anp → 0,

with maps given by the symbols σ(ξ), is exact.
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Let Zp = ker{d : Ap → Ap+1} and Bp = Im{d : Ap−1 → Ap}. Then Bp ⊆ Zp and we define

Hp
dR(M) = Zp/Bp

We define the cup product

Hp
dR(M)×Hq

dR(M) → Hp+q
dR (M)

by the formula: (η +Bp, ω +Bq) 7→ η ∧ ω +Bp+q.

Let M be a compact manifold and g a metric on TM . We say that (M, g) is a Riemannian

manifold and call g a Riemannian metric. Let ∆ = dd∗ + d∗d. Then ∆ : Ap → Ap is elliptic.

Theorem 13.

(1) Let Hp = ker(∆). Then Hp is a finite dimensional vector space over R.

(2) Hp = ker(d) ∩ ker(d∗)

(3) Ap = Hp ⊕ Im(d)⊕ Im(d∗) = Zp ⊕ Im(d∗)

(4) Zp = Hp ⊕Bp = Hp ⊕ Im(d). In particular, Hp
dR ≈ H

p.

Proof. The first statement just says that the kernel of an elliptic operator is finite dimensional.

For the second, assume η ∈ Hp. Then

0 = ((dd∗ + d∗d)η, η) = (dη, dη) + (d∗η, d∗η)

For the third statement, observe that Hp, Im(d) and Im(d∗) are mutually orthogonal, so we have

Hp⊕ Im(d)⊕ Im(d∗) ⊆ Ap. On the other hand, Ap = Hp⊕ Im(∆) and Im(∆) ⊆ Im(d)⊕ Im(d∗).

Finally, ker(d) = Im(d∗)⊥.

6.6. Poincare duality. We wish to show that dim(Hp
dR(M)) = dim(Hn−p

dR (M)). Moreover, the

cup product pairing is perfect.

To do this, we need to define the Hodge ∗ operator. We first review some linear algebra. Let V

be a vector space of dimension m over R. Then ΛmV \{0} has two components which are called

orientations of V . An oriented vectors space is a pair (V,C) where V is a vector space and C is

a connected component of ΛmV \{0}. Let V be an oriented vector space over R and h a metric

on V . Then there is a unique element dVh of Λm which is positively oriented and of norm one.

This element is called the volume form of V . Thus, is e1, ..., en is an oriented orthornomal basis

of V , then dVh = e1 ∧ · · · ∧ en.

We define ∗ : ΛkV → Λn−kV as follows: Let e1, ..., em be an orthonormal basis of V and let

l = n− k. Then

∗(ei1 ∧ · · · eik) = ε · (ej1 ∧ · · · ∧ ejl)

where {i1, ..., ik, j1, ..., jl} = {1, 2, ..., n} and ε ∈ {1,−1} is chosen so that

ε · ej1 ∧ · · · ∧ ejl ∧ ei1 ∧ · · · eik = e1 ∧ · · · ∧ en = dVh
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A coordinate free characterization of ∗ is given as follows: If w ∈ ΛkV then ∗w is the unique

element of Λn−kV satsifying

v ∧ ∗w = (v, w)h · dVh
One easily checks that ∗∗ = (−1)p(n−p) and (−1)n ∗∆ = ∆∗.

Proposition 13. We have the following formula for d∗:

d∗ = (−1)(p+1)(n−p)+1(∗d∗)

Proof.∫
(dη, ω) dVh =

∫
dη∧(∗ω) =

∫
d(η∧(∗ω)−(−1)pη∧d(∗ω) =

∫
(−1)p+1(−1)p(n−p)η∧(∗d∗)ω

Corollary 5. (Poincaré duality)

(1) If ω ∈ Hp then ∗ω ∈ Hn−p. Moreover, the map ∗ : Hp → Hn−p is an isomorphism.

(2) The map

Hp ×Hn−p → R
given by (η, ω) 7→

∫
η ∧ ω is a perfect pairing. In particular, the cup product

Hp
dR(M)×Hp

dR(M) → R

is a perfect pairing.

7. The spectral theorem

Let M be a compact manifold, E →M a smooth vector bundle, and L : Γ(E)→ Γ(E) an elliptic

operator. Fix h a metric on E and dV a volume form on M .

Theorem 14. Assume L = L∗. Let A = {λ ∈ R : Ls = λs for some non-zero s ∈ Γ(E)}. Then

all the elements of A are non-negative. Furthermore, Vλ = {s ∈ Γ(E) : Ls = λs } is finite

dimensional and

L2(M,E) =
⊕
λ∈A

Vλ

is an orthogonal direct sum.

Proof. Consider the map L : Hs+l(M,E)→ Hs(M,E). Let

Hs
0 = {u ∈ Hs : (u, f) = 0}

for all f ∈ ker(L)}. Then Lo : Hs+l
0 → Hs

0 and then there exists C > 0 such that

1

C
‖Lu‖s ≤ ‖u‖s+l ≤ C‖Lu‖s

so L0 is an isomorphism of Hilbert spaces.

Consider L−1
0 : H0 → H l. Then L−1

0 is also an isomorphism. On the other hand, ι : H l → H0 is

a compact operator. Thus G = ι ◦ L−1
0 : L2

0 → L2
0 is a compact operator (known as the Green’s
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operator). If follows from functional analysis that the set {µ} of eigenvalues of G form a sequence

which converges to zero and L2
0 = ⊕Wµ where Wµ is the µ eigenspace of G. But Wµ = Vλ where

λ = µ−1.

8. The Peter-Weyl Theorem.

Now let M = G, a compact Lie group. A representation of G is a continuous homomorphism

π : G→ GL(n,C)

We write π(γ) = (aπij(γ)) so the matrix coeficients aπij are continuous functions on G. Let

R ⊆ L2(G) be the vector space spanned by {aπij : π irreducible, 1 ≤ i, j ≤ d(π)}

Theorem 15. The space R ⊆ L2(G) is dense.

Proof. Let g be a riemannian metric on G which is G invariant and let ∆ : C∞(G)→ C∞(G) be

the Laplacian. Then for every γ ∈ G and every f ∈ C∞(G) we have

∆(f ◦ γ) = (∆f) ◦ γ
where (f ◦ γ)(g) = f(gγ). In particular, if f ∈ Vλ then f ◦ γ ∈ Vλ for all γ since

∆(f ◦ γ) = (∆f) ◦ γ = (λf) ◦ γ = λ(f ◦ γ)

This means that G acts on Vλ so Vλ = ⊕Vπ where the Vπ are irreducible representations of G.

Let φ1, ..., φd be a basis of Vπ. Then

φj(gγ) =
∑
i

aij(γ)φi(g)

Taking g = 1 ∈ G we see that φj ∈ R.

Remark: In fact, one can show that the aπij form an orthogonal basis of L2(G). Thus, if Σ is the

set of all irreducible representation of G then

L2(G) =
⊕
π∈Σ

V d(π)
π
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