
SINGULAR KÄHLER-EINSTEIN METRICS

1. The basic results

1.1. Smooth varieties. Let X be a smooth projective complex manifold. A Kähler-
Einstein metric on X is a Kähler metric ω satisfying the equation

Ric(ω) = λω

for some λ ∈ R.

The existence of a Kähler-Einstein metric places a big restriction on X since

(1) λ < 0 =⇒ KX > 0 (i.e. X is a canonically polarized manifold)

(2) λ = 0 =⇒ KX ≡ 0 (i.e. X is Calabi-Yau manifold)

(3) λ > 0 =⇒ KX < 0 (i.e. X is a Fano manifold)

In cases 1) and 3) we let L = KX and L = −KX . In case 2), we fix once and for all
an ample line bundle L → X. Thus in all three cases, (X,L) is a polarized projective
manifold. The existence and uniqueness results in all three cases are now well understood:

In cases 1) and 2), X has a unique Kähler-Einstein metric in the class of [L]. Case 3) is
more subtle since there are obstructions to the existence of KE. But the Fano case is now
settled: a Fano manifold is Kähler-Einstein if and only if it is K-stable. Moreover, the
Kähler-Einstein metric is unique up to automorphisms of X.

1.2. Singular Varieties. We are interested in generalizing this picture to the case where
ω is a Kähler-Einstein metric on X which is a projective variety that is not necessarily
smooth, i.e. X is singular. What do we mean by a Kähler-Einstein metric on a singular
variety X? To define this notion, we again consider three types of varieties X as above,
those with KX > 0 KX ≡ 0 and KX < 0 as above. Already we need to be careful since we
haven’t defined the canonical line bundle KX (i.e. the canonical Cartier divisor class) for a
singular variety and in fact, not all projective varieties X have a canonical line bundle. If X
is normal, it always has a canonical Weil divisor class K ′X which is defined as follows. Let η
be any meromorphic section of KXreg , and D ⊆ Xreg its divisor. Then we define KX′ ⊆ X
to be the closure of D, which is a linear combination of codimension one subvarieties. So
that’s easy enough to define, but KX′ may not be Cartier, i.e. may not be locally defined
by an equation of the form f = 0. If X is not normal, then the definition of KX is a bit
more involved.
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Let’s put these technical points aside for the moment and assume that the canonical line
bundle KX exists, and further assume that one of the following conditions holds.

(1) KX > 0 (X is a “canonically polarized variety”)

(2) KX ≡ 0 (X is a “Calabi-Yau variety”)

(3) KX < 0 (X is a “Fano variety”)

To explain the results, we fix and ample line bundle L→ X. In cases 1) and 3) we require
L = KX and L = −KX respectively. Let ωFS ∈ c1(L) a smooth Kähler metric (the Fubini-
Study metric corresponding to some high multiple of L restricted to X). Then by the work
of many people, in the first two cases there is a Kähler-Einstein metric on X if an only
if the singularities of X are “mild” (in a sense that can be made precise). That is, there
exists ϕKE ∈ PSH(X,ωFS) ∩ C∞(Xreg) with the property ωKE := ωFS +

√
−1∂∂̄ϕKE is

a Kähler-Einstein metric on Xreg and
∫
Xreg

ωnKE = [L]n :=
∫
X ω

n
FS . In other words, the

singular set has Kähler-Einstein measure zero. This is also true in the Fano case provide
X is K-stable.

To be more precise, we say X has “mild singularities” if one of the following holds.

(1) KX ≡ 0 and X normal and has at most canonical singularities.

(2) If KX > 0 and X has most semi log canonical singularities. In particular, if X is
normal it has at worst log canonical singularities.

(3) If KX < 0 and X has at worst log terminal singularities.

The main existence theorems say that a Kähler-Einstein metric exists in cases (1) and (2).
And in case (3), a Kähler-Einstein metric exists if and only if X is K-stable. As mentioned
above, these are deep theorems and represent the work of many people over the course of
many years. We will sketch the proofs of (1) and (2) later in these notes. The proof of (3)
is much more difficult, and we will be addressed in a different set of notes.

So now we know when the Kähler-Einstein metric exists on a singular variety X. By
definition, it is nice and smooth on Xreg. The basic question is: what happens as we
approach Xsing?

If we pose this question on the level of potentials, the picture is well understood. Write
ωKE = ωFS+

√
−1∂∂̄ϕKE . Then a basic theorem says that ϕKE is a bounded function if and

only if X has at worst log terminal singularities. And if X has log canonical singularities
(which can only happen when KX > 0) or semi log canonical singularities (again, only
if KX > 0) then ϕKE is still bounded above but approaches −∞ very slowly near the
log canonical singularities. Roughly speaking, this means that ϕKE is bounded below by
log log |σ|h where σ = 0 is any divisor containing the bad singularities, i.e. those which are
log canonical but not log terminal. In particular, in all cases, the Lelong numbers of ϕKE
are all zero.
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If we pose this question on the level of metrics, we are asking what happens to ωKE which
is smooth on Xreg, as we approach Xsing. This problem is more subtle. We have two
metrics on Xreg, that is we have (Xreg, ωKE) and (Xreg, ωFS). We would like to compare
them. One very general result (proved using the Schwartz lemma) is that ωKE ≥ εωFS .
On the other hand, it may happend that ωKE is much bigger than ωFS : If X is a stable
curve of genus g ≥ 2 then X has cusps which means that ωKE has infinite diameter while
ωFS has finite diameter. In particular, there are sequences in X which converge in ωFS
but march off to infinity in ωKE . So we can’t expect that ωKE is bounded above by ωFS
in any sense of the phrase “bounded above”. On the other hand, we might hope

(1.1) ωKE ≤
1

ε
ωFS if ωKE has finite diameter

but even this is false in general. Perhaps a more educated guess would be

(1.2) ωKE ≤
1

|σ|2−ε
ωFS if ωKE has finite diameter

for some section σ of a line bundle O(D) with the property
∫

1
|σ|2−εω

n
FS < ∞. This has a

chance, but it seems that such analytic estimates for ωKE in terms of ωFS do not appear
to be known.

In the absence of analytic estimates, we can ask for a geometric comparison, which is a
more coarse description of relationship between (Xreg, ωKE) and (Xreg, ωKE). One way to
do this is by examining their completions.

Thus we let (X̄, dKE), be the metric completion of of the KE manifold (Xreg, ωKE). The
metric completion of (Xreg, ωFS) is simply (X, dFS). Here dFS(p, q) is the infimum of the
lengths of all curves γ : [0, 1] → X such that γ(0) = p, γ(1) = q and γ(0, 1) ⊆ Xreg.
Another way to say this is that dFS is the pullback of ωFS to any smooth resolution X ′ of
X. Note that the pullback of ωFS is only semipositive, but we can still use it to define a
semi metric on X ′ which descends to a genuine metric on X.

Since ωKE ≥ εωFS we see that every ωKE Cauchy sequence is also and ωFS Cauchy
sequence. We can ask: is the converse true? In other words, we have a distance decreasing
map

Φ : (X̄, dKE) → (X, dFS)

We can ask: Is Φ a homeomorphism? If yes, we can ask if dKE(x, y) ≤ ε dFS(Φ(x),Φ(y))α

for some α > 0.

The main results:

Before stating the theorems, we make one more assumption on the singularities in the
Calabi-Yau case. We assume, in addition to having at worst canonical singularities, that
X is crepant. The difference is that if X ′ → X is a log resolution, and if Ω′ is the pullback
of η ∧ η̄, then canonical means Ω′ is a semipositive smooth volume form while creprant
means it is a strictly positive smooth volume form. Here η is a trivializing section of KX .
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The first result says that (X̄, dKE) has finite diameter if and only if ϕKE is bounded (which
is always that case if KX < 0, but not always the case if KX > 0).

Now we ask: What is the structure of the metric space (X̄, dKE)? How is it related to the
metric space (X, dFS)? Note that X̄ and X both contain copies of Xreg as an open dense
subset. The main results are as follows:

(1) The map Φreg : (Xreg, ωKE) → (Xreg, ωFS) is distance decreasing (more precisely,
ωKE ≥ εωFS for som ε > 0).

(2) If X has finite diameter, the map Φreg uniquely extends to a homeomorphism
Φ : X̄ → X. If the diameter is infinite, then Φ : X̄ → X0 is a homeomorphism
where X0 ⊆ X is the non log canonical locus. This means X\X0 ⊆ Xsing consists
of the singularities which are strictly log canonical (i.e. not log terminal).

Note that 1) already implies that Φreg uniquely extends to a continuous map Φ : X̄ → X.

2. The Donaldson-Sun peak section construction

Before describing the results, we first explain the motivation. The reason we care about
singular Kähler-Einstein varieties is that they arise naturally as limits of families: Suppose
(Lt, ht) → (Xt, ωt) is a family of polarized Kähler manifolds which has a nice Gromov-
Hausdorff limit (X∞, g∞). By nice, we mean that the tangent cones are good (Caution:
we do not assume at this point that Ric(ht) = ωt).

Let pt ∈ Xt and assume pt → p ∈ X∞. The [DS] method allows us to construct peak
sections st centered at the points pt. Recall that st is a peak section of mLt centered at p if
|s|2hmt ∼ exp(−d2

m,pt) (meaning the quotient approaches one as m→∞ and t→∞) where

dm is the distance to pt in the metric associated to mωt. The construction goes as follows.
Let Tp(X∞) = Cp(Y ) be a tangent cone at p and Λ = Tp(X∞)× C the trivial line bundle
equipped with the Gaussian metric |σ0|∞(z) = exp(−|z|2) normaliazed so that ‖σ|L2 = 1.
Here σ0 = 1 is the canonical trivializing section. Let V b U b T reg

p be an open subsets of
the smooth locus T reg

p of Tp satisfying the following properties. There exists p′ ∈ V very
close to p, and there is a smooth function χ : T reg

p → [0, 1] with compact supported which
equals one on U whose gradient has L2 norm let than ε. Let Γt : U → Ut ⊆ Xt be an
approximating diffeomorphism and σt = (Γt)∗(χ · σ0). The σt is a smooth section of Lt.
Solve the equation ∂̄tτt = ∂̄tσt so that τt is very small L2 norm (possible by L2 estimate).
Then we let st = σt − τt.

To see that st is a peak section centered at pt we verify the following:

(1) ‖σt‖L2(Xt) ∼ 1. This follows from the definition of approximating diffeomorphism.

(2) ‖∂̄tσt‖L2(Xt) ≤ ε . This makes use of the fact that ∂∞σ0 = 0 and χ has L2 norm at
most ε (we allow ε to change from line to line, but it will always stay small).

(3) Choose a smooth section τt satisfying ∂̄tτt = ∂̄tσt and ‖τt‖L2(Xt) ≤ ‖∂̄tσt‖L2(Xt) ≤ ε.
This follows from the Hörmander L2 estimate.



SINGULAR KÄHLER-EINSTEIN METRICS 5

(4) ‖τt‖L∞(Vt) ≤ C
(
‖τt‖L2(Ut) + ‖∂̄tτt‖L2(Ut)

)
≤ ε. This follows from the elliptic

estimate together with the fact that ∂tτt = ∂tσt is very close to zero on Ut.

(5) The above steps show st is a peak section centered at p′t. To show that is is also a
peak section centered at p′t we verify the following.

(6) ‖∇st‖L∞ ≤ C‖st‖L2 ≤ C ′. This follows from Moser iteration.

(7) Since p′t is ε close to pt and since ‖∇st‖L∞ ≤ C, we see that the value of st at pt is
ε close to the value at p′t. Thus st peaks at pt.

In practice, the only delicate points that need to be checked are the Moser iteration argu-
ment and the Hörmander L2 estimate.

2.1. The L2 estimate. We pause for a moment to explain step (3) a bit more. There
are two variations of the L2 esimate that we would like to explain. In each case we have
a projective Kähler manifold (X,ω) and a semiample line bundle L→ X equipped with a
metric h.

Theorem 1. Assume h is smooth and Ric(h) = ω > 0 and Ric(ω) ≥ −1
2ω. Let η be an

∂̄–exact (0, 1) form with values in L. Consider the equation

(2.1) ∂̄τ = η

Here τ is an unknown smooth section of L. Then the equation (2.1) has a solution satisfying

‖τ‖2L2(h,ωn) ≤ 2 ‖η‖2L2(h,ωn) i.e.

∫
X

(τ τ̄)hωn ≤ 2

∫
X

(trωη ∧ η̄)hωn

Theorem 2. Assume h is a (possibly singular) metric such that Ric(h) ≥ δ ω. Let η be an
∂̄–closed form with values in the adjoint bundle L+K. Consider the equation

∂̄τ = η

Here τ is an unknown smooth section of L + K. Then the equation has a solution τ
satisfying

‖τ‖L2(h,ωn) ≤
1

2πδ
‖η‖L2(h,ωn) i.e.

∫
X

(τ ∧ τ̄)h ≤ 1

2πδ

∫
X

(trω
(
η ∧ η̄)

)
h

Note that ∂̄–closed implies ∂̄–exact by Kodaira vanishig..

Here are the pros Theorem 2.

(1) We do not need a lower bound on Ric(ω).

(2) h is allowed to be singular

(3) We only need L to be semiample, not ample.

The main con is that we require τ, η to have values in L + K instead of L. This is not a
major drawback if X is Calabi-Yau, in which case L+K = L, or if L = mK > 0 in which
case L = mK = (m− 1)K +K.
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In the first case, the Gromov-Hausdorff limit X∞ will be a singular metric space; in cases
1) and 3) it will contain an open dense subset R ⊆ X which is a smooth manifold. Not only
that, in cases 1) and 3), the metric d∞ restricted to R is defined by ω∞, a Kähler-Einstein
metric on U . But S, the complement of R, is a set of high codimension closed subset whose
structure is somewhat mysterious. For example, if X1, X2, ... is a sequence of Riemann
surfaces (i.e. elements of C, the category of smooth projective curves) of fixed genus g ≥ 2,
each equipped with their unique hyperbolic metrics of volume one, then there always exists
a convergent subsequence, but the limit X∞ may leave the category C. On the other hand,
perhaps somewhat surprisingly, the limit does not leave the category of projective curves,
that is it turns out that X∞ is a singular curve. Moreover, it’s singularities are very mild;
they are all nodes. In fact, perhaps even more surprisingly, it turns out that X∞ is an
element of C̄, the category of “stable curves”. The category C̄ consists precisely of those
curves which appear in the Deligne-Mumford compactification of moduli space. This will
be the case in higher dimensions as well.

In the second case, ω∞ will be a singular metric, in other words, it will be a “current”; it
will be smooth on an open dense subset U ⊆ X, but it’s behavior on the the singular set
X\U is somewhat mysterious. For example, suppose X is a smooth projective variety and
ωt is a Ricci flow on X, that is, ∂tωt = −Ric(ωt) − ωt where ω0 is fixed Kähler metric. If
KX > 0 then it is known that ωt → ω∞ where ω∞ is the unique Kähler-Einstein metric
on X satisfying Ric(ω∞) = −ω∞. If KX is not only “nearly ample”, for example if it is
big and nef but not ample, then the limit ω∞, still exists. It can’t be a smooth Kähler
metric however (since otherwise it would be a Kähler-Einstein metric, and that would
imply K0 is ample). On the other hand, it is the next best thing, it is a Kähler current,
which is a smooth Kähler metric on an open subset U ⊆ X and satisfying the equation
Ric(ω∞) = −ω∞ on X. Also ω∞ has full volume, that is,

∫
U ω

n
∞ =

∫
X α

n where α ∈ [KX ]
is any smooth (1, 1) form representing the class [KX ].

3. Proving the main results

We discuss the proof of the fact that X̄ is homeomorphic to X in the case where X is
crepant and KX ≡ 0 and KX > 0. The idea in this case (as well as the KX > 0 case)
is to identify X̄ as the limit of a certain family (Xt, gt) and then using Donaldson-Sun to
construct Φ : X̄ → X using sections of mL. The point here is that to show Φ is 1-1 we use
the [DS] peak section method.

3.1. The case KX ≡ 0. Assume X is crepant. We start by explaining the family (Xt, gt).
Let L → X be the given ample line bundle and χ ∈ c1(L) a Fubini-Study metric. Ω

a smooth volume form on KX with ∂∂̄ log Ω = 0. Thus Ω = (η ∧ η̄)1/m where η is a
trivializing section of mKX . The Kähler-Einstein equation, which is known to have a
solution by [EGZ], is

(χ+
√
−1∂∂̄ϕKE)n = Ω



SINGULAR KÄHLER-EINSTEIN METRICS 7

The construction of (Xt, gt)→ (X, gKE) comes from reproving the existence of ϕKE using
the method of a priori estimates, similar to the proof of Yau’s theorem (which is slightly
different than the original proof of [EGZ]). First we let π : X ′ → X be a crepant resolution,
let Ω′ = π∗Ω, and χ′ = π∗χ. Let ω′ be an arbitrary Kähler metric on X ′ and we consider
the equation

(3.1) ωnt = (χ′ + e−tω′ +
√
−1∂∂̄ϕt)

n = ectΩ′,

∫
X′
ϕt dgt = 0

and ct is chosen that that the volumes match up. These equations have smooth solutions
by Aubin-Yau. Then our family of approximating spaces is (X ′, gt) where gt is the metric
associated to ωt.

Sketch of proof (details are in another pamphlet)

(1) Use Kolodziej to get the L∞ bound on ϕt

(2) Apply Tosatti to get the diameter bound

(3) For second order estimates on X\E apply Cheng-Lu as in Yau plus Tsuji’s trick

(4) Higher order estimates are then standard.

This is enough to show that gt → g∞ = gKE on X\E so we can descend to Xreg and we
prove [EGZ]. �

Returning to proof of the theorem, we need to construct a homeomorphism Φ : X̄ → X.
Note that the identity map Φreg : (Xreg, gKE) → (Xreg, gFS) is distance decreasing by
the Schwartz lemma. Moreover, by Tosatti’s result, X̄ is compact so Φ is surjective. To
complete the proof, we must show that Φ is injective.

3.2. The Rhong-Zhang construction of (X̄, dKE). The proof that Φ is injective makes
use of the Donaldson-Sun approach. But this requires a better understanding of its tangent
cones, i.e. we need to know the tangent cones are “goood”. The problem we face is that
we don’t yet have a way of constructing (X̄, dKE). This is where the results of Rong-Zhang
come into the picture. To construct X̄, they say that instead of removing the exceptional
divisor E and then taking the C∞ limit on X ′\E = Xreg, we keep E and take the Gromov-
Hausdorff limit on the whole space. In other words, we let (X∞, d∞) = limt→∞(X ′, gt).
Then they prove

(3.2) (X∞, d∞) = (X̄, dKE) and R = Xreg

where R ⊆ X∞ is the set of regular points. This is very useful since it allows us to apply
Cheeger-Colding theory, which implies the tangent cones are good, so that the [DS] method
can be applied.

Why is such (3.2) reasonable?

(1) R ⊃ Xreg by the a priori estimates of [EGZ].
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(2) Cheeger-Colding tells us that since we have 2-sided Ricci bounds, R ⊆ X∞ is an
open dense subset (in particular X∞ is the completion of R ), and R is a C2,α

manifold and d∞|R = g∞ is a C1,α metric.

(3) Moreover, since gt is a Kähler-Einstein metric, we know that R is C∞ and g∞ is
smooth and Kähler-Einstein .

This is enough to guarantee X̄ ⊆ X∞ and Xreg ⊆ R. Rong-Zhang prove these inequalities
are actually equalities.

So this is how we get our hands on the completion. It allows us to use [DS] to study X̄
since (X∞, d∞) is a nice non-collapsing Gromov-Hausdorff limit - this means we can use
Cheeger-Colding Theory to get good tangent cones on X∞, and then use those tangent
cones as in [DS] to prove injectivity of Φ : X̄ → X.

So how do we make all this work? First of all, the Schwartz lemma implies that the identity
map Φreg : (Xreg, gKE)→ (X, gFS) is distance decreasing, so we get a distance decreasing
map Φ : X̄ → X. Since X̄ is compact, it is surjective and a cauchy sequence in (Xreg, gFS)
has a convergent subsequence in (X̄, gKE).

Next we use the [DS] method. The key step is proving that Φ is injective. So given distinct
points p, q ∈ X̄ we must show Φ(p) 6= Φ(q). To do this we need to check the two delicate
points.

Step (6) in the [DS] approach is establishing ‖s‖L∞,# + ‖∇s‖L∞,# ≤ C‖s‖L2,# using Moser
iteration. This is ok since the Sobolev constants are bounded (due to lower bounds on
Ricci and volume, and upper bounds on the diameter). This step is somewhat delicate due
to the fact that X is singular, but can be easily handled using a cuttoff function.

We continue with the construction of the peak section. As in [DS] we pick a point p ∈ X∞
and use the tangent cone to construct an smooth peak section σ. Then we solve the
equation ∂τ̄ = ∂σ̄. Since ‖∂σ‖L2 is small, we hope to find a τ with small L2 norm as well.

In [DS] this is done by working on Xi and using estimates for the eigenvalues of Laplacian
implied by the Bochner formula. But in this case, we can’t use the original method of
[DS] to establish the L2 estimate since L+ εA is not a line bundle, even if ε ∈ Q (in which
case it is just a Q line bundle). Thus, as ε→ 0 we end up constructing peak sections not
of L, but of higher and higher powers of L.

To get around this difficulty, let’s go back to the general strategy. We start with the smooth
peak section σ which has compact support inside of Xreg. Then we solve the ∂̄ equation
∂̄τ = ∂̄σ where σ is a smooth peak section of L. To get the L2 estimate, which is step (3)
of the [DS] approach, we use Demailly’s L2 estimate instead Bochner’s formula. Of course
we need to adapt Demailly to X since it is singular, but this can be done using a cuttoff.
So the peak sections separate points and in this way we prove injectivity.
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3.3. The case KX > 0. . The strategy is similar to the CY case. Our goal is to show
X̄ is homeomorphic to X in the case where X is log terminal (and homoeomorphic to X
with the non-klt locus removed if X is log canonical). The idea in is again to identify X̄ as
the limit X∞ of a certain family (Xt, gt) using Rong-Zhang, and then applying Schwartz
to construct Φ : X̄ → X using sections of mL and show Φ is 1-1 using the peak section
method of [DS].

Again we start by describing the approximating family (Xt, gt).

Recall first that by [EGZ] the following KE equation has a solution.

(χ+
√
−1∂∂̄ϕ)n = eϕ Ω

where χ is the Fubini-Study metric and Ω is an adapted volume form. The form Ω is
smooth and χ =

√
−1∂∂̄ log Ω.

As in the Calabi-Yau case, we let π : X ′ → X be a crepant resolution. Continuing the
strategy used in the CY case, (3.1), we again add a small multiple of an a Kähler metric
and invoke Aubin-Yau:

(3.3) (χ′ + e−tω′ +
√
−1∂∂̄ϕt)

n = eϕtΩ′ i.e. Ric(ωt) = −ωt + e−tω′

where, as before, χ′ is the Fubini-Study metric (scaled so that it is in the right class) and√
−1∂∂̄ log Ω′ = χ′. Then as before, using the [EGZ] version of Kolodziej, Yau-Tsuji, etc.

as before, we show that gt → gKE on X ′\E = Xreg.

Moreover, the ωt have uniformly bounded diameter by Guo-Fu-Song (at the time at which
Song originally proved his theorem, [GFS] was not available so he had to employ a different
method. More about this later).

Continuing with the general strategy, we want to identify X̄ and X∞ where X̄ is the metric
completion of (Xreg, ωKE) and X∞ is the Gromov-Hausdorff limit of (X,ωt). We would
like to apply Rong-Zhang, but there is an obstacle that wasn’t present in the Calabi-Yau
case: In the Calabi-Yau case we are taking a limit of Kähler-Einstein metrics. But here the
approximating metrics ωt are not Kähler-Einstein, only approximately Kähler-Einstein.
If fact, we don’t even have a two-sided Ricci bound. Thus the general Cheeger-Colding
results only tell us that R and d∞|R have rather weak regularity properties (e.g without
additional assumptions, we don’t even know that R is a manifold).

To solve this regularity problem, we use a powerful result of Tian-Wang which says that
from the point of view of Cheeger-Colding theory, approximate Kähler-Einstein metrics
behave just like Kähler-Einstein metrics. In other words, R is a manifold, and R ⊆ X∞ is
open, dense and convex. Morever d∞|R = ω∞ is Kähler-Einstein.

Next we apply Rong-Zhang (or rather the method of Rong-Zhang) to show that R = Xreg

and ω∞ = ωKE on R = Xreg.
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Finally, as in the CY case, the map Φ : (X∞, gKE) → (X, gFS) is distance decreasing.
The proof that Φ is injective goes through as before. The fact that X∞ has compact
immediately implies surjectivity. This completes the proof. �

Before moving on, we mention that in the original proof, Song employed a different method
since at the time, [GFS] was not available. We now briefly sketch the idea that was used
in the original paper.

The problem we face is proving the diameters of gt are uniformly bounded without using
[GFS]. Since the diameters may be unbounded, we are forced to replace (X∞, d∞) with a
pointed Gromov-Hausdorff limit (X∞, p∞, d∞).

The next step is showing that Φ : X∞ → X induces a biholomorphic map R → Xreg. This
use Tian-Wang combined with Rong-Zhang.

Then we prove the following:

Lemma 1. Let Φ : X∞ → X be as above. Let ζ ∈ X. Then the following are equivalent.

(1) There exists a sequence xj ∈ R ⊆ X such that Φ(xj)→ ζ and d∞(p∞, xj)→∞.

(2) For every sequence xj ∈ R ⊆ X such that Φ(xj)→ ζ we have d∞(p∞, xj)→∞.

To prove the lemma, we assume not. Thus xj , yj ∈ R with Φ(xj)→ ζ and Φ(yj)→ ζ but
xj →∞ and yj is bounded. After passing to a subsequence, we may assume yj → y ∈ X∞
and since Φ is continuous, Φ(y) = ζ. Now choose a path γj in Xreg joining Φ(xj) to Φ(yj)
such that γj ⊆ BdFS ,rj (ζ) ⊆ X and rj → 0. Then we can choose a point y′j ∈ R such that

Φ(y′j) ∈ γj and d∞(y′j , yj) = 1. After passing to a subsequence, y′j → y′ and Φ(y′) = ζ but

d∞(y′, y) = 1. This contradicts the injectivity of Φ.

Now the “blow-up trick” of Song-Weinkove shows that given any point ζ ∈ X, there exists
a sequence xj ∈ R such that Φ(xj) → ζ and xj is bounded. This proves X∞ has finite
diameter and Φ is onto. �

4. The case where X is smooth and KX is big and nef.

In this case, Tsuji proves the existence of a Kähler-Einstein current using the Kähler-Ricci
flow:

(4.4) ϕ̇ = log
(χ+ e−t(ω0 − χ) + i∂∂̄ϕ

Ω
− ϕ , ϕ(0) = 0.

Here χ ∈ [KX ], Ω is a smooth volume form with χ =
√
−1∂∂̄Ω, and ω0 is a fixed Kähler

form.

Tsuji’s proof starts with an application of Kawamata’s theorem which says that KX is
semiample, so we can take χ to be pullback of Fubini-Study. Note that χ is only semi-
positive since the Kodaira map need not be an imbedding (since KX need not be ample).
Tsuji proved that the Kähler-Ricci flow converges in C∞ away from the non-Kodaira locus
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(i.e. the set where χ fails to be a metric). Moreover, ϕKE has at worst log decay near this
locus. In fact, ϕKE is actually bounded by Kolodziej.

In Jian’s paper “An analytic proof of Kawamata’s theorem”, he tries to prove Tsuji’s
theorem without using Kawamata’s theorem, and then deduce Kawamata as a corollary.

To get started, we use the same equation (4.4) but this time Ω is any smooth volume form
and χ =

√
−1∂∂̄Ω is a smooth (1, 1) form which may not have any positivity properties.

The proof goes through, but with a slightly weaker conclusion.

(1) The solution ϕt converges to a unique ϕ∞ ∈ PSH(X\D,χ) where D is any divisor
such that KX − εD is ample. Moreover, ϕt converges to a Kähler-Einstein metric
ϕ∞ on X\D and hence on X\B+(KX), where B+(KX) is the augmented base locus
(i.e. X\B+(KX) is the intersection of all divisors D such that KX − εD is ample
for ε sufficiently small and positive).

(2) ϕt ≥ ε log |σD| − Cε for all sufficiently small ε > 0.

Actually, we can push Tsuji’s proof a bit further and show that ϕt → ϕ∞ smoothly on
X\B(KX) where B(KX) is the stable locus. The main step for this is the C0 estimate
which is equivalent to showing that for every fixed σ ∈ H0(X,mKX) that supX |σ|2hmt ≤ C
for some C independent of t. To carry out this step, we use the maximum principle to

H = log
∑

j |σj |
2/m
hmt

. We easily compute �H = n− trωθ where θ is the Fubini-Study semi-

metric on X ′ → X. More precisely, X 99K PN is a rational map so we resolve the singularity
of this map π : X ′ → X so that X ′ → PN is a regular map. This means π∗(mKX) = L+E
with E exceptional and L the pullback of O(1). We let θ be the Fubini-Study semi-metric
on L.

The problem here is that when we apply the maximum principle, we get trωθ ≤ C which

implies θn

ωn
t
≤ C, but we don’t know if H = log

∑
|σj |2/m
ωn
t

≤ log θn

ωn
t

since θ is only a semi

positive (1, 1) form. To remedy this, we introduce an auxillary bounded PSH function ψ
satisfying (θ+

√
−1∂∂̄ψ)n = Ω′ where Ω′ is any fixed smooth volume form on X ′ and apply

the maximum principle to H+ψ. We still have a problem since although θ gets replaced by
θψ which is strictly positive, we can’t apply the maximum principle since ψ is only smooth
away from D. So we use one more application of Tsuji to for the maximum to occur away
from D.
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Let X be a compact complex manifold with KX big and nef. Let ωt satisfy

∂tω = −Ric(ω)− ω
Let Ω be a smooth volume form and χ =

√
−1∂∂̄ log Ω. Let ht = 1

ωn
t

and hχ = 1
Ω . Then

χ = Ric(hχ), −Ric(ωt) = Ric(ht),

Fix ω0 > 0. Then

ϕ̇ = log
(χ+ e−t(ω0 − χ) +

√
−1∂∂̄ϕ)n

Ω
− ϕ so ωnt = eϕ+ϕ̇ Ω

Choose D ⊆ X such that KX − εD > 0 and hD such that χ− εRic(hD) ≥ cω0 > 0.

Theorem 3. ϕt → ϕ∞ in C∞(X\D) where Ric(χ+ i∂∂̄ϕ∞) = Ric(ω∞) = −ω∞.

If we knew KX to be semi-ample, then we could identify D with one of the divisors defining
the base locus of KX .

We sketch the proof of Theorem 4. It is easy to obtain upper bound for ϕ and ϕ̇. The key
is proving a lower bound away from D.

�ϕ = ϕ̇ − n − trω(χ+ e−t(ω0 − χ))

� ϕ̇ = −ϕ̇ − e−ttrω(ω0 − χ)
(4.5)

Thus

�Q = �
(
ϕ+ ϕ̇ − ε log |σD|2hD

)
= trω χ + ε ∂∂̄ log |σD|2hD − n ≥ c trωω0 − n

Thus if Q achieves its minimum at (x0, t0) we have trωω0 ≤ C so at the min(
ωn0
ωn

)1/n

≤ 1

n
trωω0 ≤ C

so

Q(x0, t0) = log
ωn

|σ|2h Ω
(x0, t0) ≥ −C

Next we try to prove an analogue of Theorem with X\D replaced by the complement of
the base locus.

Let π : X ′ → X be a resolution for the base locus of σ0, ..., σN , a basis of H0(X,mKX).
Then

π∗(mKX) = L′ + E′

with L′ → X ′ semiample and E exceptional. Let σ′j be the section of L defined so that the

map X ′ → PNm defined on X ′\E by (σ0, ..., σ
′
N ) agrees with that defined by (σ0, ..., σN )
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on X\B where B is the base locus (i.e. B = π(E)). We obtain a map X ′ → PN which
contracts E. Let θ′ = 1

mωFS where ωFS is the pull back to X ′ of the Fubini-Study metric
so θ′ ≥ 0. Since L is big and semi-ample there exists an effective divisor D′ on X ′ such
that

θ − εRic(hD′) > 0

for some choice of smooth metric on D′.
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