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1 Introduction

In these notes we summarize Lempert’s papers:

1. “La métrique de Kobayashi et la représentation des domaines sur la boule”, Bulletin
de la S.M.F., tome 109, (1981), 427-474

2. “Intrinsic distances and holomorphic retracts”, Complex analysis and applications,
Sofia, 1984

3. “Solving the degenerate complex Monge-Ampère equation with one concentrated
singularity”, Math. Ann. 263, (1983) 515-532

One of the main problems considered in these papers is solving the homogeneous Monge-
Ampère (HMA) equation:

det(∂i∂j̄u) = 0 in D ; u = 0 on ∂D, ∂∂̄u ≥ 0

where D ⊆ Cn is a smoothly bounded convex domain (later we will allow more general
boundary values). Thus the Hessian of u has non-negative eienvalues, and at each point
z ∈ D, at least one of the eigenvalues vanishes. The maximum principle tells that the only
smooth solution to the HMA equation is u = 0, so, in order to get a non-trivial solution,
we must allow u to be singular.

For example, if D = U = {ζ ∈ C : |ζ| < 1}, then u = log |ζ| is the solution to the HMA
with logarithmic singularity at the origin. More generally, if ζ0 ∈ U is arbitrary, then

u(ζ) = log
|ζ − ζ0|
|1− ζζ̄0|

(1.1)

is the solution to the HMA with a log singularity at ζ0, that is, u(ζ) − log |ζ − ζ0| is
bounded.

Now let D ⊆ Cn be an arbitrary convex domain. Lempert shows that for any point z0 ∈ D,
there is a unique solution u, smooth on D\{z0}, with the property: u(z) − log |z − z0| is
bounded on D. In fact, Lempert’s solution has the following properties: rank(∂∂̄u) = n−1
on D\{z0} and u vanishes on ∂D to first order. In otherwords, u = pr where p is a positive
function in a neighborhood of ∂D and r is a defining function for D, that is, D = {r < 0}
and ∂D = {r = 0}. Moreover, for Lempert’s solution, the function ε(z) = u(z)−log |z−z0|
is not only bounded, but it becomes smooth on B, the blow up of D at the point z0. In
otherwords, if v ∈ Cn is a non-zero, vector then the limit ε(z, v) = limt→0,t∈C ε(z + tv)
always exists, and if if z = z0, it depends (in general) on the direction [v] ∈ Pn−1. Moreover,
ε(z, v) is a smooth function of (z, v) ∈ B = {(z, [v]) : z ∈ D, [v] ∈ Pn−1, (z − z0) ∈ [v]}.
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To do describe Lempert’s solution, we first rewrite the explicit formula given by (1.1) in
the case D = U in a slightly different fashion: Let δ(ζ1, ζ2) be the hyperbolic distance in
U . Thus, δ(0, ζ) = log 1+|ζ|

1−|ζ| . Then we can solve for |ζ| and we get |ζ| = eδ−1
eδ+1

so

u(ζ) = log

(
eδ(ζ0,ζ) − 1

eδ(ζ0,ζ) + 1

)
(1.2)

Note that u vanishes on the boundary since δ(ζ0, ζ)→∞ as ζ → ∂U .

To write down Lempert’s solution, we first need to generalize δ in (1.2): Let D ⊆ Cn be an
arbitrary bounded domain. Then D carries a natural metric, called the Kobayashi metric,
which generalizes δ on U : Let z1, z2 ∈ D and define

KD(z1, z2) = inf{δ(ζ1, ζ2) : f(ζ1) = z1, f(ζ2) = z2 for some holomorphic f : U → D}
(1.3)

and let

K̃D(z1, z2) = inf{
k∑
j=1

K(wj−1, wj) : wj ∈ D,w0 = z1, wk = z2}

Then K̃D is a metric on D, called the Kobayashi metric. Lempert shows that K̃D = KD

if D is convex. Moreover, the inf which appears in (1.3) is realized by some unique
f : U → D, depending only on z1, z2 (such an f is called “extremal”).

Lempert’s solution to the HMA is then given by the following formula:

u(z) = log

(
eKD(z0,z) − 1

eKD(z0,z) + 1

)

Why does this work, that is, why is the Kobayashi metric the right generalization of δ?
To understand this, let’s start from the beginning, and try to find a function u satisfying
the HMA. The first observation is that rank(∂∂̄u) = n − 1 implies that ker(∂∂̄u) is one
dimensional. Thus, ker(∂∂̄u) gives us a distribution in the tangent bundle which is of
real rank two. A theorem of Bedford-Kalka (1977) says that the Frobenius condition is
satisfied for this distribution, and hence, there exists a foliatation F of D, whose leaves
are one-dimensional complex maniolds, and with the property that u is harmonic on each
leaf of F . If u is plurisubharmonic, this implies that ∂u = (∂1u, ..., ∂nu) is holomorphic
on each leaf (if a hermitian matrix H is positive semi-definite, and if H[X] = 0 for some
vector X, then HX = 0). In other words, if U ⊆ C is the unit disk and if f : U → D is
holomorphic function, parametrizing a leaf of F , then ∂u ◦ f : U → Cn is holomorphic.
Let’s write this condition down a little more explicitly:

Choose a smooth function r : Cn → R so that D = {r < 0}. Then u|∂D = 0 =⇒ u = pr
for some positive (replacing u by −u if necessary) function p : ∂D → R. Let U ⊆ C be
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the unit disk, and f : U → D be a leaf of the foliation F , chosen so that f(0) = z0. Thus
f is holomorphic and ∂u◦ f is also holomorphic, that is, q(∂r ◦ f) : U → D is holomorphic
where q = p ◦ f is a positive function on U . Note that ∂̄r(z) is an outward pointing
normal vector. Thus, in order to find u, we are led to the search for smooth functions
f : (Ū , ∂U) → (D̄, ∂D) such that f : U → D is holomorphic, and such that the function
∂U → Cn, given by ζ 7→ q1(ζ)(ν̄1(f(ζ)), ..., ν̄n(f(ζ)) extends to a holomorphic function
f̃ : U → Cn. Here ν(z) is the outward pointing unit normal vector at the point z ∈ ∂D
and q1 : ∂U → R is some unknown positive function. Lempert calls such f “extremal”.
The bulk of Lempert’s paper is the proof of the following theorem: for each unit vector
v ∈ Cn there is a unique extremal f such that f ′(0)/|f ′(0)| = v.

A second (slightly different) way to think about the results in these papers is as an attempt
to generalize the Riemann mapping theorem and the construction of the Green’s function
for the Laplacian to higher dimensions:

Let U = {ζ ∈ C : |ζ| < 1}. Let D ⊆ C be a simply connected bounded domain with
smooth boundary, z ∈ D and v ∈ C with |v| = 1. Then the Riemann mapping theorem
says that there is a unique diffeomorphism φ = φz,v : D̄ → Ū such that φ|D : D → U is
biholomorphic, φ(z) = 0 and φ′(0) = λv from some λ > 0.

Let uz(w) = log |φz(w)| and let G(z, w) = uz(w) (which is independent of the choice of v).
Then G is the Green’s function for D, that is,

1. ∂w∂̄wG(z0, w) = 0

2. G(z, w) = 0 if w ∈ ∂D

3. c. G(z, w)− log |w| is bounded in a neighborhood of z, and ∂w∂̄wG(z, w) = 0.

Now suppose D ⊆ Cn is a bounded convex domain with smooth boundary and let B(n) be
the unit ball in Cn centered at the origin. Let z ∈ D. We want to find a homeomorphism
Φ : D̄ → B̄(n) which generalizes φ above. We can’t expect Φ to be biholomorphic. But
Lempert’s theorem provides us with the next best thing: It says that there exists a ,
Lipshitz homeomorphism Φz0 = Φ : D̄ → B̄(n) with Φ(z0) = 0 and Φ : D̄\{z0} → B(n)\{0}
a diffeomorphism, satisfying the following:

1. det(∂i∂j̄ u(w)) = 0 where u = log |Φz0(w)|

2. u(w) = 0 if w ∈ ∂D

3. u(w)− log |w| is bounded in a neighborhood of z0.

In other words, u is a smooth solution to the Dirichlet problem on D with an isolated
logarithmic singularity at z.
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How does Lempert construct such a Φ? To explain this, we first construct the canonical
foliation of B(n) by holomorphic disks: Let [v] ∈ Pn−1. Choose a representative v ∈ Cn

of [v] such that |v| = 1 (so that v is uniquely determined up to an element of S1). Now
consider the map f = f0,v : U → B(n) given by f(ζ) = ζv. The image, U[v], is a disk in
B(n) passing through the origin. Moreover, if [v] 6= [v′], then U[v] ∩ U[v′] = {0} and the
intersection is transversal.

Now let D ⊆ Cn be any convex bounded domain with smooth boundary, and fix z ∈ D.
Lempert constructs a canonical foliation F of D by holomorphic disks f̃z,v : U → Ũ[v] ⊆ D
which all pass through z: In fact, The f̃ each extend to smooth maps f̃z,v : Ū → D̄ with
the following properties: f̃(∂U) ⊆ ∂D, f̃z,v(0) = z and f̃ ′z,v(0) = λv for some λ > 0. These

disks have the property that [v] 6= [v′] implies Ũ[v] ∩ Ũ[v′] = {z} and the intersection is
transversal.

Now we can define Φ : D → B(n). It will not, in general, be holomorphic (although it turns
out that Φ : D → B(n) is biholomorphic if and only if there exists some biholomorphic
map D → B(n)). But it will restrict to a biholomorphic map from Ũ[v] to U[v] for each
[v] ∈ Pn−1: the restriction is given by the obvious formula: Φ|Ũ[v]

= f̃−1
z,v ◦ f0,v : Ũ[v] → U[v].

In particular, |Φ(f̃(ζ))| = |ζ| for any extremal map f : U → D.

Lempert shows as well that u is pluri-subharmonic, that is, the hessian H = (∂i∂j̄u) is
non-negative. On the other hand, if p ∈ D and if X ∈ Tp is tangent to the foliation, then
H[X] = 0, that is, X is a null vector of H. This shows that (∂∂̄u)n = 0.

In order to completely specify Φ, we must explain how the maps fz,v are defined. One
way to specify these maps is via the following extremal characterization: Fix z, v as above.
Assume g : Ū → B̄(n) is a smooth imbedding with such that g|U : U → B(n) holomorphic,
g(∂U) ⊆ ∂B(n), g(0) = z and g′(0) = ηv for some η > 0. Then |g′(0)| ≤ |f̃ ′z,v(0)| with

equality if and only if g = f̃z,v.

Thus, to prove Lempert’s theorem, one must first prove that for a given z, v, that there
exists a unique extremal f̃z,v. This is done using the method of continuity: After scaling
and translating, we may assume 0 ∈ D ⊆ D0 = B(n). Let Dt = (1 − t)B(n) + tD. When
t = 0, we have already constructed the canonical foliation, given by the maps f0,v(ζ) = ζv.
To use the method of continuity, we must show that the set of t ∈ [0, 1] for which there
exists an extremal map f̃0,v is both open and closed. As usual, the openness is proved via
the implicit function theorem and the closedness via apriori estimates on the f̃0,z. The
apriori estimates are proved by a simple application of the Schwartz lemma. Openess is
more difficult, and requires solving the “Riemann-Hilbert” problem.

One nice feature of Lempert’s approach is that one stays within the category of holomorphic
functions. Thus, for example, one only needs rather weak apriori estimates on ft: It suffices
to have Cα estimates for any α > 0 in order to extract a subsequence which converges
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uniformly in the C∞ topology to a holomorphic limit. In Lempert’s paper, he obtains Cα

apriori estimates with α = 1
2
. On the other hand, these estimates rely quite heavily on the

convexity of D.

It turns out that the f̃z,v which Lempert constructs have a number of amazing properties
which allow one to derive all sorts of interesting consequences in complex analysis. For
example, Lempert proves that the Kobayashi metric equals the Caratheodory metric for
convex domains. He also uses these techniques to give a new proof of Fefferman’s theorem
on the existence of a C∞ extension for biholomorphic maps between strictly pseudoconvex
domains.

2 The class E

Let D ⊆ Cn be bounded and convex with smooth boundary.

Suppose f : U → D is such that f(0) = z and f ′(0) = λv for some λ > 0. Then, for
any η ≤ λ we can define g : U → D via the formula g(ζ) = f(aζ) where a = η/λ. Then
g(0) = z and g′(0) = ηv. Thus, we can always make λ smaller by this simple procedure.

Similarly, if f : U → D is such that f(0) = z1 and f(ξ) = z2, with ξ ∈ (0, 1), and and
if 0 < ξ ≤ ξ′ < 1, then we can define g : U → D via the formula g(ζ) = f(aζ) with
a = ξ/ξ′. Then g(0) = z1 and g(ξ′) = z2. Thus we can always make ξ bigger by this simple
procedure.

Thus we are led to two (aparently different, but, as we shall soon see, if fact equivalent)
existence problems for extremal maps:

Definition: Let ζ ∈ U , let z ∈ D and 0 6= v ∈ Cn. We that f : U → D is extremal with
respect to (ζ, z, v) if f(ζ) = z, f ′(ζ) = λv for some λ > 0, and if for any other holomorphic
map g : U → D such that g(ζ) = z, g′(ζ) = ηv for some η > 0 we have η ≤ λ.

Definition: Suppose z1, z2 ∈ D with z1 6= z2. We say f : U → D is extremal with respect to
(z1, z2) if there exists ζ1, ζ2 ∈ U such that f(ζj) = zj and if for any other holomorphic map
g : U → D such that g(ζ ′j) = zj for some ζ ′1, ζ

′
2 ∈ U , we have δ(ζ ′1, ζ

′
2) ≥ δ(ζ1, ζ2) , where δ

is the hyperbolic distance function on the unit disk (normalized so that δ(0, ξ) = log 1+ξ
1−ξ

for ξ ∈ (0, 1)).

The following theorem shows that the extremal problems associated with the two definitons
are, in fact, the same, as the following uniqueness theorem shows:

Theorem 1 . Fix z1, z2 ∈ D distinct. Then there exists a unique f : U → D which is
extremal with respect to z1, z2. Moreover, f is extremal with respect to any distinct pair
z′1, z

′
2 ∈ f(U). Moreover, f is extremal with respect to any triple (ζ, z, v) where z ∈ f(D)
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is arbitrary, and f(ζ) = z and f ′(ζ) = v. Similarly, if we fix ζ, z, v, then there exists a
unique f : U → D which is extremal with respect to ζ, z, v, and this f is also extremal with
respect to any distinct pair z1, z2 ∈ f(U).

In order to prove this uniqueness theorem, as well as the existence theorem, we give
a characterization of extremal maps which is more useful than those provided by the
definitions. To motivate this characterization, we begin with a simple discussion of the
geometry of convex domains in Cn:

Let H ⊆ Cn be a smooth real hypersurface (so dimR(H) = 2n−1). Let p = (p1, ..., pn) ∈ H
and let ν = (ν1, ..., νn) be a vector in Cn which is normal to H at the point p. Then the
tangent plane of H at the point p is given as follows:

Tp(H) = {(z1, ..., zn) ∈ Cn : Re
( n∑
j=0

ν̄j(zj − pj)
)

= 0}

This is a vector space over R of dimension 2n−1. We define TC
p (H) = Tp(H)∩

√
−1Tp(H).

This is a vector space over C of dimension n− 1:

TC
p (H) = {(z1, ..., zn) ∈ Cn :

n∑
j=0

ν̄j(zj − pj) = 0}

Thus TC
p (H) ∈ Pn−1 has homogeneous coordinates [ν̄1 : · · · : ν̄n].

Now let D ⊆ Cn be a bounded convex domain with smooth boundary H = ∂D. Consider
the map

Ψ : ∂D → Cn ×Pn−1 given by p 7→ (p, TC
p (∂D))

Explicitly:

Ψ(p) = (p, [ν̄1(p) : · · · ν̄n(p)])

For example, if D = B(n) then Ψ(p) = (p1, ..., pn, [p̄1 : · · · : p̄n]). Note that Ψ does not
extend to a holomorphic map D → Cn×Pn−1, but that its restriction to ∂U[v] does extend
to a holomorphic map on U . To see this, fix v. Then for p ∈ ∂U[v], we have Ψ(p) = (p, [v̄])
and this formula clearly gives the extension to all of U[v] (in fact, this extension is essentially
the identity map, since the second term, [v̄], is a constant, independent of p). Thus, if Ψ
did extend to D the extension would be given by the formula Ψ(p) = (p, [p̄]). But this is
not holomorphic in p. Moreover, it’s not even defined when p = 0.

This simple example shows that if the plan outlined in the introduction is to succeed, that
is, if we will be able to construct Φ : D → B(n) taking the foliation by extremal disks to
the canonical foliation in B(n), then the restriction of Ψ to the boundary of the extremal
disks Ũ[v] must extend to a holomorphic function on all of Ũ[v]. This extension property
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gives a necessary condition for a holomorphic disk g : U → D (sending ∂U → ∂D) to be
extremal. It turns out that this condition is essentially sufficient as well. To make this
precice, we introduce the notion of an E-disk:

Let D ⊆ Cn be a smoothly bounded convex domain, and let ν : ∂D → Cn be the outward
pointing normal vector. Suppose f : U → D is a holomorphic map. We say that f ∈ E if

1. f extends to a C1/2 map f : Ū → D̄ such that f(∂U) ⊆ ∂D.

2. There exists a positive C1/2 function p : ∂U → R such that the mapping ∂U → Cn

ζ 7→ ζp(ζ)
(
ν̄1(f(ζ)), ..., ν̄n(f(ζ))

)

extends to a holomorphic function f̃ : Ū → D̄.

3. The winding number of the function φ(ζ) = ν̄(f(ζ)) · (z−f(ζ)) is zero for some (and
hence all) z ∈ D (here z · w =

∑
zjwj and the function φ maps ∂U → C).

The second condition implies (but is slightly stronger than) requiring that Ψ extends to a
holomorphic function on f(Ū), and it is easily seen to be necessary if the plan outlined in
the introduction is to work. Similarly for the third condition.

3 Elementary properties of E.

The elements of E enjoy some remarkable elementary properties, all of which are quite
easy to prove (just a few lines per property):

Property 1 ( Regularity). If f ∈ E then f satisfies conditions 1,2,3 with C1/2 replaced
by C∞. The proof is a simple application of the reflection principle. We omit the details.

Property 2 (Retract). If f ∈ E then f has a holomorphic retract: There exists F :
D̄ → Ū , holomorphic on D, such that F ◦ f = idŪ and F (z) ∈ U for all z /∈ f(∂U).

Proof. Let z ∈ D. Consider the equation

f̃(ζ) · (z − f(ζ)) = 0, ζ ∈ Ū

We claim this equation has a unique solution ζ = F (z) ∈ U . To see this, note that the
right side is a holomorphic function of ζ. Thus, we need only show that the winding
number of the right side (on ∂U) equals one:

wind(f̃(ζ) · (z − f(ζ))) = wind(ζ) + wind(ν̄(f(ζ)) · (z − f(ζ))) = 1 + 0 = 1
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This proves the claim. Clearly, if z = f(ζ) for some ζ ∈ U , then F (z) = z.

Property 3 (Extremal). Let f ∈ E. Then f is the unique extremal with respect to
z = f(0) and v = f ′(0) and also with respect to any pair of distinct points z1, z2 ∈ f(U).

Proof. If g : U → D is such that g(0) = f(0) and g′(0) = λf ′(0) then F ◦ g : U → U is a
holomorphic self-mapping which fixes 0, so by Schwartz’s lemma, |(F ◦ g)′(0)| ≤ 1, that is,
λ|F ′(f(0))f ′(0)| = λ|(F ◦ f)′(0)| ≤ 1. But F ◦ f = id so λ ≤ 1 with equality if and only if
F ◦ g is the identity map (which implies, by a simple argument, that g = f).

Property 4 (Constancy). If f ∈ E then f ′(ζ) · f̃(ζ) is a positive constant.

Proof. Let ft(ζ) : U → D be any smooth family of holomorphic functions with the
property: ft(∂U) ⊆ ∂D, ft(0) = z0, and f = f0 ∈ E. Let g : U → Cn be the map:
g(ζ) = d

dt
|t=0 ft(ζ). Then we claim

Re[ζ−1g(ζ) · f̃(ζ)] = 0 if ζ ∈ U

To see this, note that for ζ ∈ ∂U , that g(ζ) is tangent to ∂D at the point f(ζ) and hence
Re(g(ζ) · ν̄(f(ζ)) = Re(ζ−1g(ζ) · f̃(ζ)) = 0 for all ζ ∈ ∂U and hence, by the open mapping
theorem, for all ζ ∈ U .

If we apply this to ft(ζ) = f(eitζ) then ζ−1g(ζ) = if ′(ζ) so we obtain

0 = Im(f ′(ζ) · f̃(ζ))

Thus the holomorphic function f ′(ζ) · f̃(ζ) is real valued on ∂U . The Fourier expansion
of this function shows that it must be constant on U . A simple argument shows that this
constant, which is certainly real, is in fact positive.

Property 5 (Kobayashi). If D ⊆ Cn is an open set, and z1, z2 ∈ D, let

cD(z, w) = sup{ δ(F (z1), F (z2)) : F ∈ Hol(D,U) }

kD(z, w) = inf{δ(ζ1, ζ2)) : f ∈ Hol(U,D), f(ζj) = zj }

The function cD is called the Carathéodory distance. It clearly decreases under holomor-
phic maps D → D′. Clearly cU = kU = δ, the hyperbolic distance.

The function kD is not necessarily a metric, since it may not satisfy the triangle inequality.
To remedy this we define

k′D(z1, z2) = inf{
m∑
j=1

k(wj−1, wj) : w0 = z1, wm = z2 }

Then k′ is a distance, and the Schwartz lemma implies k′ ≥ c.
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Let f ∈ E and let ζ1, ζ2 ∈ U . Let zj = f(ζj). Then

cD(z1, z2) = k′D(z1, z2) = kD(z1, z2) = δ(ζ1, ζ2)

Proof. Let F be the retraction of f . Since the Caratheodory distance decreases under
holomorphic maps:

c(z1, z2) ≥ δ(F (z1), F (z2)) = δ(ζ1, ζ2) ≥ k(z1, z2) ≥ k′(z1, z2) ≥ c(z1, z2)

4 Apriori estimates

Main Theorem.

1. Let f : U → D be a holomorphic map. Then f ∈ E if and only if f is extremal with
respect to z = f(0) and v = f ′(0).

2. Let z ∈ D and 0 6= v ∈ Cn. Then there exists a unique f : U → C extremal with
respect to z, v.

Outine of proof: The first part has already been proved in the previous section (this is
the “extremal property”). As for the second part, we must show that for any z ∈ D and
0 6= v ∈ Cn, there is an f ∈ E = E(D) such that f(0) = z and f ′(0) = λv with λ > 0.

We may assume that D ⊆ B(n). Let Dt = tD + (1− t)B(n). Then z ∈ Dt for all t ∈ [0, 1].
Let T ⊆ [0, 1] be the set of all t ∈ [0, 1] for which there is an ft ∈ E(Dt) such that ft(0) = z
and f ′t(0) = λtv with λt > 0. We must show that T is open and closed. In this section, we
show that T is closed.

Lemma. Fix D ⊆ Cn convex and let z ∈ D. Let f ∈ E be such that f(0) = z. Then

1. |f(ζ1)− f(ζ2)| ≤ C|ζ1 − ζ2|1/2 for all ζ1, ζ2 ∈ U .

2. |f̃(ζ1)− f̃(ζ2)| ≤ C|ζ1 − ζ2|1/2 for all ζ1, ζ2 ∈ U .

Here C is a constant, independent of ζ1, ζ2. In fact, C depends only on the geometry of
(D, z): To be precise, let ε > 0. We say that (D, z) ∈ C(ε) if

1. diam(D) < 1
ε

and ε < |curvature(∂D)| < 1
ε

2. dist(z, ∂D) > ε
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3. For every pair z1, z2 ∈ D there exist balls B1, ..., Bm of radius ε
2
,f centered at p1, ..., pm,

such that z1 ∈ B1, z2 ∈ Bm, dist(pj−1, pj) <
ε
4

and m < 1
ε2

.

If (D, z) ∈ C(ε) then C depends only on ε.
Proof. We first prove that there exists C, depending only on ε, such that

dist(f(ζ), ∂D) ≤ C(1− |ζ|) (∗)

To prove this, note that by the Kobayashi property,

k′(f(0), f(ζ)) = δ(0, ζ) = log
1 + |ζ|
1− |ζ|

≥ − log(1− |ζ|) (∗∗)

Assume, for the moment, that dist(f(ζ), ∂D) > 1
ε
. Then it follows from property c) that

C ≥ k′(z, f(ζ)). But this, combined with (**) shows that 1 − |ζ| is bounded below by a
positive constant. On the other hand, the diam(D) is bounded above, and this gives (*).

Now suppose dist(f(ζ), ∂D) ≤ 1
ε
. Again property c) implies:

k′(z, f(ζ)) ≤ k′(z, pm) + k′(pm, f(ζ)) ≤ C + log
1

dist(f(ζ), ∂D)

Combining this with (**) gives (*).

To prove the lemma, it suffices to show that for each ζ0 ∈ U ,

|f ′(ζ0)| ≤ C(1− |ζ0|)−1/2 (∗ ∗ ∗)

This will follow from (*) and the Schwartz lemma which says the following: Suppose
g : U → BR(0) is holomorphic. Then the Schwartz lemma says that

|g(0)|2 + |g′(0)|2 ≤ R2

Fix ζ0 ∈ U and apply the Schwartz lemma to g(ζ) = f( ζ0−ζ
1−ζ̄0ζ ) where BR is chosen as

follows: Let w ∈ ∂D be chosen so that dist(f(ζ0), ∂D) = |f(ζ0) − w|. Let BR be a ball
tangent to ∂D at the point w, with radius R = R(ε) chosen such that D ⊆ BR. Without
loss of generality, we may assume that BR is centered at 0, so that R = |w|. Then

|g′(0)|2 ≤ |w|2 − |f(ζ0)|2 ≤ C(|w| − |f(ζ0|) ≤ C(|w − f(ζ0)|) = C(dist(f(ζ0), ∂D)

We get:

|f ′(ζ0)| =
|g′(0)|

1− |ζ0|2
≤ |g′(0)|

1− |ζ0|
≤ C

dist(f(ζ0), ∂D)1/2

1− |ζ0|
≤ C(1− |ζ0|)−1/2
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where the last inequality comes from (*). This proves the first part of the lemma. The
second part is proved in a similar manner.

Closedness of T now follows; we need only observe that Dt ∈ C(ε) for some ε > 0, inde-
pendent of t.

5 Implicit function theorem.

We want to show that if f : U → D0 is extremal with f(0) = z and f ′(0) = λ0v0 , then if
Dt and vt are small pertubations of D0 and v0, there is an extremal disk ft : U → Dt such
that ft(0) = z and f ′t(0) = λtvt with λt > 0.

To prove this, we first must make precise the meaning of “perturbation”: How do we
perturb a convex domain D0? This can be done in a very down to earth way, via the
defining function of the boundary of D0. To simplify matters (although Lempert treats
the case of smooth boundary as well), we shall assume that D0 = {r0 < 0} where r = r0 :
Cn → R is a real analytic function such that dr 6= 0 on ∂D. For example, if D0 is the
unit ball, we can take r(z) = |z|2 − 1.

An outward pointing normal vector is given by ν̄(z) = rz = (∂z1r, ..., ∂znr). Thus, in the
example of the unit ball, ν(z) = (z1, ..., zn).

Associated to r = r(z, z̄) is its complexification r(z, w), which is a holomorphic function
in C2n. Thus, in the example of the ball, r = zz̄ − 1 and r(z, w) = zw. Now we fix V0,
a neighborhood of ∂D in Cn = R2n, and we let V ⊆ C2n be its complexification. Let X
be the Banach space of bounded holomorphic functions on V which are real valued on V0

(with respect to the sup norm). The theorem we need to prove is the following:

Theorem 2 Let f0 : U → D0 be a mapping in E(D0) with f0(0) = z and f ′0(0) = v0. Then
there is an open set M ⊆ X×Cn with (r0, v0) ∈M , and an analytic map F : M → C1/2(Ū)
such that F (r0, v0) = f0 such that for (r, v) ∈ M the map f = F (r, v) is an E mapping
f : U → Dr = {r < 0} with f(0) = z and f ′(0) = λv, λ > 0.

Outline of Proof.

We want to use the implicit function theorem, which says the following: Suppose that
Φ : E1×E2 → F is a smooth map between Banach spaces, and suppose (e1, e2) ∈ E1×E2

is such that Φ(e1, e2) = 0. Assume D2Φ(e1, e2) : E2 → F is invertible. Then there exists
a smooth function F : U1 → E2, where e1 ∈ U1 ⊆ E1 is open, such that F (e1) = e2 and
Φ(e, F (e)) = 0 for all e ∈ U1.

Let us fix (r, v) ∈ X ×Cn, close to (r0, v0). Here X ×Cn will play the role of E1. Suppose
we are given (f, p, λ) where f : U → Cn is a holomorphic function, p is a positive real

12



valued function (normalized so that p(1) = 1), and λ is a positive real number. It’s not
hard to give the space of such triples the structure of a Banach space (this will be done
in detail below), which will play the role of E2. What does it mean to say that the triple
(f, p, λ) is an E mapping with respect to the given pair (r, v)? Well, by definition, it means
that

1. f(∂U) ⊆ Dr,

2. ζp(ζ)(rz ◦ f), which is a map ∂U → Cn, extends to a holomorphic map U → Cn.

3. f ′(0) = λv.

We want to use the implicit function theorem to show that for a given (r, v) ∈ E1, close to
(r0, v0), there is a unique (f, p, λ) ∈ E2 satisfying conditions 1,2,3. In order to do this, we
must rewrite these conditions as an equation Φ(r, v; f, p, v) = 0 where Φ : E1 → E2 → F
is a smooth map between Banach spaces (which we will be defined below). In other words,
we must translate conditions 1,2,3 into equations.

We haven’t yet defined E2 and F , but nevertheless, it’s easy to see how to formally proceed:
The third condition is already an equation, namely, f ′(0) − λv = 0. The first is also an
equation, namely r ◦ f = 0. As for the second condition, this is also an equation, namely
π[ζp(ζ)(rz ◦ f)] = 0 where π is orthogonal complement of the projection onto the Hardy
space. Thus, on a formal level,

Φ(r, v; f, q, λ) = (r ◦ f, π[ζ(p0 + q)(ζ)(rz ◦ f)], f ′(0)− λv)

where we have rewritten p = p0 + q and q is normalized so that q(1) = 0.

Step 1. We need to defne the Banach spaces E2 and F : Let

A = {a : ∂U → Cn : a ∈ L2(∂U), and a′, a′′ ∈ L2(∂U)}

In other words, A is the Sobolev space L2
2(∂U,Cn). Note that A ⊆ C1/2 ⊆ C0. If a ∈ A

then we can write a =
∑∞
n=−∞ ane(nt) where an ∈ Cn, and t ∈ R/Z.

Let
B = {a ∈ A : an = 0 if n ≤ 0}

Thus b ∈ B defines a holomorphic function b : U → Cn with the property b(0) = 0.

Let
Q = L2

2(∂U,R) and Q0 = {q ∈ Q : q(1) = 1}

Let π : A→ B̄ be the map

π(a) =
−1∑

n=−∞
ane(nt)

13



Thus ker(π) ⊆ A is the subspace of functions with holomorphic extensions to U .

Finally we let

E1 = X ×Cn , E2 = B ×Q0 ×R and F = Q× B̄ ×Cn

and we define Φ : E1 × E2 → F by the formula above:

Φ(r, v; f, q, λ) = (r ◦ f, π[(p0 + q)ζ(rz ◦ f)], f ′(0)− λv)

Then Φ(r, v; f, q, λ) = 0 if and only if (f, q, λ) is an E mapping for (r, v).

Step 2. After making a change of variables, we may assume that

f0(ζ) = (ζ, 0, ..., 0), if ζ ∈ U and ν̄(ζ, 0, ..., 0) = (r0)z(f0(ζ)) = (ζ̄ , 0, ..., 0)

That is, we may assume that D behaves like the unit ball, at least as far as f0 is concerned.
In particular, p0 = 1. The proof is a short but tricky winding number argument, which I
will omit. The condition that D is convex at the points f0(ζ) becomes

n∑
i,j=2

(r0)ziz̄j(f0(ζ))viv̄j >

∣∣∣∣∣∣
n∑

i,j=2

(r0)zizj(f0(ζ))vivj

∣∣∣∣∣∣ (1)

for all 0 6= v ∈ Cn−1

Step 3. Computation of the derivative. We must show that D2Φ(r0, v0; , f0, 0, 1) : E2 → F
is invertible, that is, we must establish the invertibility of the operator

L = Φ(f,q,λ)(r0, v0; f0, 0, 1) : B ×Q0 ×R → Q× B̄ ×Cn

Thus we let (ḟ , q̇, λ̇) ∈ B ×Q0 ×R. For example, ḟ is a column vector whose entries are
ḟj =

∑
k≥1 ajkζ

k. Let us compute L(ḟ , q̇, λ̇):

L(ḟ , q̇, λ̇) =
d

dt

∣∣∣∣
t=0

(r0 ◦ (f0 + tḟ), π[(1 + tq̇)ζ(r0z ◦ (f0 + tḟ)], ḟ ′0(0) + tḟ ′(0)− (1 + tλ̇)v0)

= ((r0z ◦ f0)ḟ + (r0z̄ ◦ f0)ḟ , π[q̇ζ(r0z ◦ f0) + ζ(r0zz ◦ f0)ḟ + ζ((r0zz̄ ◦ f0)¯̇f ], ḟ ′(0)− λ̇v0)

In this last epression, we view r0z ◦ f0 and r0z̄ ◦ f0 as a row vectors, ḟ and ¯̇f as a column
vectors, and r0zz ◦f0 and r0zz̄ ◦f0 as an n×n matrices. Thus (r0z ◦f0)ḟ is a scalar function,
(r0zz ◦ f0)ḟ is a column vector of functions, and ḟ ′(0)− λ̇v0 is a column vector of scalars.

Now, to show that L is invertible, we must give ourselves an arbitrary element (ρ, φ, ν) ∈
Q× B̄ ×Cn and show that the system of linear equations

(r0z ◦ f0)ḟ + (r0z̄ ◦ f0)ḟ = ρ ∈ Q (i)

14



π[q̇ζ(r0z ◦ f0) + ζ(r0zz ◦ f0)ḟ + ζ((r0zz̄ ◦ f0)¯̇f ] = φ ∈ B̄ (ii)

ḟ ′(0)− λ̇v0 = ν ∈ Cn (iii)

has a unique solution (ḟ , q̇, λ̇) ∈ B ×Q0 ×R.

Since r0z ◦f0 = (ζ̄ , 0, ..., 0), the equation (i) becomes ζ̄ ḟ1 +ζ ¯̇f1 = ρ ∈ Q = L2
2(∂U,R). Here

ḟ1 : U → C is an unkown holomorphic function such that ḟ1(0) = 0. Thus we can write (i)
as follows: Re(ζ−1ḟ1) = ρ. This determines all the coefficients of ḟ1 =

∑
k≥1 a1kζ

k, except
for a11, which is only determined up to the addition of an arbitrary purely imaginary
constant (so Re(a11) is determined, and a1k is determined if k ≥ 2).

Now the equation (iii) implies that Re(a11) − Re(ν1) = λ̇ (since v0 = (1, 0, ..., 0)). This
determines λ̇. Similarly, Im(a11)− Im(ν1) = 0. This determines Im(a11).

Conclusion: (i) and (iii) uniquely determine ḟ1, λ̇, and ḟ ′j(0) for all j.

Now we turn our attention to equation (ii), which is system of n linear equations. We
focus on the last n − 1 equations: For z = (z1, ..., zn) ∈ Cn, let z∗ = (z2, ..., zn) ∈ Cn−1.
Then the last n− 1 equations become:

π
[
ζ(r0z∗z∗ ◦ f0)ḟ∗ + ζ((r0z∗z̄∗ ◦ f0)¯̇f ∗ − ψ

]
= π [αg + βḡ − ψ] = 0 (2)

where ψ : ∂U → Cn−1 is a known L2
2 mapping, α = ζ2(r0z∗z∗ ◦ f0), β = ((r0z∗z̄∗ ◦ f0), and

and g = ζ−1ḟ∗.

To solve (2), we establish the following:

Lemma Let α, β : ∂U → M(n−1)×(n−1)(C) be real analytic functions with α symmetric
and β hermitian. Let ψ ∈ L2

2(∂U,Cn−1), and b ∈ Cn−1. Then there exists a unique
holomorphic function g : U → Cn−1 satisfying:

π [αg + βḡ − ψ] = 0, g(0) = b . (3)

Proof. Since β is self-adjoint, by the “Riemann-Hilbert” theorem (proved by Lempert in
his paper), there is a holomoprhic H : Ū → GL(n − 1,C) such that HH∗ = β. Now (3)
becomes:

π
[
H−1αg + H∗ḡ −H−1ψ

]
= 0

Putting h = tHg and T = (H−1)α(tH−1), we write this as:

π
[
h̄
]

= π
[
H−1ψ − Th

]
, h(0) = a
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Now let’s take the complex conjugate of both sides, and note that π̄h̄ = π(h̄) = h− a if h
is holomorphic, and h(0) = a, so we can rewrite (3) as:

h = π̄
[
H−1ψ − Th

]
+ a

Thus, if we define K : L2
1(∂U,Cn−1) → L2

1(∂U,Cn−1) by K(h) = π̄ [H−1ψ − Th] + a,
then equation (3) can be expressed as: K(h) = h.

To show that K has a fixed point, we would like to show that it’s a contraction mapping,
that is,

‖π̄Th‖ ≤ µ‖h‖

for some µ < 1. To do this, we first observe that (1) implies ‖T‖op < 1. Now it’s certainly
true that K has a fixed point in L2 since ‖π̄Th‖L2 ≤ ‖Th‖L2 ≤ ‖T‖op‖h‖. But if we use
the L2

2 norm, then the derivatives of T appear, and all we know about these derivative is
that they are bounded, the the sup norm. On the other hand, the following simple trick
allows us to avoid this problem: Define the norm ‖h‖ε on L2

2 as follows:

‖h‖ε = ‖h‖L2 + ε‖h′‖L2 + ε2‖h′′‖L2

Then the εT ′h and ε2T ′′h terms can be asborbed in ‖Th‖L2 and the ε2T ′h′ term can be
absorbed in ε‖h′‖L2 . This proves K has a fixed point and the lemma is established.

Finally we observe that we can now choose q̇ to uniquely solve the first equation in (ii).

6 Solving the HMA equation.

We wish to prove that u = log |Φ| is plurisubharmonic, that it solves the homogeneous
Monge-Ampere equation, and that it has a logarithmic singularity at z0 ∈ D.

6.1 Logarithmic singularity.

First, why is the singularity logarithmic? To see this, recall the definition of kD:

kD(z1, z2) = inf{δ(ζ1, ζ2) : f(ζj) = zj for some holomorphic f : U → D}

Let’s assume z0 = 0 ∈ D. Then we must show that u(z) − log |z| is bounded in a
neighborhood of 0 ∈ D. To see this, choose two balls, B1 ⊆ D ⊆ B2, with radii r1, r2,
and centered at the origin. Then kB1(0, z) ≥ kD(0, z) ≥ kB2(0, z) for all z ∈ B1, that is, if
f(0) = 0 and f(ζ) = z with f extremal, then
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log
1 + |z|

r1

1− |z|
r1

≥ log
1 + |ζ|
1− |ζ|

≥ log
1 + |z|

r2

1− |z|
r2

Here we have used the Kobayashi property. Thus we obtain:

log
|z|
r1

≥ log |ζ| ≥ log
|z|
r2

Recall that u(z) = log |ζ| (by the definition of u), we see u(z)− log |z| is bounded on D.

6.2 The family of Kobayashi balls.

Next we show that u is plurisubharmonic. To do this, we study the Kobayashi balls in D:
If z ∈ D and z 6= z0 then z determines a unique extremal map f : U → D. Let ζ ∈ U be
such that f(ζ) = z and let v = f ′(0)/|f ′(0)|. Recall that z 7→ ζv defines a homeomorphism
Φ : D → B(n). Let 0 < r ≤ 1 and let Dr = {z ∈ D : Φ(z) < r}. Then Dr ⊆ D is a ball, in
the Kobayashi metric, centered at z0. When r = 1, then Dr = D.

We claim that Dr is convex: Let z1, z2 ∈ Dr and f1, f2 extremal such that f1(r) = z1 and
f2(r) = z2. Let h = λf1 + (1 − λ)f2 with 0 ≤ λ ≤ 1. Then h : U → D is holomorphic,
h(0) = z0 and h(r) = λz1 + (1 − λ)z2. By virtue of the extremal characterization of the
Kobayashi metric, we see that λz1 + (1− λ)z2 ∈ Dr so Dr is convex.

Recall that if f : U → D is extremal, then f̃ : U → Cn is holomorphic and if |ζ| = 1, then
f̃(ζ) is the “slope” of Hz, the holomorphic tangent plane to z = f(ζ) ∈ ∂D. Moreover,
f(∂U) ⊆ ∂D is transversal to H (note that dimR(H) = 2n− 2 and dimR(∂D) = 2n− 1).

Now choose 0 < r ≤ 1 and consider the maps fr : U → Dr and f̃r : U → Cn defined
fr(ζ) = f(ζr) and f̃r(ζ) = f̃(ζr). Then it is clear from the definitions that fr is extremal
for Dr. We claim as well that that f̃r is the corresponding holomorphic normal. To see
this, we need the “constancy property” which we now recall:

Let ft(ζ) : U → D be any smooth family of holomorphic functions with the property:
ft(∂U) ⊆ ∂D, ft(0) = z0, and f = f0 ∈ E. Let g : U → Cn be the map: g(ζ) = d

dt
|t=0 ft(ζ).

Then we proved

Re[ζ−1g(ζ) · f̃(ζ)] = 0 if ζ ∈ U

We apply this as follows: Let z ∈ ∂Dr and let z(t) be any smooth curve in ∂Dr such
that z(0) = z. Let ft be the extremal map determined by zt. Then ft is a smooth family
satisfying the hypothesis of the constancy property. Thus we conclude: Re[g(r) · f̃(r)] = 0.
But g(r) = d

dt
|t=0ft(r) = d

dt
|t=0 z(t) = z′(0). Since z′(0) is an arbitrary tangent vector to

∂Dr at the point z, we see that f̃(r) is normal to ∂Dr.
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6.3 Plurisubharmonicity of u

We wish to show that u is plurisubharmonic and that it satisfies the HMA. So let’s fix
w ∈ D and choose r such that w ∈ ∂Dr. Let f be the extremal map corresponding to w.
We can choose coordinates so that the vector field ∂

∂z1
is tangent to f(U) and such that

∂
∂z2
, ..., ∂

∂zn
are tangent to ∂Dr at w. The convexity of Dr implies that (uzi,z̄j(w))2≤i,j≤n

is positive semi-definite. We claim that (uz1,z̄j(w))1≤j≤n = 0. This will prove that u is
pluri-subharmonic and that it satisfies the HMA equation.

To see this, let X and Y be two holomorphic vector fields along f(U) ⊆ D with Y tangent
to f(U) and Y nowhere vanishing. Then Y (f(ζ))· f̃(ζ) is a nowhere vanishing holomorphic
function on U and

α(ζ) =
X(f(ζ)) · f̃(ζ)

Y (f(ζ)) · f̃(ζ)

is a holomorphic function on U . Let

V (ζ) = X(f(ζ)) − α(ζ)Y (f(ζ))

Then V (ζ) is holomorphic along f(U) and V (ζ) · f̃(ζ) = 0. Hence V (ζ) is tangent to ∂Dr

at f(ζ) (where r = |ζ|). Since u is constant on ∂Dr, we conclude du(V (ζ)) = 0, that is,

du(X(ζ)) = α(ζ)du(Y (ζ))

On the other hand, du(Y (f(ζ)) = ∂(u ◦ f) = ∂ log |ζ| which is holomorphic in ζ. Thus
du(X(ζ)) is holomorphic. Applying this to X = ∂

∂zj
we get:

0 =
∂

∂ζ̄
uzj(f(ζ))|ζ=r = uziz̄k(f(ζ)) · f ′j(r)

But we have normalized so that f(ζ) = (f1(ζ), 0, ..., 0) so the last equality becomes the
following: uziz̄1(f(ζ)) = 0 for 1 ≤ i ≤ n. Thus the complex hessian of u is a matrix whose
first row and column are all zero, and whose lower right hand (n− 1)× (n− 1) corner is
positive semi-defninite. This proves that u is plurisubharmonic, and that it satsifies the
HMA equation.
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