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1 Classification problems: Discrete vs. Continuous

The central problem of Teichmuller theory can be briefly stated as follows: Teichmuller
theory: Let S be a smooth compact surface of genus g. Classify the complex structures
on a fixed compact surface S (up to equivalence).

More precisely: Let S be a compact surface and let C be the set of complex structures on
S. Thus if c ∈ C then c is a maximal collection c = {(Uα, φα)}α∈A where φα : Uα → C is a
coordinate chart and φβφ

−1
α is conformal (or, alternatively, holomorphic) and S = ∪α∈AUα.

Then moduli space and Teichmuller space are defined as follows:

R(S) = D\C and T (S) = D0\C

where D is the group of automorphisms of S and D0 its connected component. Teichmuller
theory is the study of these spaces.

We warm up with some simpler questions:

A) Classification of finite abelian groups.

Answer: If G is a finite abelian group, then there are unique integers m1|m2| · · · |mk such
that G ≈ Z/m1Z× · · · × Z/mkZ.

That’s the end of the story, since we finite abelian groups are discrete objects, and as
such, can not be deformed. Thus it doesn’t make sense to look for a natural continuous
structure on the moduli space, i.e., we don’t expect the moduli space to be a manifold,
algebraic variety, etc.

Similarly, one can classify all finite simple groups. The answer is rather complicated, but
again, it’s a discrete answer.

B) Classification of Riemann surfaces of genus one (i.e., all elliptic curves).

Answer: Let H be the upper half plane. If E is a Riemann surface of genus one, then
there exists a unique τ = τ(E) ∈ SL2(Z)\H such that E ≈ C/(Z + Zτ) (biholomorphic).
Thus we can say that SL2(Z)\H is the set theoretic moduli space of elliptic curves.

This is not the end of the story however, since elliptic curves are not “discrete” - that is,
they can be continuously deformed, and the moduli space respects deformations. Let’s say
this more precisely:

The set SL2(Z)\H has a natural complex structure, inherited from that on H, and as
such, it is a Riemann surface. In fact, it is biholomorphic to C. More precisely, there is a
holomorphic function j : H → C with the following property:

j(τ1) = j(τ2) ⇐⇒ τ2 = γ(τ1) for some γ ∈ SL2(Z)
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If X is a complex manifold and if π : E → X is a holomorphic family of elliptic curves,
then the map X → C given by x 7→ j(τ(Et)) is a holomorphic map (here Et = π−1(t)).
Thus we can say that SL2(Z)\H is the complex analytic moduli space of elliptic curves.

C) Classification of Complex Structures on Vector Spaces.

Let V be a vector space over R of dimension 2n. We wish to classify the linear complex
structures on V and show that the moduli space is a complex manifold:

A complex structure on V is a pair (ξ, T ) mod equivalence where T is a complex vector
space of dimension n and ξ : V → T is an isomorphisom of real vector spaces. The
equivalence relation is given by (ξ, T ) ∼ (ξ′, T ′) if there is an isomorphism of complex
vector spaces T → T ′ which makes the diagram commute.

This is a difficult definition to work with since the space of complex structures doesn’t seem
to have a natural topology. It’s quite useful to introduce the following alternate definition:
A complex structure on V is an element J ∈ Aut(V ) with the property J2 = −I.

To see the equivalence of the two definitions, let J : V → V be such that J2 = −I and
define T as follows: Then J ⊗ I defines and automorphism of the vector space V ⊗C Let
T be the +i eigenspace. Then T̄ is the −i eigenspace. We have

V ⊗C = T ⊕ T̄

Now T is a complex vector space and the map ξ : V → T obtained by composing the
maps V → V ⊗C = T ⊕ T̄ → T is an isomorphism of real vector spaces. Conversely, if T
is a complex vector space and if ξ : V → T is an isomorphism of real vector spaces, then
J = ξ−1 ◦ i ◦ ξ is a complex structure. Here i is the map on T given by multiplication by
i. Note that J depends only on the equivalence class of (ξ, T ).

A slight variant is: A complex structure on V is an equivalence class of isomorphisms
f : V → Cn, where two isomorphisms are equivalent if they differ by an element of
GL(n,C).

If we fix a basis of V , we see that a complex structure on V is a 2n × 2n matrix J with
the property J2 = −I, where I is the 2n× 2n identity matrix. Alternatively, a complex
structure is an equivalence class of isomorphisms f : R2n → Cn of real vector spaces.

Thus we see that GL(2n,R) operates transitively on the space of complex structures, with
stabilizer group GL(n,C). So the space of complex structures on R2n is just the space
GL(2n,R)/GL(n,C). Thus, if we let J (V ) be the space of complex structures on V , we
see that

J (V ) ≈ GL(n,C)\GL(2n,R) = Γ\M (1.1)

where Γ is the group GL(n,C) and M is the manifold M = GL(2n,R).

Is Γ\M a manifold?
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J (V ) as a complex manifold.

The space J (V ) is a smooth manifold. In fact, it has a natural structure as a complex
manifold. To see this, observe that J (V ) is the set of equivalence classes of n×2n matrices
M with entries in C whose columns form a basis of Cn viewed as a vector space over R.
In other words,

det
(
M
M̄

)
6= 0 (1.2)

Since such an M has maximal rank over C, at least one of its n× n minors has non-zero
determinant. Suppose that the first n columns of M form a minor of non-zero determinant.
Then equivalence class of M has a unique representative of the form (I, Z) where Z,
according to (1.2), is an n × n matrix such that Im(Z) is non-singular. Such Z form an
open subset of Mn×n(C). Since M is covered by a finite number of such open sets, with
holomorphic transitions, we see that J is a complex manifold of dimension n2.

D) Classify the endomorphisms of a complex vector space.

Let V be a finite dimensional complex vector space. We wish to find the moduli space of
End(V ) = {T : V → V : T is a complex linear map}.

Answer: Let T ∈ End(V ). Choose a basis e1, ..., en of V . Then, Tej =
∑
ajkek. Let

A = (ajk) ∈ Mn×n(C). Choosing a different basis corresponds to conjugating A by an
element P ∈ GL(n,C).

Thus, if we let Γ = GL(n,C) and M = Mn×n(C), then Γ is a group acting on the manifold
M by conjugation:

Γ×M →M given by (P,M)→ P−1MP

and we see that Γ\M is the moduli space of endomorphisms of V .

When we studied the moduli space of elliptic curves, we saw that the manifold structure
on H induced a manifold structure on Γ\H and we were thus able to solve the “complex
moduli problem”. Similarly, when we studied the moduli space of complex structures on
a vector space, we saw that the manifold structure on M2n×2n(R) induced a manifold
structure on Γ\M . Can we do the same for the moduli problem of endomorphisms?

Well, we have a problem this time since Γ\M is not a manifold. In fact, it’s not even
Hausdorff. This is because the action is not free (it has some bad fixed points).

One way around this is to simply throw away the endomorphisms with mulitple eigenvalues
and change the problem to: Find the moduli space for End′(V ) = {T ∈ End(V ) : T has
distinct eigenvalues}. This is the standard method of dealing with this kind of problem in
the theory of moduli - we throw away the “unstable” orbits.
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E) Classify line bundles of degree zero on a fixed compact Riemann surface X.

Answer: The moduli space is J(X), the Jacobi variety of X. It equals Cg/L, where L ⊆ Cg

is a lattice (discrete free abelian group of rank 2g) known as the period lattice.

2 Group actions

Very often, the problem of classification leads us to the following situation: Γ is a group,
M is a manifold, and Γ×M →M is a group action. The quotient space Γ\M is always a
topological space and M → Γ\M is a continuous function. The basic question is: Under
what conditions is Γ\M a manifold such that M → Γ\M is a smooth map of manifolds.

Eariler we saw that the presence of fixed points was a problem. But that’s not the only
problem: Let Γ = R and M = R2/Z2. Let h = (α, β) ∈ R2 be a vector with the property:
β
α
/∈ Q. Consider the action Γ×M → M given by (t, p) 7→ p+ th. Then the orbit of any

point is dense so, once again, the quotient is not Hausdorff.

Even worse things can happen: Consider the action of R on R2 whose flow lines are:
{x = b} for |b| ≥ 1 and {y = 1

1−x2 + c : |x| < 1, c ∈ R}. These curves are disjoint and
their union is R2. The action is given by a point travelling along its trajectory at unit
speed. It’s locally proper (proper on x > −1 and x < 1) but not proper, since any small
neighborhood of (−1, 0) and and any small neighborhood of (1, 0) have point which are
equivalent under arbitrarily large values of t.

Theorem. Let Γ be a Lie group and M a smooth manifold. Let Γ×M →M be a smooth
action of Γ on M . Assume

1. The action is free (no fixed points).

2. The action is proper, that is, if K,L ⊆M are compact, then

{γ ∈ Γ : γK ⊆ L} ⊆ Γ is compact

Then

1. For each x ∈M , the set Γx ⊆M is a smooth submanifold.

2. Γ\M is a smooth manifold and π : M → Γ\M is a smooth map.

3. If H ⊆ TxM is complementary to Tx(Γx), then H ≈ T[x](Γ\M) via the map dπ.

Important remark: In the theorem above, we do not need to assume that Γ or M are finite
dimensional manifolds. Thus they may be Hilbert manifolds.
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Example: Classify all the rays in R2 which start at the origin.

If λ ⊆ R2 is a ray, and if p1, p2 ∈ Λ, then there is a unique positive number r such that
p2 = rp1. Thus the classification space is A = Γ\M where Γ = P = R+ and M = R2.
Inside M we have a nice submanifold M(1) ⊆M where M(1) is the unit circle. More over,
π gives a diffeomorphism M(1)→ A.

This simple example is a good one to keep in mind when we study the space of complex
structures C. For this example, M is the space of Riemannian metrics on the surface S
and P is the space of positive functions; Γ\M = C, the space of complex structures, and
M(1) is the space of hyperbolic metrics (metrics of constant curvature equal to −1)

§3. Complex structures and Teichmuller space.

The basic problem of Teichmuller theory is that of classifying the complex structures on
a given compact surface S.

Let S be a compact surface and let C be the set of complex structures on S. Thus if c ∈ C
then c is a maximal collection c = {(Uα, φα)}α∈A where φα : Uα → C is a coordinate chart
and φβφ

−1
α is conformal (or, alternatively, holomorphic) and S = ∪α∈AUα.

Then moduli space and Teichmuller space are defined as follows:

R(S) = C/D and T (S) = C/D0

where D is the group of automorphisms of S and D0 its connected component.

Main question: Show that T (S) is a manifold.

Now D,D0 are nice Lie groups, but C doesn’t have a natural manifold structure.

Let S = S2 ⊆ R3. Then stereographic projection gives us a covering of S2 by open sets
Uα, and conformal diffeomorphisms Uα → R2. Since the change of coordinate maps are
conformal, this gives us a complex structure on S2.

In fact, there is nothing special about S2: if S ⊆ Rn is any two dimensional submanifold,
then S has covering Uα with conformal diffeomorphisms φα : Uα → Vα ⊆ R2. This gives
us a complex structure on S.

If S ⊆ Rn is a submaifold and if p ∈ S, and if v, w ∈ Tp(S) ⊆ Rn, let g(v, w) = v ·w ∈ R.
This function satisfies the following basic properties:

1. The function g : Tp(S)× Tp(S) is bilinear.

2. The function g is smooth in the following sense: If V : S → Rn and W : S → Rn

are smooth functions, then p 7→ g(V (p),W (p)) is a smooth function on S.
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The function g allows us to measure the lengths of curves and the angles betwee curves:

If γ : [a, b]→M is C1, then l(γ) =
∫ b
a

√
g(γ′(t), γ′(t))dt.

If φ : U → S is a local coordinate, then we write φ∗g(X, Y ) = g(dφ(X), dφ(Y )) where
X, Y are tangent vectors on U . More precisely, if X = X i ∂

∂xi
and Y = Y j ∂

∂xj
then

φ∗g(X, Y ) = δαβdφ(X)αdφ(Y )β = δαβX
iY j ∂φ

α

∂xi
∂φβ

∂xj
= gij(x)X iY j

where gij(x) = δαβ
∂φα

∂xi
∂φβ

∂xj
. Note that gij(x) is a smooth function and (gij(x)) is a positive

defninite matrix: If X i is any non-zero vector, then gijX
iXj = g(dφ(X), dφ(X)) > 0.

Definition: Is S is any manifold, then a metric on S is a collection of bilinear maps
gp : Tp(S) × Tp(S) → R which vary smoothly, ie, if X, Y are smooth vector fields on M
then g(X, Y ) is a smooth function on S. In local coordinates,

g(X, Y ) = gij(x)X iY j

where gij(x) is a positive definite symmetric matrix. Sometimes we write g = gijdx
i⊗dyj.

Theorem(Gauss): Let (S, g) be a two dimensional riemannian manifold. Then S has an
open cover S = ∪Vα and local coordinates φ : Uα → Vα such that φ∗αg = euα(dx2 + dy2)
for some smooth function uα. In particular, the φα are conformal and thus S is given the
structure of a Riemann surface.

Main steps.

Hs(M) = {f : M → R :
∫
|Djf |2µg <∞ , j = 1, ..., s}

Let As = {J ∈ Hs(T 1
1M) : J2 = −1} = {J ∈ Hs(T 1

1 (M)) : tr(J) = 0, det(J) = 1}. Thus
J ∈ As =⇒ J ij ∈ Hs(U) on each coordinate neighborhood U . We write A = ∩s≥0As.

Γ : C → A the natural map. It’s injective: If a smooth map diffeomorphism φ between
open subsets of C has the property Jdφ = dφJ , then φ is holomorphic. Soon we’ll prove
that Γ is surjective as well.

As ⊆ Hs(T 1
1 (M)) is a smooth submanifold and TJAs = {H ∈ Hs(T 1

1 (M)) : HJ+JH = 0}.
To prove this, let tr : Hs(T 1

1 (M))→ Hs(M) and det : Hs(T 1
1 (M))→ Hs(M) be the trace

and determinant maps. We show that tr−1(0) is a smooth manifold, that det−1(1) is
a smooth manifold, and their intersection is transversal and equals As. For example,
(Ddet)J(H) = −tr(JH) for all J ∈ det−1(1) and H ∈ Hs(T 1

1 (M)). It’s easy to see that
(Ddet)J : Hs(T 1

1 (M)) → Hs(M) is surjective which proves det−1(0) is a manifold. The
proof for tr−1(0) is easier.

Let Ms denote the space of metrics in Hs and Ps ⊆ Hs the space of positive functions
(s > 1). Since the action of Ps onMs is smooth, proper and free, the quotientMs/Ps is
a C∞ Hilbert manifold.
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Define Φ : Ms/Ps → As by the formula: Φ(g) = −gikµkj where µ is the volume form.

Thus, in conformal coordinates, gij = λδij, µij =
(

0 λ
−λ 0

)
and Φ(g) =

(
0 1
−1 0

)
.

We claim: Φ : Ms/Ps → As is a smooth diffeomorphism of Hilbert manifolds. To see
this, we note first that it’s a bijective map between sets: If g−1

1 µg1 = g−1
2 µg2 then, since

µg1 = p · µg2 for some p ∈ Ps, injectivity follows. As for surjectivity, let J ∈ As and let
ĝ ∈ Ms be any metric. Let g(u, v) = ĝ(u, v) + ĝ(Ju, Jv). One can check that Φ(g) = J .
This also shows M/P → A is bijective and therefore, C → A is bijective.

To prove that Φ is a diffeomorphism, we must show that it induces an isomorphism on
tangent spaces. Let Φ̃ :Ms → As be the composition of Φ with the projection. Then

DΦ(g) : TgMs = Ss2 → TJ(As) = {H : HJ + JH = 0}

= {H ∈ T 1
1 (M)s : trH = 0, H is g symmetric }

Here J = Φ(g) and Ss2 is the space of symmetric tensors. We say H is g symmetric if
h = gH is symmetric.

For every metric g, we have the canonical orthogonal splitting of Ss2 into the conformal
and the traceless factor: Ss2 = Ss2(g)c ⊕ Ss2(g)T . Note that if h ∈ Ss2 then h ∈ Ss2(g)T ⇐⇒
H = g−1h is a traceless, g symmetric element of T 1

1 (M)s.

One computes: DΦ(g)(h) = (1
2
(trH)I−H)J) where H = g−1h ∈ T 1

1 (M)s. Thus the kernel
consists of conformal g symmetric matrices: kerDΦ(g) = Ss2(g)c and one shows easily that
DΦ(g) is surjective. In fact, DΦ(g) : Ss2(g)T → TJ(As) is an isomorphism. It’s injective
since we’ve factored out the kernel. To see that it’s surjective, let H ′ ∈ TJ(As). We must
show that there exists a traceless g symmetric H such that −HJ = H ′. Well, just choose
H = H ′J . Then H ′ ∈ TJ =⇒ H ′J ∈ TJ =⇒ H ′J is traceless and g symmetric.

3 Poincaré’s Theorem.

Let (M, g) be a compact oriented Riemannian manifold of dimension two. Then R(g), the
curvature of g, is a smooth function on M . It’s defined as follows: In isothermal coordi-
nates, gij = αδij where α is a positive function. Then R(g) = −α−1∆α = −α−1(∂

2α
∂x2

+ ∂2α
∂y2

).

Theorem 1 Suppose M is a compact oeriented surface of genus at least two. Then given
any g ∈Ms with 2 ≤ s ≤ ∞, there is a unique λ ∈ Ps such that R(λg) = −1.

Thus, any surface of genus at least two has a smooth metric of constant negative curvature.
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3.1 Review of Sobolev approach to elliptic PDE

We wish to give the main ideas in the model case of Poisson’s equation. This is easier than
Poincaré’s theorem, since it’s a linear equation, although in one respect, it’s technically
more difficult due to the presence of a boundary (bounded domains in Rn have boundaries
while compact manifolds do not). Then, in the next section, we explain how these ideas
can be used to prove Poincaré’s theorem.

Let Ω ⊆ Rn be an open bounded set with smooth boundary. We see a solution to the
equation:

∆u = 0 in Ω ; u|∂Ω = g|∂Ω (3.1)

Here g : Ω̄→ R is a given continuous function.

Here is the idea; Suppose we can find a smooth u such that u|∂Ω = g|∂Ω for which∫
Ω
|Du|2 = κ = inf{

∫
Ω
|Dv|2 : v|∂Ω = g|∂Ω } (3.2)

Then, if φ ∈ C∞0 (Ω) we have

0 =
d

dt

∫
|D(u+ tφ)|2 = 2

∫
Du ·Dφ = −

∫
φ∆u

Since this is true for all φ, we see that ∆u = 0 and thus u solves (3.1).

How do we find a u satisfying (3.2)? We can certainly choose un ∈ C∞(Ω) such that
un|∂Ω = g|∂Ω with the property E(un) → κ. If we could somehow extract a convergent
subsequence, we’d be in great shape. If we knew, for example, that all the derivatives
of the un were bounded in the sup norm, then Arzela-Ascoli would allow us to find a
convergent subsequence. Unfortunately, we know very little about the un; essentially, all
we know about them is that the L2 norms of their first derivatives are bounded. This
however points the way:

Let’s consider the space of all functions whose derivatives are bounded in L2. These form
a Hilbert space. And in a Hilbert space, bounded sets are at least weakly compact.

Define E : H1(Ω)→ R by

E(v) =
∫

Ω
|Dv|2

Let Ω ⊆ Rn be open and u ∈ L1
loc(Ω). We say v ∈ L1

loc(Ω) is the weak derivative of u in
the dirction xi if ∫

Ω
φv = −

∫
Ω
u
∂φ

∂xi
dx

for all φ ∈ C∞0 (Ω). We write v = Diu.
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Definition of the Sobolev space H1:

H1 = {u ∈ L2(Ω) : Diu ∈ L2(Ω) for all 1 ≤ i ≤ n}

The space H1 is a Hilbert space under the norm:

〈u, v〉 =
∫

Ω
uv̄ +

∑
j

∫
∂iu∂iv̄

A homeomorphism f : Ω→ Ω′ between domains in C is quasiconformal if Re(f), Im(f) ∈
H1 and |∂z̄f | ≤ k|∂zf | for some k < 1.

κ = inf{E(v) : v ∈ C∞(Ω), v − g ∈ C∞0 (Ω)}

where H1
0 is the closure of C∞0 (Ω) ⊆ H1. Let vn be a minimizing sequence for E(v), i.e.,

E(vn) → κ. We want to use some kind of compactness theorem to show that we can
extract a convergent subsequence.

Note first that Dvn is bounded in L2. Also, vn − g ∈ H1
0 so ‖vn − g‖L2 ≤ C‖D(vn − g)‖L2

(using the Poincare inequality) and this implies that vn is bounded in L2 and thus, vn is
bounded in H1.

This means that vn ⇀ v for some v ∈ H1 (weak convergence). In particular, vn ⇀ v
weakly in L2 and Dvn ⇀ Dv weakly in L2. To see this, let φ be a smooth function on Ω
and define H1 → R by v →

∫
Ω Dvφ. This is a bounded linear functional on H1 and thus∫

Dvnφ →
∫
Dvφ for all φ. Since smooth functions are dense in L2(Ω), this proves that

Dvn ⇀ Dv.

Since the norm on a Hilbert space is lower semi-continuous with respect to weak conver-
gence,

E(v) ≤ lim inf E(vn) = κ

Also, if a sequence in H1
0 converges weakly to an element of H1, then the limit is in H1

0 .
This is due to the fact that H1

0 ⊆ H1 is a closed Hilbert subspace. This shows that
v − g ∈ H1

0 and that E(v) = κ.

Conclusion: Equation (3.1) has a weak solution, that is, there is u ∈ H1 with the following
properties:

u− g ∈ H1
0 and

∫
Ω
Du ·Dv = 0 for all v ∈ H1

0 (Ω) (3.3)

Now suppose that ∂Ω is C∞ and that f ∈ Hk and g ∈ Hk+2. Suppose that u ∈ H1 is a
weak solution to ∆u = f . In other words,
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u− g ∈ H1
0 and

∫
Ω
Du ·Dv = −

∫
fv for all v ∈ H1

0 (Ω)

Then the fundamental elliptic estimate says that u ∈ Hk+2 and

‖u‖Hk+2 ≤ c · (‖f‖Hk + ‖g‖Hk+2) (3.4)

Here c is a constant which depends only on Ω.

In particular, if u is a weak solution to (3.1), then (3.4) implies u ∈ ∩k≥0H
k. On the other

hand, Sobolev’s theorem says that C∞(Ω̄) = ∩k≥0H
k, and this proves u is smooth.

It’s also true that u extends to a continuous function on ∂Ω and that the boundary values
are given by g. I’ll skip the proof of this part - it’s not relevant to what we need to do,
since in our case, there is no boundary.

3.2 Proof of Poincaré’s theorem.

Recall the curvature formula in local coordinates:

R(g) = −1

λ
∆ log λ

We write ∆g = 1
λ
∆. We must find a smooth function v on M such that R(evg) = −1, that

is

− 1

λev
∆ log (evλ) =

1

ev

(
−1

λ
∆ log λ− 1

λ
∆v

)
= −1

In other words

−∆gv +R(g) + ev = 0 (3.5)

This is not a linear equation, due to the presence of ev.

Let

I(v) =
1

2

∫
M
|∇gv|2 dµg +

∫
M

(R(g)v + ev) dµg (3.6)

It’s easy to see that a smooth minimizer of I will solve (3.5). But, just as before, we
have no way of extracting a convgent subsequence if we work with the space of smooth
functions. Even worse, it’s not clear that there is a minimizing sequence, since I is not a
positive functional.

We need to define the right space in which to search for a solution. To do this, let’s pretend
that we’ve found the solution v. Let xo ∈ M be a point where v attains its maximum.
Then −∆gv(x0) ≥ 0 so R(g)(x0) + ev(x0) ≤ 0. This implies
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ev(x0) ≤ −R(g)(x0) ≤ |minR(g)|

This implies that for any x ∈M , v(x) ≤ v(x0) ≤ log |minR(g)| = ξ.

Thus we are led to define

C = {v ∈ H1(M) : v(x) ≤ 1 + ξ a.e. }

We wish to prove that I has a minimum v ∈ C and that v satisfies (3.5).

Again, we wish to use Poincare’s inequality to show if u ∈ C and if I(u) is bounded above,
then u is bounded in H1. This will allow us to extract a weakly convergent subsequence.

Poincare’s inequality says that

∫
|∇gv|2 dµg ≥ c

∫
|v|2 dµg − c′

(∫
v
)2

We claim that the norm
∫
|∇v|2+(

∫
v)2 is a norm on H1 which is equivalent to the standard

norm
∫
|∇v|2 +

∫
v2. Note first that (

∫
v)2 ≤

∫
v2
∫

1. Poincare’s inequality gives us the
reverse bound.

Let v0 = v − v̄ and v̄ = (
∫
v dµ/

∫
1 dµ) ∈ R, the average value of v. Now we estimate

I(v) ≥ 1

4

∫
M
|∇gv|2 dµg +

c

4

∫
|v0|2 dµg +

∫
M
R(g)v0 dµg − v̄ · 4π|χ(M)| (3.7)

where we are using Gauss-Bonet, and the fact that the Euler characteristic is negative.
On the other hand ∣∣∣∣∫

M
R(g)v0 dµg

∣∣∣∣ ≤ ∫ α2

4
v2
o dµ +

∫ 4

α2
R(g)2 dµ

for any α > 0. Choosing α2 = c we get, for α ∈ C,

I(v) ≥ 1

4

∫
M
|∇gv|2 dµg −

∫
M

4

c
R(g)2 dµg − v̄ · 4π|χ(M)|

Case 1. If v̄ > 0 then 0 < |v̄| = v̄ < 1 + ξ so

I(v) ≥ 1

4

∫
M
|∇gv|2 dµg −

∫
M

4

c
R(g)2 dµg − (1 + ξ) · 4π|χ(M)|

Case 1. If v̄ ≤ 0 then

I(v) ≥ 1

4

∫
M
|∇gv|2 dµg + |v̄| · 4π|χ(M)| −

∫
M

4

c
R(g)2 dµg

In either case, I(v) is bounded below and, an upper bound on I(v) implies an upper
bound on

∫
|∇gv| and on |v̄|. Thus there is a minimizing sequence and, since the norms

12



are bounded, we can extract a weakly convergent subsequence. Then
∫
|∇vn|2 is lower

semi-continuous and evn → ev in L1(M) by Taylor’s theorem (Prop. 4.3, chapter 12). This
gives us our minimizer.
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