NOTES ON THE OPENNESS CONJECTURE FOR PSH FUNCTIONS

BO BERNDTSSON

Theorem 1. Let $B \subseteq \mathbb{C}^{n}$ be the open unit ball and $u \in \operatorname{PSH}(B)$ with $u \leq 0$. Assume

$$
\int_{B} e^{-u}<\infty
$$

Then there is a $p>1$ such that

$$
\int_{B} e^{-p u}<\infty
$$

Let

$$
H=\left\{h:\left.B \rightarrow \mathbb{C}\left|\|h\|_{0}^{2}=\int_{B}\right| h\right|^{2}<\infty, \quad h \text { holomorphic }\right\}
$$

For $s \geq 0$ define

$$
\|h\|_{s}^{2}=\int_{B}|h|^{2} e^{-2 u_{s}}
$$

where

$$
u_{s}=\max (u+s, 0)
$$

The following Lemma is elementary:
Lemma 1. For $0<p<2$ we have

$$
\begin{equation*}
\int_{B}|h|^{2} e^{-p u}=a_{p} \int_{0}^{\infty} e^{p s}\|h\|_{s}^{2} d s+\|h\|_{0}^{2} \tag{0.1}
\end{equation*}
$$

Proof of Theorem. Given the Lemma, our assumption becomes

$$
\int_{0}^{\infty} e^{s}\|h\|_{s}^{2} d s<\infty
$$

where $h=1$. Let $E=B \times H$, which we view as an infinite dimensional vector bundle. Berndtsson's (2009) theorem says that $\log \left\|h^{*}\right\|_{s}$ is convex, where h^{*} is any holomorphic section of E^{*}, the dual bundle. Suppose we knew that $\log \|h\|_{s}$ were concave. Then (0.1) would imply that

$$
\begin{equation*}
\|h\|_{s}^{2} \leq c e^{-(1+\epsilon) s} \tag{0.2}
\end{equation*}
$$

for some $\epsilon>0$, and Lemma 1 would allow us to conclude the proof.
It turns out that (0.2) is almost true (and holds in great generality):

[^0]Theorem 2. Let H be a Hilbert space equipped with a decreasing family of norms $\|\cdot\|_{s}$ with positive curvature. Suppose $h \in H$ has the property

$$
N(h)=\int_{0}^{\infty} e^{s}\|h\|_{s}^{2} d s<\infty
$$

Then for all sufficiently small $\epsilon>0$ there exists h_{ϵ} such that

$$
\left\|h_{\epsilon}\right\|_{s}^{2} \leq e^{-(1+\epsilon) s}\|h\|_{0}^{2} \text { for } s>1 / \epsilon
$$

and

$$
\left\|h_{\epsilon}-h\right\|_{0}^{2} \leq 2 \epsilon N(h)
$$

Theorem 1 now follows: Since $h=1$ we see, for ϵ small enough, that $\left\|h_{\epsilon}-h\right\|_{L^{\infty}(B / 2)}<1 / 2$, so $|h|_{\epsilon}>1 / 2$ on $B / 2$. Since $1 / 2=h / 2$ we obtain

$$
\|h / 2\|_{s}^{2} \leq\left\|h_{\epsilon}\right\|_{s}^{2} \leq e^{-(1+\epsilon) s}\|h\|_{0}^{2} \text { for } s>1 / \epsilon
$$

In particular, $e^{p s}\|h\|_{s}^{2}$ is integrable for some $p>1$ and the result follows from Lemma 1.

[^0]: November 12, 2021

