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1 Introduction

We start by recalling some basic definitions.

Let Ω ⊆ Cn be a bounded open set. Define

PSH(Ω) = {ϕ : Ω→ [−∞,∞) : ϕ is upper semicontinuous and ddcϕ ≥ 0} (1.1)

Let ϕ ∈ PSH(Ω). Then Bedford-Taylor define a measure MA(ϕ) = (ddcϕ)n on the
bounded locus Ω0 = {x ∈ Ω : ϕ is bounded in an open neighborhood of x}. In this section
we explore different methods of extending MA(ϕ) to a measure on all of Ω subject to the
following key condition: MA(ϕ) is continuous for decreasing sequences. We can’t do this
for all ϕ, but there is a maximal subclass PSH(Ω) ∩ L∞(X) ⊆ D(Ω) ⊆ PSH(Ω), called



the “domain of definition for Monge-Ampère”, on for which MA has a unique extension
satisfying the continuity property. Thus, if ϕj ∈ D(Ω) and ϕj ↓ ϕ for some ϕ ∈ PSH(Ω),
then ϕ ∈ D(Ω) and MA(ϕj) ⇀MA(ϕ).

Before defining D(Ω), we first recall the Bedford-Taylor definition for bounded potentials.
If ϕ ∈ PSH(Ω) ∩ L∞loc(Ω) then MA(ϕ) = (ddcϕ)n is a positive Borel measure on Ω which
is characterized as follows: For U ⊂⊂ Ω we have MA(ϕ)|U = limj→∞MA(ϕj) for any
decreasing sequence ϕj ∈ PSH(U)∩C∞(U) such that ϕj ↓ ϕ (the limit is independent of
the sequence).

For the global theory, we start with (X,ω), a compact Kähler manifold and define

PSH(X,ω) = {ϕ ∈ L1(X,ωn) : ϕ is upper semi-continuous and ω + ddcϕ ≥ 0 }

When ϕ ∈ PSH(X,ω) is bounded, then we can mimic the local construction to define
a Borel measure MA(ϕ) = ωnϕ on X. If ϕ ∈ PSH(X,ω) is arbitrary, then a similar
construction defines MA(ϕ) as a positive Borel measure on X\X0.

If ϕ ∈ PSH(Ω) or ϕ ∈ PSH(X,ω) is not locally bounded, one may be tempted to proceed
as follows: Let ϕ ∈ PSH(X,ω), let ϕj ∈ PSH(X,ω) ∩ L∞(X) and assume that ϕj ↓ ϕ.
Then

∫
X ω

n
ϕj

is bounded (in fact constant) so there is a measure µ such that, after passing
to a subsequence, ωnϕj → µ. Thus we can try to define MA(ϕ) = µ. as above. But this
does not work since the limit may depend on the choice of decreasing sequence: Cegrell
(1986) shows that if we let ϕ = log |z1 · · · zn| and Ω is a small ball in Cn, then there
are decreasing sequences uj, vj ∈ PSH(Ω) ∩ C∞(Ω) such that uj ↓ ϕ and vj ↓ ϕ but
(ddcuj)

n → 0 and (ddcvj)
n → δ0, the Dirac measure at the origin. So any theory which

requires continuity for decreasing sequences must exclude ϕ.

Let ϕ ∈ PSH(X,ω). Define µϕ to be the measure on X obtained from MA(ϕ), which is
a measure on X\{ϕ = −∞}, to be MA(ϕj) on ϕ > −j, where ϕj = max{ϕ,−j}, and
extend to all of X by requiring {ϕ = −∞} to have measure zero. It turns out that µϕ is
a non-pluripolar measure, i.e., µϕ(Z) = 0 for all pluri-polar sets Z. It also turns out that∫
X dµϕ ≤

∫
X ω

n for all ϕ ∈ PSH(X,ω). One may be tempted to define MA(ϕ) = µϕ,
but this doesn’t work either: the Cegrell example above shows that that in the local case,
this definition fails satisfy the key continuity property for decreasing sequences. There are
similar counter-examples in the global case.

To define D(Ω) ⊆ PSH(Ω) we instead proceed as follows. Let ϕ ∈ PSH(Ω). Then
ϕ ∈ D(Ω) if there is a positive Borel measure µ on Ω such that if U ⊂⊂ Ω is any relatively
compact domain, and ϕj ↓ ϕ is any decreasing sequence with ϕj ∈ PSH(U) ∩ L∞(U),
then (ddcϕj)

n → µ (weak convergence). If ϕ ∈ D(Ω) we define MA(ϕ) = (ddcϕ)n = µ.
The class D(X,ω) ⊆ PSH(X,ω) is defined similarly. If M(X) is the space of positive
Borel measures on X, Then MA : D(X,ω) → M(X) is well defined, and continuous
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(under decreasing sequences). Unfortunately, the comparison theorem fails on D(X,ω),
which makes the general theory rather difficult: in fact, neither the kernel nor the range
of MA are known: There are examples of ϕ, ψ ∈ D(X,ω) with MA(ϕ) = MA(ψ) but
ϕ − ψ is not constant. Thus uniqueness for the Monge-Ampère equation does not hold.
Moreover, determining the range of MA is an open problem. It is known that MA(ϕ)
will charge polar sets for certain ϕ, and some examples have been worked out, but there
doesn’t appear to be a complete characterization of the range.

There is an interesting class E(Ω) ⊆ D(Ω) ⊆ PSH(Ω) and, in the global settng of a
Kähler manfold, E(X,ω) ⊆ D(X,ω) ⊆ PSH(X,ω), known as the Cegrell class. This is
the maximal subclass for which the comparison principle holds. For this class, one has
a complete theory for the operator MA : E(X,ω) → M(X). The range consists of all
non-pluripolar probability measures. And if MA(ϕ) = MA(ψ) with ϕ, ψ ∈ E(X,ω), then
ϕ − ψ is constant. The class E is defined as follows: Let E(X,ω) ⊆ PSH(X,ω) denote
the set of all ϕ for for which the inequality

∫
X dµϕ ≤

∫
X ω

n is an equality. We have
PSH(X,ω) ∩ L∞(X) ⊆ E(X,ω). Cegrell and GZ show that E ⊆ D, i.e, they show that
the key continuity property holds in E . They prove that the comparison principle holds
as well! In fact E is the maximal class for which the comparison property is satsified. In
this theory, MA(ϕ) is always non-pluripolar (again, unavoidable if we want a theory for
which the comparison principle is available).

Although E(X,ω) ⊆ D(X,ω) ⊆ PSH(X,ω) are proper subsets, the gaps are not, from a
certain point of view, very great. In fact, GZ show that if ϕ ∈ PSH(X,ω) with ϕ ≤ −1,
then −|ϕ|p ∈ E(X,ω) for any 0 < p < 1.

1.1 The Cegrell class E(X,ω)

This “non-pluripolar” approach goes back to Bedford-Taylor in the local case, and followed
by GZ in the global case. In order to motivate the definition, we first recall that in the
classical case of bounded potentials, that the Monge-Ampère measure is local with respect
the the pluri-fine topology, which is the topology generated by the euclidean open sets, to-
gether with sets of the form {ϕ < ψ}, where ϕ, ψ ∈ PSH(X,ω). The key theorem says that
if O is pluri-open, and if ϕ|O = ψ|O, then MA(ϕ)|O = MA(ψ)|O for all locally bounded
potentials ϕ, ψ. For example, we always have

∫
ϕ<ψMA(ψ) =

∫
ϕ<ψMA(max(ϕ, ψ)).

Now let ϕ ∈ PSH(X,ω) be arbitrary. We recall the definition of MA(ϕ), which a measure
on X\{ϕ = −∞}. Let B ⊆ X\{ϕ = −∞}. We wish to define MA(ϕ)(B) in such a way
that the pluri-local property, which holds for bounded potentials, is pereserved. There is
a unique way for doing this: We must have

MA(ϕ) = lim
j→∞

MA(ϕ)(B ∩ {ϕ > −j}) = lim
j→∞

MA(ϕj)(B ∩ {ϕ > −j})

where ϕj = max(ϕ,−j) is the canonical approximation of ϕ by bounded psh functions (the
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first equality comes from the definition of a measure and the second comes by imposing
the plui-local property). One shows that the second sequence above is increasing and thus
has a limit. This defines MA(ϕ) on X\{ϕ = −∞}.

In the non-pluripolar approach, we first define a measure µϕ by extending MA(ϕ) to a
measure on all of X, simply by declaring {ϕ = −∞} to have measure zero. Thus, for any
Borel set B ⊆ X we let

µϕ(B) = lim
j→∞

∫
B∩{ϕ>−j}

(ω + ddcϕj)
n (1.2)

One shows that the sequence in (1.2) is increasing and bounded above, so it has a well
defined limit. One sees immediately from the definition that µϕ vanishes on all pluri-polar
sets. The measure µϕ is called “non-pluripolar extension” associated to ϕ.

From the definition we see that
∫
X dµϕ ≤

∫
X ω

n. If equality holds, then we say the ϕ has
full mass and we define

E(X,ω) = {ϕ ∈ PSH(X,ω) :
∫
X
dµϕ =

∫
X
ωn } (1.3)

the set of all ϕ with full mass (this is the GZ notation: unfortunately, Cegrell uses the
notation E to denote his class - in the local case - as well. One has to be careful, since
the two classes are not analogous. For example, in the Cegrell case, MA(ϕ) may charge
pluri-polar sets for ϕ ∈ E).

Finally, if ϕ ∈ E(X,ω) then we define (ω + ddcϕ)n = µϕ. As mentioned earlier, the
continuity property and the comparison principle both hold on E(X,ω).

It is interesting to compare the singularities of E to the singularities of PSH. On the one
hand, although E(X,ω) is strictly smaller that PSH(X,ω), it defines the same pluripolar
sets: More precisely, let ϕ ∈ PSH(X,ω) be arbitrary. Then GZ show that if ϕ ≤ −1 then
−|ϕ|p ∈ E(X,ω) for all 0 < p < 1. In particular, if Z is a pluripolar set then there exists
ϕ ∈ E(X,ω) such that Z = {ϕ = −∞}. On the other hand, the elements of E(X,ω) have
mild singularities compared to PSH(X,ω). For example, if ϕ ∈ E(X,ω) then ϕ has zero
Lelong numbers at every point x ∈ X. More precisely, if ϕ ∈ PSH(X,ω), if z0 ∈ X, and if
in some coordinate neighborhood ϕ ≤ ε log |z − z0|+ 1

ε
for some ε > 0, then ϕ /∈ E(X,ω).

The fact that −|ϕ|p is in E(X,ω) shows that there are many elements of E(X,ω) whose
gradients are non square integrable. This is in sharp contrast with the local case where,
for n = 2, Blocki showed that a psh function on Ω ⊆ C2 is in the domain of definition for
MA if and only if its gradient is square integrable.
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1.2 The comparison principle

One key result proved in GZ is that the comparison principle holds for E(X,ω): If ϕ, ψ ∈
E(X,ω) then ∫

ϕ≤ψ
(ω + ddcψ)n ≤

∫
ϕ≤ψ

(ω + ddcϕ)n (1.4)

We observe that E is the maximal such family, that is, if E(X,ω) ⊆ F ⊆ PSH(X,ω) and if
the comparison principle holds for F , then F = E . To see this, let ψ ∈ PSH(X,ω) assume
we can define (ω + ddcψ)n in such a way that the comparison principle (1.4) holds. We
must show ψ ∈ E(X,ω). Assume, without loss of generality, that ψ < −1. Now apply (1.4)
to ϕ = −|ψ|p for 0 < p < 1. Then {ϕ ≤ ψ} = {ψ = −∞}. Since MA(ϕ)({ψ = −∞}) = 0
we conclude MA(ψ)({ψ = −∞}) = 0. Moreover, since

∫
ψ<0 ω

n ≤
∫
ψ<0(ω + ddcψ)n, we see

(using the fact that X = {ψ < 0}) that
∫
X(ω + ddcψ)n =

∫
X ω

n, so ψ has full mass. We
conclude ψ ∈ E(X,ω).

Conclusion: If we want to extend MA(ϕ) in such a way that the comparison principle is
still valid, then we must restrict our attention to ϕ ∈ E(X,ω). Conversely, the comparison
principle holds on E(X,ω).

1.3 The general approach

Although we will mainly be interested in the nonpluripolar approach of GZ in these notes,
we digress briefly to discuss the “general approach”.

We would like to extend the definition of the MA operator in such a way that it is contin-
uous under decreasing subsequences (but we no longer require the comparison principle to
hold). There is a natural way to do this: Let ϕ ∈ PSH(Ω). Then we say ϕ ∈ D(Ω) if there
is a Borel measure µ on Ω such that if U ⊆ Ω is any open set and ϕj ∈ PSH(U)∩C∞(U)
decreases to µ, then (ddcϕj)

n ⇀ µ on U . This definition is due to Blocki (2004) who shows
that this is the same as requiring (ddcϕj)

n is locally weakly bounded in U for all ϕj ↓ ϕ.
We conclude that if ϕ ∈ D(Ω) then MA(ϕ) is well defined. The space D(Ω) is called the
domain of definition for the Monge-Ampère operator.

Blocki shows that if ϕ ∈ PSH(Ω) is locally bounded in a neighborhood of ∂Ω, then
ϕ ∈ D(Ω) (note that ϕ = log |z1 · · · zn| fails this test). More generally, if u ∈ D(Ω) and
v ∈ PSH(Ω) with u ≤ v outside a compact subset of Ω, then v ∈ D(Ω).

In the case n = 2, Blocki (2004) shows D(Ω) = PSH(Ω) ∩W 1,2
loc .

In Cegrell (2004) the characterization of D(Ω) is equivalent, but slightly different. He
restricts his attention to the case where is hyperconvex. This means that there exists
u ∈ PSH−(Ω) (the negative psh functions) such that {u < −c} ⊂⊂ Ω for all c > 0. For
such domains, he defines

E0(Ω) = {ϕ ∈ PSH(Ω) ∩ L∞ :
∫

Ω(ddcϕ)n <∞ , limz→ξ ϕ(z) = 0 for all ξ ∈ ∂Ω} (1.5)
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If ϕ ∈ PSH−(Ω) then there exists ϕj ∈ E0(Ω)∩C(Ω̄) such that ϕj ↓ ϕ on Ω. The Cegrell
class E(Ω) ⊆ PSH−(Ω) is defined as follows: Let ϕ ∈ PSH−(Ω). Then ϕ ∈ E(Ω) if for
every z0 ∈ Ω there is an open set z0 ⊆ U ⊆ Ω and ϕj ∈ E0(Ω) such that ϕj ↓ ϕ on U and
supj

∫
Ω(ddcϕj)

n <∞.

Blocki shows that E(Ω) = D(Ω) ∩ PSH−(Ω).

In the global case, we define D(X,ω) ⊆ PSH(X,ω) using local coordinate charts.

Now let µ be a Borel measure on Ω. We can ask: Does there exist ϕ ∈ D(Ω) such that
(ddcϕ)n = µ? If µ is the Dirac measure supported on a single point in Ω, thencc Lempert
and Demailly (in the convex and hyperconvex case respectively) proved the existence of
a solution. Zeriahi and Xing show that there is a solution of µ is any discrete measure
with compact support in a hyperconvex domain. This result is vastly generalized by Ahag,
Cegrell, Czyz and Hiep (ACCH) who show that if there is a subsolution, then there is a
solution.

1.4 Conjecture

We continue our digression: What is the range of the Monge-Ampère operator? This
appears to be an open question (in general). Here are some known results:

1. If µ is a nonpluripolar probability measure on a Kähler manifold (X,ω), then the
equation MA(ϕ) = µ has a solution ϕ ∈ E(X,ω).

2. If µ is a positive measure on a hyperconvex domain Ω, and if there exists ψ such
that MA(ψ) ≥ µ, then the equation MA(ϕ) = µ has a solution ϕ ∈ D(Ω)

The first theorem is due to GZ (2007) and the second to ACCH (2008).

The ACCH theorem is particularly appealing since it gives a necessary and sufficient
condition for µ to be in the range of MA. On the other hand, one could argue that it
doesn’t really give a full answer to the original question since in a sense, it raises what
appears to be an equally difficult question, namely, which positive measures µ satisfy the
condition MA(ψ) ≥ µ for some ψ?

The other drawback of ACCH is that its direct analogue for Kähler manifolds doesn’t
appear to be interesting: If µ is a probability measure and if ψ ∈ D(X,ω) then MA(ψ) ≥ µ

impies MA(ψ) = µ (since both have the same mass).

Here is a (possibly very naive) guess: We say that a measure µ charges at most one
pluripolar set if there exists a pluripolar set Z ⊆ X such that µ(Z ′ ∩ (X\Z)) = 0 for all
pluripolar sets Z ′ ⊆ X.

Conjecture: Let µ be a measure on (X,ω) or Ω. Assume that µ charges at most one
pluripolar set Z. Then MA(ϕ) = µ has a soluition.
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2 Monge-Ampere for non-pluripolar measures

2.1 Statement of results

The main theorem of GZ says the following:

Theorem 1 Let (X,ω) be a Kähler manifold. Let µ be a Borel measure on X such that∫
X dµ =

∫
X ω

n. Then there exists ϕ ∈ E(X,ω) such that (ω + ddcϕ)n = µ if and only if µ
does not charge pluripolar sets.

Dinew proved (later) that ϕ is unique up to additive constant.

The next question is the following: Suppose that µ has “mild singularities”. Can we
conclude that ϕ has mild singularities? To make this precise, GZ define the p-energy,
introduced by Cegrell (1998): For 0 < p <∞ we define

Ep(X,ω) = {ϕ ∈ E(X,ω) :
∫
X
|ϕ|p ωnϕ <∞}

We say that potentials in Ep(X,ω) have finite p-energy. If µ is a non-pluripolar measure,
we say that µ has finite p-energy if Ep(X,ω) ⊆ Lp(µ). The following is due to GZ (proved
in the local case by Cegrell (1998)):

Theorem 2 Let ϕ ∈ E(X,ω) and let µ = (ω + ddcϕ)n. Then ϕ has finite p-energy if and
only if µ has finite p-energy. This means: ϕ ∈ Ep(X,ω) if and only if Ep(X,ω) ⊆ Lp(µ).

Remark: One can show (see (4.12) that for ϕ, ψ ∈ E(X,ω) that∫
X
|ψ|p ωnϕ ≤ Cp

(∫
X
|ϕ|p ωnϕ +

∫
X
|ψ|p ωnψ

)
This proves the easy direction of Theorem 1.

Remark: The map ϕ 7→ (
∫
X |ϕ|p dµ)

1
p = ‖ϕ‖p is a norm but the map ϕ 7→ (

∫
X |ϕ|p ωnϕ)

1
p is

not a norm since it doesn’t scale properly. On the other hand, ϕ 7→ (
∫
X |ϕ|p ωnϕ)

1
p+1 = ‖ϕ‖′p

does scale approximately correctly: ‖εϕ‖′p ≤ Cp + ε‖ϕ‖′p for ε < 1. Moreover, GZ show
that Ep(X,ω) ⊆ Lp(µ) if and only if ‖ϕ‖p ≤ C‖ϕ‖′p for some C > 0.

2.2 Brief sketch of the proof.

The proof of Theorem 1, which is modeled on that of Cegrell in the local case, makes uses
of Yau’s solution to the Calabi conjecture. The idea is to consider a sequence of smooth
volume forms µj such that µj ⇀ µ. The µj are constructed locally via convolution with
symmetric bump function ρε (where ε = 1

j
), and the patched together using a partition of

unity. The importance of using this particular construction is
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u ≤ u ∗ ρε (2.6)

whenever u is a plurisubharmonic function on a domain in Cn. This inequality plays an
key role in the proof.

Let ϕj be the unique solution (provided by Yau’s theorem) to (ω + ddcϕj)
n = µj with

supϕj = 0. Since the {ϕ ∈ PSH(X,ω) : supϕ = 0} ⊆ L1(X) is compact, we can find a
subsequence such that ϕj → ϕ in L1(X). Then one must show, using some convergence
criteria that ϕ ∈ E(X,ω) and that

(ω + ddcϕj)
n ⇀ (ω + ddcϕ)n (2.7)

(this is the hard part). The proof is then complete.

We give a very brief idea of the proof of (2.7). The key idea is to use a classical convergence
criterion which says that if ϕj, ϕ ∈ PSH(X,ω)∩L∞(X) and ϕj → ϕ in L1(X), then (2.7)
holds if ∫

X
|ϕj − ϕ|ωnϕj → 0 (2.8)

As it stands, this convergence criterion is not adequate since ϕ is not bounded. Thus we
need to generalize the classical result to the case where ϕj, ϕ ∈ E1(X,ω) This generalization
is not difficult: we rather quickly are able to reduce to the case of bounded potentials
so that we can invoke the classical result. This is accomplished by replacing ϕj with

ϕ
(k)
j = max(ϕj,−k), and ϕ with ϕ(k) = max(ϕ,−k), and then showing that the error goes

to zero as k →∞ (uniform in j).

Now we try to show that (2.8) holds in our setting. We work in local coordinates, and
use the fact the µj = µ ∗ ρεj . Writing ωϕj = ddcuj, with uj a psh function, we let
ũj = (supk≥j uj)

∗ so ũj ↓ u. Then a simple computation, which makes repeated use of
(2.6), shows that on a coordinate patch U ⊆ Cn,∫

U
|ϕj − ϕ|ωnϕj ≤ 2

∫
U

(ũj ∗ ρεj − u)dµ +
∫
U

(ϕ− ϕj) dµ

The monotone convergence theorem implies the the first integral goes to zero as j → ∞.
As for the second integral, we wish to apply a second classical convergence result which
says that if ϕj, ϕ ∈ PSH(X,ω)∩L1(X) are uniformly bounded in L∞(X), and if ϕj → ϕ
in L1(X), then ∫

X
(ϕ− ϕj) dµ → 0 (2.9)

for any non-pluripolar measure µ. Again, this criterion is not adequate since ϕj is not
uniformly bounded. So again, we wish to generalize the criterion to the case where ϕj ∈
E(X,ω). As before, we replace ϕ, ϕj by their canonical approximations ϕ

(k)
j and ϕ(k).

But this time, estimating the error is not so easy and the proof is rather involved. The
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first step is to assume that the measure µ has extremely mild singularities, that is, we
assume µ is dominated by capacity. In particular, this means that µ has finite p energy
for all p. It also implies, using (2.6) again, that the sequence

∫
X(−ϕj)MA(ϕj) is bounded

(so that ϕ ∈ E1(X,ω)). This allows us to estimate the error in passing to the canonical
approximations, and proves that (2.9) holds for this class of µ. Finally, the general case is
handled via the Radon-Nikodym theorem, which implies that on non-pluripolar measure
is absolutely continuous with respect to some ωnψ with ψ ∈ PSH(X,ω) ∩ L∞(X).

Remark: The variational approach of BBGZ gives a new proof of Theorem 1 which avoids
appealing to Yau’s solution of the Calabi conjecture.

3 Convergence criteria

Suppose ϕj, ϕ ∈ PSH(X,ω) and ϕj → ϕ in L1(X). When can we conclude ωnϕj → ωnϕ?
And if µ is a Borel measure, when can we conclude

∫
X ϕj dµ→

∫
X ϕdµ?

3.1 Convergence criteria for ωnϕj

The proofs of the main theorems make use of some classical convergence results for bounded
potentials which we now recall.

Assume ϕj ∈ PSH(X,ω) and ϕ ∈ L1(X) and ϕj → ϕ in L1(X). Then ϕ = lim(supϕj)
∗

(almost everywhere), and after replacing ϕ by lim(supϕj)
∗, which only changes ϕ on a set

of measure zero, we have ϕ ∈ PSH(X,ω). Moreover, (ω + ddcϕj)→ (ω + ddcϕ).

By weak compactness, ωnϕj → µ for some measure µ (after passing to a subsequence).
But even if ϕj, ϕ ∈ PSH(X,ω) ∩ L∞(X), we still can’t conclude that µ = ωnϕ. In this
context, a result of Lelong is particularly striking: Let n ≥ 2, let Ω ⊆ Cn be a ball, and let
ϕ ∈ PSH(Ω)∩L∞(Ω). Then there is a uniformly bounded sequence ϕj ∈ PSH(Ω)∩L∞(Ω)
such that ϕj → ϕ in L1(Ω) and (ddcϕj)

n = 0 for all j.

The key question then becomes: If ϕj → ϕ then what additional assumptions will guar-
antee ωnϕj → ωnϕ?

Theorem 3 Let ϕj, ϕ ∈ PSH(X,ω) ∩ L∞(X).

1. If ϕj → ϕ in capacity and supj ‖ϕj‖L∞ <∞, then ωnϕj → ωnϕ.

2. If ϕj ↓ ϕ then ϕj → ϕ in capacity and in particular, ωnϕj → ωnϕ. Moreover, ϕj → ϕ
in L1(X) so ωϕj → ωϕ.

3. If ϕj ↑ ϕ almost everywhere then ωnϕj → ωnϕ. Moreover, ϕj → ϕ in L1(X) so
ωϕj → ωϕ.
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4. Assume ϕj → ϕ in L1(X), i.e. assume
∫
X |ϕj − ϕ|ωn → 0. Then ωϕj → ωϕ. If we

further have
∫
X |ϕj − ϕ|ωnϕj → 0 then ωnϕj → ωnϕ.

Proof. The first three statements are well known, so will just prove statement 4. Without
loss of generality, we may assume

∫
X |ϕj − ϕ|ωnϕj ≤

1
j2

.

Let ϕ̃j = max(ϕj, ϕ− 1
j
). Then |ϕ̃j − ϕ| ≤ |ϕj − ϕ| + 1

j
so ϕ̃j → ϕ in L1(X) as well. We

claim that ϕ̃j → ϕ in capacity. We must show cap(|ϕ̃j − ϕ| > ε) → 0 for all ε > 0. But
{|ϕ̃j−ϕ| > ε} = {ϕ̃j−ϕ > ε} for j > 1

ε
. Let ψj = (supk≥j ϕ̃j)

∗. Then ψj ↓ ϕ. By part two
of the theorem, ψj → ϕ in capacity. But ψj ≥ ϕ̃j. This implies {ϕ̃j−ϕ > ε} ⊆ {ψj−ϕ > ε}
and hence ϕ̃j → ϕ in capacity. We conclude, from part one of the theorem, that

(ω + ddcϕ̃j)
n → (ω + ddcϕ)n (3.10)

To see that (ω + ddcϕj)
n → (ω + ddcϕ)n first observe that by compactness, we have, after

passing at a subsequence, (ω + ddcϕj)
n → µ for some measure µ such that

∫
X µ =

∫
X ω

n.
It suffices to show that µ ≤ (ω + ddcϕ)n since both have the same total measure. We
estimate, for f a continuous function,∫

X
f (ω + ddcϕj)

n =
∫
ϕj>ϕ− 1

j

f(ω + ddcϕ̃j)
n +

∫
ϕj≤ϕ− 1

j

f(ω + ddcϕj)
n

But ∫
ϕj≤ϕ− 1

j

ωnϕj ≤ j
∫
X
|ϕj − ϕ|ωnϕj ≤

1

j

Taking limits we see that
∫
X fµ ≤

∫
X fω

n
ϕ so µ ≤ ωnϕ. This completes the proof.

Remark: Statement 4 holds more generally if we only assume ϕj, ϕ ∈ E1(X,ω). The
only place we used the fact that ϕj, ϕ ∈ L∞ was to guarantee that the ϕ̃j are uniformly
bounded in L∞ so that we can conclude (3.10) holds. If we don’t make that assumption,
and instead require that ϕj, ϕ ∈ E1(X,ω), then the proof can be modified so that (3.10)

still holds. Indeed, let ϕk = max(ϕ,−k). Then for each k we see that ϕ̃
(k)
j is uniformly

bounded in L∞, independent of j. We still have ϕ̃
(k)
j → ϕ̃(k) in capacity, so we conclude

(ω + ddcϕ̃
(k)
j )n → (ω + ddcϕ(k))n

Now we compare (ω + ddcϕ̃
(k)
j )n to (ω + ddcϕ̃j)

n and (ω + ddcϕ(k))n to (ω + ddcϕ)n: Let h
be a continuous function and estimate

|
∫
X
h (ω+ddcϕ̃

(k)
j )n−

∫
X
h (ω+ddcϕ̃j)

n| = |
∫
ϕ̃
(k)
j ≤k

h (ω+ddcϕ̃
(k)
j )n−

∫
ϕ̃j≤k

h (ω+ddcϕ̃j)
n|

Now

|
∫
ϕ̃j≤k

h (ω + ddcϕ̃j)
n| ≤ sup |h|

k
E1(ϕ̃j) ≤ 2n

sup |h|
k

E1(ϕ− 1)

10



since ϕj ≥ ϕ− 1 and E1(ϕ) gets bigger (modulo the factor of 2n ) as ϕ gets more singular

(see (4.11). We have a similar bound for ϕ̃
(k)
j . This shows that the error goes to zero as

k →∞, uniformly in j and thus (3.10) holds.

3.2 Convergence criteria for
∫
X ϕj dµ

The non-pluripolar property enters the theory in three important ways:

1. It allows us to obtain a stronger convergence result.

2. It allows us to to make use of energy functionals.

3. Non-pluripolar measures are, via the Radon-Nikodym theorem, absolutely continu-
ous respect to measures of the form MA(ϕ) for some bounded ϕ.

We first describe the convergence result. Let ϕj, ϕ ∈ PSH(X,ω) ∩ L∞(X), and assume
ϕj → ϕ in L1(X). If µ is another Borel measure on X which is bounded by Lebesgue
measure, then we can conclude

∫
X ϕj dµ→

∫
X ϕdµ. In the next proposition, we show that

this holds more generally, provided µ is non-pluripolar and the ϕj are uniformly bounded.

Proposition 1 Let ϕj, ϕ ∈ PSH(X,ω) ∩ L∞(X) and assume supX |ϕj| ≤ C. Let µ be a
non-pluripolar measure. Assume ϕj → ϕ in L1(X). Then

∫
X ϕj dµ→

∫
X ϕdµ

Proof. Since the ϕj are bounded we may assume, after passing to a subsequence, that
limj

∫
X ϕj dµ exists and that ϕj → ϕ a.e. (with respect to Lebesgue measure). If ϕj → ϕ

everywhere, we would be done (dominated convergence theorem).

Since the ϕj are bounded they are also bounded in L2(dµ) so, after passing to a subse-
quence, there exists ψ ∈ L2(dµ) so that ψk → ψ in L2(dµ) where ψk = 1

k

∑k
j=1 ϕj. In

particular, after passing to another subsequence, ψk → ψ µ-a.e. Since ϕj → ϕ a.e., we also
have ψk → ϕ a.e. Thus supk≥j ψk → ϕ a.e. which implies (supk≥j ψk)

∗ → ϕ everywhere.
Putting this all together:

lim
j→∞

∫
ϕj dµ = lim

j→∞

∫
ψj dµ = lim

j→∞

∫
ψ dµ

= lim
j→∞

∫
(sup
k≥j

ψk) dµ = lim
j→∞

∫
(sup
k≥j

ψk)
∗ dµ =

∫
ϕdµ

The first equality follows from the definition of ψj, the second and third from the fact that
ψj → ψ µ-a.e., and the fourth from the fact that µ is non-pluripolar.
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4 Energy functionals.

We have extended the definition of the Monge-Ampère operator from PSH(X,ω)∩L∞(X)
to E(X,ω). In this section, we describe a filtration of E(X,ω) by “Sobolev” spaces

PSH(X,ω) ∩ L∞(X) ⊆ Eχ(X,ω) ⊆ E(X,ω)

of finite weighted energy, where χ ranges over all admissible weights.

4.1 The weighted energy functionals Eχ

For χ : R− → R− an increasing function, with limt→−∞ χ(t) = −∞, and ϕ ∈ E(X,ω), we
define the χ-energy

Eχ(ϕ) =
∫
X

(−χ ◦ ϕ)ωnϕ

Here we shall always assume that χ is smooth and χ(0) = 0 (this is not absolutely necessary,
but the more general case can always be reduced to this setting).

We define
Eχ(X,ω) = {ϕ ∈ E(X,ω) : Eχ(X,ω) <∞}

If χ is convex, we write χ ∈ W− and we say Eχ is a “high energy functional”. If χ is
concave, we write χ ∈ W+ and we say Eχ is a “low energy functional”. An important
class of examples are the p-energies χp(t) = −|t|p. Then χ is low energy if and only if
p ≤ 1 and high energy if and only if p ≥ 1. We shall write Ep(χ) = Eχp so

Ep(ϕ) =
∫
X
|ϕ|p ωnϕ

The key observation is the following: Let ϕ ∈ E(X,ω). It follows easily from the fact that
MA(ϕ) is non-pluripolar that there exists a weight χ such that Eχ(ϕ) < ∞. In fact, we
may take χ ∈ W−. Thus for χ+ ∈ W+ and χ− ∈ W− we have

PSH(X,ω) ∩ L∞(X) ⊆ Eχ+(X,ω) ⊆ E1(X,ω) ⊆ Eχ−(X,ω) ⊆ E(X,ω)

PSH(X,ω) ∩ L∞(X) ⊆ Eχ+(X,ω) =
⋂

χ∈W+

Eχ+(X,ω) and E(X,ω) =
⋃

χ∈W−
Eχ(X,ω)

Let χ ∈ W−. Although it is not obvious from the definition, it turns out that if ϕ is
more singular than ψ, i.e., if ϕ ≤ ψ, then Eχ(ϕ) ≥ cχEχ(ψ) for some cχ > 0 (in fact,
we can take cχ = 2−n). Thus Eχ(ϕ) measures the strength of the singularity of ϕ. A
similar bound holds for χ ∈ W+, provided we assume that χ is of polynomial growth.
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More precisely, we must assume that there exists M > 0 such that |tχ′(t)| ≤ M |χ(t)| for
all t ∈ R−. If this holds, we write χ ∈ W+

M . Then for χ ∈ W+
M , the above inequality holds

with cχ = (M + 1)−n. In summary, if χ ∈ W− ∪W+
M then

ϕ ≤ ψ implies Eχ(ψ) ≤ cχEχ(ϕ) (4.11)

Clearly Eχ(ϕ) < ∞ if ϕ is bounded. If ϕ ∈ E(X,ω) and ϕj ∈ PSH(X,ω) ∩ L∞ is the
canonical approximation, so that ϕj ↓ ϕ, then Eχ(ϕj) is an increasing sequence. GZ show
that limj→∞Eχ(ϕj) = Eχ(ϕ). Thus ϕ ∈ Eχ(X,ω) if and only if Eχ(ϕj) is bounded.

We also define, for ϕ, ψ ∈ E(X,ω), the joint energy

Eχ(ϕ, ψ) =
∫
X

(−χ ◦ ϕ)ωnψ

so that Eχ(ϕ) = Eχ(ϕ, ϕ). Again, although it is not obvious from the definitions, if
χ ∈ W− ∪W+

M we have

Eχ(ϕ, ψ) ≤ cχ [Eχ(ϕ) + Eχ(ψ)] (4.12)

In particular, if MA(ψ) = µ then χ ◦ ϕ ∈ L1(µ) for all ϕ ∈ Eχ(X,ω), that is, µ has “finite
χ-energy”. This proves one direction of Theorem 2 (take χ(t) = −|t|p).

4.2 Convexity of the energy functionals

The functionals Eχ also satisfy an important convexity property. To simplify the state-
ment, we restrict to the functionals Ep. Let t1, ..., tk ≥ 0 with

∑k
j=1 tj = 1. Then

E(t1ϕ1 + · · ·+ tkϕk) ≤ Cp(
k∑
j=1

τj) · max
1≤j≤k

Ep(ϕj) (4.13)

where τj = max(tj, t
p
j). In particular, Ep = Eχp is convex. Moreover, if ϕ1, ϕ2, ... ∈ Ep with

ϕj ≤ 0 and supj Ep(ϕj) <∞, then
∑∞
j=1 2−jϕj ∈ Ep.

The functionals Ep also satisfy an important scaling property. If 0 < ε < 1 then

Ep(εϕ) ≤ Cp[ε
p + εp+1E(ϕ)] (4.14)

Combining the convexity and scaling properties: if ϕ1, ϕ2, ... ∈ Ep is an arbitrary sequence
with ϕj ≤ −1, and if we set E(ϕj) = Mj, then

∞∑
j=1

2−jM
−1/(p+1)
j ϕj ∈ Ep (4.15)
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4.3 Capacity of sublevel sets

If ϕ ∈ PSH(X,ω) then for t ≥ 1,

Capω(ϕ < −t) ≤ Cϕ
t

When ϕ has finite energy, a stronger estimate holds:

Proposition 2 Assume that ϕ ∈ Ep(X,ω). Then

Capω(ϕ < −t) ≤ Cϕ
tp+1

(4.16)

Moreover ∫ ∞
t=1

tpCapω(ϕ < −t) dt < ∞ (4.17)

Remark: There is a partial converse: If Capω(ϕ < −t) ≤ Cϕ
tp+n+ε

then ϕ ∈ Ep(X,ω).

Proof. We first prove (4.16). In fact, we prove a more general statement. Let ϕ ∈ Eχ(X,ω)
with ϕ ≤ −1. We claim

Capω(ϕ < −t) ≤ Cϕ
t|χ(−t)|

To see this, let u ∈ PSH(X,ω) with −1 ≤ u ≤ 0. For t ≥ 1 note that

{ϕ < −2t} ⊆ {ϕ/t < u− 1} ⊆ {ϕ < −t}

Thus ∫
ϕ<−2t

ωnu ≤
∫
ϕ
t
<u−1

ωnu ≤
∫
ϕ
t
<u−1

ωnϕ/t ≤
∫
ϕ<−t

ωnϕ/t

≤
∫
ϕ<−t

ωn +
1

t

n∑
j=1

(
n

j

)∫
ϕ<−t

ωjϕ ∧ ωn−j

If follows from the existence of the alpha invariant that the first integral decays exponen-
tially. As for the remaining integrals,∫

ϕ<−t
ωjϕ ∧ ωn−j ≤

1

|χ(−t)|

∫
X

(−χ ◦ ϕ)ωjϕ ∧ ωn−j ≤
1

|χ(−t)|
Eχ(ϕ)

This proves (4.16). To prove (4.17), we estimate∫ ∞
1

tpCapω(ϕ < −2t) dt ≤
∫ ∞

1
tpV olω(ϕ < −t) dt+

n∑
j=1

(
n

j

)∫ ∞
1

tp−1
∫
ϕ<−t

ωjϕ ∧ ωn−j dt

=
∫ ∞

1
tpV olω(ϕ < −t) dt+

n∑
j=1

(
n

j

)∫
X
|ϕ|pωjϕ ∧ ωn−j

The first integral is finite since V olω(ϕ < −t) decays exponentially. As for the other
integrals, ∫

X
|ϕ|pωjϕ ∧ ωn−j ≤

∫
X
|ϕ|pωj+1

ϕ ∧ ωn−j−1 ≤ · · · ≤ Ep(ϕ) < ∞
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4.4 Criteria for finite energy

Recall (cf. the statement of Theorem 2) that a measure µ has finite p-energy if

Ep(X,ω) ⊆ Lp(µ) (4.18)

We wish to establish necessary and sufficient conditions for (4.18) to hold.

Proposition 3 Let µ be a probability measure on X. Then Ep(X,ω) ⊆ Lp(µ) if and only if
there exist C > 0 such that for all ψ ∈ PSH(X,ω)∩L∞(X) the supψ = −1,the following
holds

0 ≤
∫
X
|ψ|p dµ ≤ C

[∫
X
|ψ|pωnψ

] p
p+1

(4.19)

Moreover, if (3) holds, then it also holds for all ψ ∈ Ep(X,ω).

Proposition 4 Let µ be a probability measure on X. Assume

µ(E) ≤ ACap∗ω(E)α (4.20)

for some α > p
p+1

. Then µ has finite p-energy. We also have a partial converse: If µ has
finite p-energy, then (4.20) holds for α = p

p+1
min(p, 1).

Proof of Proposition 3. Suppose Ep(X,ω) ⊆ Lp(µ). Then (4.15) shows that for any
sequence of ϕj ∈ Ep, that

sup
j

2−jpM
−p

(p+1)

j

∫
|ϕj|p dµ <∞

But this implies there exists C > 0 such that

∫
|ψ|p dµ ≤ C

[∫
|ψ|pωnψ

] p
p+1

(4.21)

for all ψ ∈ PSH(X,ω) ∩ L∞(X): The proof goes by contradiction. If not, then take
C = Cj with 2−jpCj → ∞, and choose ϕj which violates the above inequality. Then
sup 2−jpCj <∞, a contradiction.

Proof of Proposition 4. Recall that for a Borel set E ⊆ X, the extremal function is

hE,ω(x) = sup{ϕ(x) : ϕ ∈ PSH(X,ω), ϕ ≤ 0, ϕ|E = 1}

Then h∗E,ω ∈ PSH(X,ω) has the properties

1. We have −1 ≤ h∗E,ω ≤ 0 and h∗E,ω = −1 on E\P with P pluripolar.

2. (ω + ddch∗E,ω)n = 0 on ΩE\Ē where ΩE = {h∗E,ω < 0}.
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3. Cap∗ω(E) =
∫
X(−h∗E,ω)(ω + ddch∗E,ω)n

Now assume Ep(X,ω) ⊆ Lp(µ). Since −h∗E,ω = 1 on E\P , and since P has µ-measure zero,
Proposition 3 implies

µ(E) ≤
∫
X

(−h∗E,ω)p dµ ≤ A
[∫
X

(−h∗E,ω)pωnh∗E,ω

] p
p+1

If p ≥ 1 then (−h∗E,ω)p ≤ −h∗E,ω and the right side is bounded by ACap∗ω(E)
p
p+1 . If p < 1

then we use Hölder’s inequality to see that the right side is bounded by A′Cap∗ω(E)
p2

p+1 .

For the converse, we assume 1 > α > p
p+1

in (4.20) and try to show µ has finite p-energy.
Thus we let ϕ ∈ Ep(X,ω) with supϕ = −1 and estimate∫

(−ϕ)p dµ = 1 + p
∫ ∞

1
tp−1 µ(ϕ < −t) dt ≤ 1 + pA

∫ ∞
1

tp−1 [Capω(ϕ < −t)]α dt

= 1 + pA
∫ ∞

1
tp−α−pα−(1−α) tpα[Capω(ϕ < −t)]α dt

≤ 1 + pA
[∫ ∞

1
t
p−α(p+1)

1−α −1dt
]1−α [∫ ∞

1
tpCapω(ϕ < −t) dt

]α
The first integral is finite since α > p

p+1
and (4.17) implies that the second is finite.

Proposition 5 If 0 < p <∞ and if there exists α > p
p+1

such that

µ(E) ≤ ACap(E)α (4.22)

for all E, then µ has finite p-energy. Moreover∫ ∞
1

tpCapω(ϕ < −t) dt < ∞

In particular, if µ(E) ≤ ACap(E), then µ has finite p-energy for all p.

Conversely, if p > 1 and if µ has finite p-energy, then (4.22) holds for some A and some
0 < α < 1.

5 Details of the proofs.

For A > 0 we let

MA = {probability measures µ : µ(E) ≤ A · Cap(E) for all Borel sets E ⊆ X}

We wish to prove the following results:
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Theorem 4 Let µ ∈MA for some A > 0. Then there exists ϕ ∈ E1(X,ω) such that

(ω + ddcϕ)n = µ

Theorem 5 Let µ be a nonpluripolar probability measure. Let χ ∈ W− ∪W+
M . Suppose

that there exists F : R+ → R+ satisfying

1. limt→∞ F (t)/t = 0.

2.
∫
X(−χ) ◦ ψ dµ ≤ F (Eχ(ψ)) for all ψ ∈ PSH(X,ω) ∩ L∞(X)

Then there exists ϕ ∈ Eχ(X,ω) such that (ω + ddcϕ)n = µ.

Note that for χ = χp we can take F (t) = t
p
p+1 .

Proof of Theorem 4. Let µ be a probability measure on X. Cover X by a finite number
of open sets Ui which are biholomorphic to the unit ball in Cn. Let µUiε = µ|Ui ∗ ρε which
is a measure on the ball of radius 1− ε. Moreover, µUiε → µ|Ui (weak convergence).

Let θi be a partition of unity subordinate to Ui. Then θiµ
Ui
ε is a measure on Ui, which

may also be viewed as a measure on X. Furthermore, θiµ
Ui
ε → θiµ|Ui = θiµ. This implies∑

i θiµ
Ui
ε → µ. In particular,

∫
X θiµ

Ui
ε →

∫
X dµ. We may assume that

∫
X θiµ

Ui
ε +εωn >

∫
X dµ

(if necessary, replace ρε by ρf(ε) where f(ε)→ 0 very rapidly as ε→ 0). Now let

µj = cj

[∑
i

θiµ
Ui
ε + εjω

n

]

where εj = 1
j

and cj ↑ 1 is chosen so that
∫
X dµi =

∫
X dµ.

Then µj has smooth, strictly positive density so Yau’s theorem provides us with a unique
ϕj ∈ PSH(X,ω) ∩ C∞(X) satisfying

ωnϕj = µj , sup
X
ϕj = −1

Passing to a subsequence we may assume ϕj → ϕ in L1(X) with ϕ ∈ PSH(X,ω) and
supϕ = −1. Our goal is to prove ϕ ∈ Eχ and ωnϕ = µ.

The first step is to show that ∫
X

(−ϕj)ωnϕj ≤ C
∫
X

(−ϕ) dµ (5.23)

This will follow easily from the fact: If u is psh in a ball in Cn, then (−u) ∗ ρε ≤ (−u).

Next we assume µ ∈ MA (this assumption will be removed later). Our goal is to show
that with this assumption, that ϕ ∈ E1(X,ω) and that (2.8) holds. If we can show this,
then this completes the proof in this case, i.e, we show that (ω + ddcϕ)n = µ.

To do this, we proceed as follows.
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1. Since µ ∈MA, Proposition 5 implies

E1(X,ω) ⊆ L1(µ) (5.24)

2. We combine (4.21), which says
∫
X(−ϕj)dµ ≤ C(

∫
X(−ϕj)ωnϕj)

1/2 if ϕj ∈ E1(X,ω)
(certainly the case here since ϕj is smooth) with (5.23) to conclude supj E

1(ϕj) <∞
and thus, ϕ ∈ E1(X,ω). Moreover

sup
j

∫
X

(−ϕj) dµ <∞ (5.25)

3. Since supj E
1(ϕj) <∞ we can apply (2) and conclude

Cap(ϕj < −t) ≤
C

t2
(5.26)

4. Since∫
X

(−ϕj)3/2 dµ = 1 +
3

2

∫ ∞
1

t1/2µ(ϕj < t) dt ≤ 1 +
3A

2

∫ ∞
1

t1/2Cap(ϕj < −t)dt

we conclude ∫
X

(−ϕj)3/2 dµ ≤ C (5.27)

5. We prove ∫
X
ϕj dµ→

∫
X
ϕdµ (5.28)

If the ϕj were uniformly bounded in L∞ then we could apply Proposition 1. For

fixed k > 0, we let ϕ
(k)
j = max(ϕj,−k). Then Proposition 1 tells us∫

X
ϕ

(k)
j dµ →

∫
X
ϕ(k) dµ (5.29)

On the other hand,

∫
X
|ϕ(k)
j − ϕj| ≤ 2

∫
ϕj≤k

(−ϕj) dµ ≤
2√
k

∫
X

(−ϕj)3/2 dµ ≤ C√
k

(5.30)

where C is independent of j and k. This completes step 5.

Remark: It seems that we can skip steps 3,4 and instead observe, using (5.25):

∫
X
|ϕ(k)
j − ϕj| ≤ 2

∫
ϕj≤k

(−ϕj) dµ ≤
2

k

∫
X

(−ϕj) dµ ≤
C

k
(5.31)

18



6. We can achieve our goal of establishing (2.8), that is, we can show∫
X
|ϕj − ϕ| dµj → 0 (5.32)

It suffices to show that (5.32) holds with µj replaced with µUj = µ|U ∗ ρεj .

To do this, write ϕj = uj − γ and ϕ = u− γ where γ is a local potential for ω on U .
Then uj → u in L1(U) so u = limj→∞(supk≥j uk)

∗ and

∫
U
|ϕj − ϕ| dµUj =

∫
U

(∫
U
|uj(ξ)− u(ξ)|ρεj(z − ξ) dλ(ξ)

)
dµ(z) =

∫
U
wj(z) dµ(z)

Define ũj = (supk≥j uk)
∗ so ũj ≥ max(u, uj) ≥ u and ũj ↓ u.
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