Proposition 1. Let X be a compact Kähler manifold (or Kähler variety). Let T be a positive (1,1) current which has locally bounded potentials on $X \setminus S$ where $S \subseteq X$ is an analytic subvariety (or more generally, a closed pluripolar set). Then for any $\varepsilon > 0$ and $K \subset X \setminus S$ there exists $\rho_{\varepsilon} \in C^{\infty}(X)$ such that

(1) $0 \le \rho_{\varepsilon} \le 1$ (2) $\operatorname{supp}(\rho_{\varepsilon}) \subseteq X \setminus S$ (3) $\rho_{\varepsilon} = 1 \text{ on } K.$ (4) $\int_{X \setminus S} \sqrt{-1} \partial \rho_{\varepsilon} \wedge \overline{\partial} \rho_{\varepsilon} \wedge T^{n-1} < \varepsilon$

Here $\sqrt{-1}\partial\rho_{\varepsilon}\wedge\bar{\partial}\rho_{\varepsilon}\wedge T^{n-1}$ is the usual Bedford-Taylor measure on $X\backslash S$ (well defined since T has locally bounded potentials).

Proof. After passing to a resolution of singularities we may assume X is smooth and S is a divisor. It is also Kähler by Kollar's theorem above. Let s be the canonical section of O(S) so that $S = \{s = 0\}$ and h be a smooth metric on O(S) such that $|s|_h \leq 1$. Let θ be a smooth representative of the class [T] and write $T = \theta + \sqrt{-1}\partial\bar{\partial}\psi$ for some $\psi \in \text{PSH}(X,\theta) \cap L^{\infty}_{\text{loc}}(X \setminus S)$ and let $\omega = T|_{X \setminus S}$.

Choose ω_X a Kähler metric on X such that $\omega_X > \operatorname{Ric}(h)$ and $\omega_X > -\theta$. Let $F \in C^{\infty}([0,\infty))$ have the properties $0 \leq F \leq 1$, F = 1 on [0, 1/2] and F = 0 on $[1,\infty)$.

Let

$$\eta_{\varepsilon} = \max(\log |s|_h^2, \log \varepsilon) \in \operatorname{PSH}(X, \omega_X) \cap C^0(X)$$

so $\log \varepsilon \leq \eta_{\varepsilon} \leq 0$, and let

$$\rho_{\varepsilon} = F\left(\frac{\eta_{\varepsilon}}{\log \varepsilon}\right)$$

Then $\rho_{\varepsilon} = 1$ on K if ε is sufficiently small and if we let $N_{\delta}(S)$ be a closed tubular neighborhood of S with radius $0 < \delta \ll \varepsilon$ then

$$\int_{X\setminus S} \sqrt{-1}\partial\rho_{\varepsilon} \wedge \bar{\partial}\rho_{\varepsilon} \wedge \omega^{n-1} = \frac{1}{(\log \varepsilon)^{2}} \int_{X\setminus S} (F')^{2} \sqrt{-1}\partial\eta_{\varepsilon} \wedge \bar{\partial}\eta_{\varepsilon} \wedge \omega^{n-1}$$

$$\leq \frac{C}{(\log \varepsilon)^{2}} \int_{X\setminus S} \sqrt{-1}\partial\eta_{\varepsilon} \wedge \bar{\partial}\eta_{\varepsilon} \wedge \omega^{n-1} = \frac{C}{(\log \varepsilon)^{2}} \int_{X\setminus N_{\delta}(S)} \sqrt{-1}\partial\eta_{\varepsilon} \wedge \bar{\partial}\eta_{\varepsilon} \wedge \omega^{n-1}$$

$$= \frac{C}{(\log \varepsilon)^{2}} \int_{X\setminus N_{\delta}(S)} (-\eta_{\varepsilon}) \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon} \wedge \omega^{n-1} \leq \frac{C}{(\log \varepsilon)^{2}} \int_{X\setminus N_{\delta}(S)} (-\eta_{\varepsilon}) (\omega_{X} + \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon}) \wedge \omega^{n-1}$$

$$\leq \frac{C}{|\log \varepsilon|} \int_{X\setminus N_{\delta}(S)} (\omega_{X} + \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon}) \wedge \omega^{n-1} = \frac{C}{|\log \varepsilon|} \int_{X\setminus N_{\delta}(S)} (\omega_{X} + \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon}) \wedge (\theta + \sqrt{-1}\partial\bar{\partial}\psi)^{n-1}$$

$$= \frac{C}{|\log \varepsilon|} \int_{X \setminus N_{\delta}(S)} (\omega_X + \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon}) \wedge (\theta + \omega_X + \sqrt{-1}\partial\bar{\partial}\psi_k)^{n-1}$$

$$\leq \frac{C}{|\log \varepsilon|} \int_X (\omega_X + \sqrt{-1}\partial\bar{\partial}\eta_{\varepsilon}) \wedge (\theta + \omega_X + \sqrt{-1}\partial\bar{\partial}\psi_k)^{n-1} = \frac{C}{|\log \varepsilon|} \int_X \omega_X \wedge (\theta + \omega_X)^{n-1}$$

where k > 0 is chosen such that $\psi = \psi_k := \max\{\psi, -k\}$ on $X \setminus N_{\delta}(S)$. Note that we have $\psi_k \in \text{PSH}(X, \theta + \omega_X)$ since $\theta + \omega_X$ is a Kähler metric and $\psi \in \text{PSH}(X, \theta) \subseteq \text{PSH}(X, \theta + \omega_X)$.

If S is a closed pluripolar set, then the same proof works if we replace $\log |s|_h$ by a function $\Psi \in \text{PSH}(X, \omega_X)$ such that $S = \{\Psi = -\infty\}$ and $\sup \Psi = 0$.