Nonatomic Game with General Preferences over Returns

Nonatomic Game with General Preferences over Returns

Jian Yang Department of Management Science and Information Systems Business School, Rutgers University Newark, NJ 07102

January 2022

Traditional and Nonatomic Games

• In traditional *n*-player game with *utilities* $\tilde{u}(i, a(i), a(-i))$, a *mixed* strategy profile $\delta^* \equiv (\delta^*(\cdot|i))_{i=1,2,...,n}$ would be considered an equilibrium when for every player i = 1, 2, ..., n,

$$\delta^*\left(\operatorname{argmax}\left\{u(i,a(i),\delta^*(-i)):\ a(i)\in A\right\}|i)=1,$$

where each $\delta^*(\cdot|i)$ is an action distribution in $\mathscr{P}(A)$ and

$$u(i,a(i),\delta^*(-i)) \equiv \int_{A^{n-1}} \tilde{u}(i,a(i),a(-i)) \cdot \prod_{j \neq i} \delta^*(da(j)|j)$$

• An NG involves a *continuum* players with *no* one having any *discernible* influence on others; and yet, all players *in aggregation* have real impacts on each and every one of them

Nonatomic Game with a Utility Function

- A conventional NG still relies on a real-valued utility function $u(t, a, \delta)$, where $t \in T$ is player identity or type, $a \in A$ is action, and δ represents outside environment
- In semi-anonymous version, $\delta \in \mathscr{P}(T \times A)$ is joint distribution over all players' identities and actions; in simpler anonymous version, $\delta \in \mathscr{P}(A)$ is distribution over all player' actions alone
- A game is also associated with a player distribution $\theta\in \mathscr{P}(T)$
- According to Schmeidler's (1973) *pioneering work*, a T-to- $\mathscr{P}(A)$ mapping σ^* would reach *equilibrium* when for almost every $t \in T$,

$$\sigma^*\left(\operatorname{argmax}\left\{u(t,a,\theta\odot\sigma^*):\;a\in A\right\}|t\right)=1$$

where $[\theta\odot\sigma^*](T'\times A')=\int_{t\in T'}\sigma^*(A'|t)\cdot\theta(dt)$ for any T' and A'

Generalization with a Distributional View

• In Mas-Colell's (1984) alternative view, a $\delta^* \in \mathcal{D} \equiv \mathscr{P}(T \times A)$ would be considered an *equilibrium* when

 $\delta^*\left(\left\{(t,a)\in T\times A:\ u(t,a',\delta^*)\not > u(t,a,\delta^*),\ \forall a'\in A\right\}\right)=1$

and $\delta^*|_T=\theta,$ meaning that $\delta^*(T'\times A)=\theta(T')$ for any T'

- We *generalize* this to case where instead of real-valued utility, players have *general preferences* on *returns* they receive
- There is a return function $\rho(t, a, \delta)$ not necessarily real-valued and there is a preference $\psi(t)$ so that $(r, r') \in \psi(t)$ equates to $r \not\succ_t r'$
- A distribution $\delta^* \in \mathcal{D}$ with $\delta^*|_T = \theta$ would be *equilibrium* when

$$\delta^*\left(\left\{(t,a)\in T\times A:\ \left(\rho(t,a',\delta^*),\rho(t,a,\delta^*)\right)\in\psi(t),\ \forall a'\in A\right\}\right)=1$$

Our Return-based Preferences

- Our *general preferences* are not directly on *actions* and other players' *action profiles*, but rather, on *returns* that players *personally* and *locally* feel
- We do believe in influences that other players' *identities* and *actions* might have on a given player
- However, these influences ought to be limited to extent that they affect a particular player *personally* and *locally*—an individual player could *not* care less about which *external* player-action profiles would actually yield him current return
- Return might be a bundle of commodities, a stash of cash, a get-out-of-jail card, admittance to a free-trade pact, lifting of some economic sanctions, winning of a soccer match, etc.

Main Results

- Under *compactness* and *continuity*-related assumptions, we can establish *existence* of equilibria in *distributional* nature
- Probably more interestingly, we can derive *upper hemi-continuity* of set $\mathbb{E}(\rho, \psi)$ of equilibria with respect to *return function* $\rho \equiv (\rho(t, a, \delta))_{t \in T, a \in A, \delta \in \mathcal{D}}$ and *preference profile* $\psi \equiv (\psi(t))_{t \in T}$
- Here, two profiles ψ and ψ' are considered close when this is true for every pair of $\psi(t)$ and $\psi'(t)$, distance of which as two subsets of product *return space* $R \times R$ is then measured in Hausdorff sense
- Game would be *anonymous* when other players influence a given player only through *action distribution* they form
- When game is *anonymous*, player distribution θ is *atomless*, and action space A is *finite*, we can show same for *pure equilibria*

Implications of Results

- We have *generalized* classical results such as Schmeidlier (1973) and Mas-Colell (1984) by considering *general preferences*
- Upper hemi-continuities of equilibrium sets with respect to *return function* and *preference profile* would *guard against* severity of player-characteristic *mis-specifications*
- In real life where game might be played repeatedly over time, a player t might have to be merely capable of understanding his own preference $\psi(t)$ over fixed return space R
- Trials and errors would likely help him reach an equilibrium with others without any one player t' fully comprehending preferences $\psi(t'')$ of others or all complexities embedded in return generation mechanism $\rho \equiv (\rho(t, a, \delta))_{t \in T, a \in A, \delta \in D}$

Nonatomic Games and General Preferences

- Systematic research on nonatomic games (NGs) started with Schmeidler (1973), a distributional alternative of which was exploited by Mas-Colell (1984)
- General preferences were first considered by Schmeidler (1969) for a *competitive economy* involving traders and commodities
- Mas-Colell (1974) studied a finite economy where every trader would strictly prefer some other bundles to any given bundle and these form *preferred-to correspondences* (PTCs)
- Shafer and Sonnenschein's (1975) PTCs were *globalized* to extent of being dependent on *others' choices* as well

Nonatomic Game with General Preferences over Returns

Preference-to-Correspondences with Externalities

- Many works concerning NGs with general preferences also introduced *externality* to PTCs—such $P(t, \alpha)$, i.e., sets of actions that individual players t would prefer to those prescribed by given player-action profiles $\alpha \equiv (\alpha(t'))_{t' \in T}$, depends on not only $\alpha(t)$ but also $(\alpha(t'))_{t' \in T \setminus \{t\}}$; see, e.g., Khan and Vohra (1984), Khan and Papageorgiou (1987), and Kim, Prikry, and Yannelis (1989)
- However, Balder (2000) challenged compatibility among (a) *irreflexivity* of preferences, (b) *atomeless-ness* of player set, and (c) certain *continuity* often assumed for PTCs
- Martins-da-Rocha and Topuzu (2008) proposed to circumvent this difficulty by working with *expanded* PTCs $P(t, a, \alpha)$ whose dependencies on current-player actions a are newly added

Some Formal Notions

- Given a space X with metric d_X , use $\mathscr{B}(X)$ for Borel σ -field and $\mathscr{P}(X)$ for space of *probabilities* defined on $(X, \mathscr{B}(X))$
- Space $\mathscr{P}(X)$ is endowed with Prokhorov metric $\pi_X \equiv d_{\mathscr{P}(X)}$, which also induces weak convergence; it will be *compact* when X is
- Let $\mathscr{C}(X, Y)$ be space of *continuous mappings* from X to Y; its members will be uniformly continuous when X is compact
- Players form a compact metric space T, *actions* form a compact metric space A, and *returns* form a compact metric space R; these form $\mathcal{D} \equiv \mathscr{P}(T \times A)$ as space of *joint player-action distributions*

Returns and Preferences

- Let $\mathcal{R} \equiv \mathscr{C}(T \times A \times D, R)$ be space of *return functions*—in any circumstance, return is written as $\rho(t, a, \delta)$
- A preference ψ can be represented by a subset of R × R with connotations of *irreflexivity* and *transitivity*:
 (i) (r, r) ∈ ψ;
 (ii) (r, r') ∉ ψ and (r', r'') ∉ ψ would lead to (r, r'') ∉ ψ
- This way, ψ would be equivalent to a *preference relationship* \succ so that $(r, r') \in \psi$ if and only if $r \neq r'$
- We shall also add *closedness* of ψ which confers *continuity* on corresponding \succ ; for convenience, define

 $\Psi \equiv \{\psi \subseteq R \times R : \psi \text{ is nonepty, closed, and enjoying (i) and (ii)} \}$

Distance for Preferences

- Let Φ be space of nonempty closed subsets of $R\times R$ which contains set Ψ of all preferences
- A metric d_{Φ} for Φ can be defined using Hausdorff distance so that

$$d_{\Phi}(\phi_1, \phi_2) = \inf (\epsilon > 0 : \phi_1 \subseteq (\phi_2)^{\epsilon} \text{ and } \phi_2 \subseteq (\phi_1)^{\epsilon})$$

- Φ is known to be *compact* under d_{Φ} ; also Ψ can be shown as a *closed* subset of Φ and hence a *compact* set in its own right
- Let $\mathcal{P} \equiv \mathscr{C}(T, \Psi)$ be space of continuous mappings from T to Ψ —game has a given *preference profile* $\psi \equiv (\psi(t))_{t \in T} \in \mathcal{P}$

Game Definition

- Recall player space T, action space A, and return space R would help form space $\mathcal{D} \equiv \mathscr{P}(T \times A)$ of joint player-action distributions, space $\mathcal{R} \subset R^{T \times A \times \mathcal{D}}$ of return functions, space $\Psi \subset 2^{R \times R}$ of preferences, and space $\mathcal{P} \subset \Psi^T$ of preference profiles
- At a player distribution $\theta \in \mathscr{P}(T)$, return function $\rho \equiv (\rho(t, a, \delta))_{t \in T, a \in A, \delta \in \mathcal{D}} \in \mathcal{R}$, and preference profile $\psi \equiv (\psi(t))_{t \in T} \in \mathcal{P}$, tuple $(T, A, R, \theta, \rho, \psi)$ would define a nonatomic game (NG), say $\Gamma(\rho, \psi)$
- When R = [0, 1] and each $\psi(t)$ is triangle $\{(r, r') \in [0, 1]^2 : r \leq r' \text{ or equivalently } r \neq r'\}$, we would have a *classical nonatomic game* with ρ serving as its *utility function*

A PTC Interpretation

- In general, R could be multi- or infinite-dimensional
- Our primitives could lead to a sort of expanded PTC through

$$P(t, a, \delta) \equiv \left\{ a' \in A : \left(\rho(t, a', \delta), \rho(t, a, \delta) \right) \notin \psi(t) \right\}$$

So ours is in some sense a special PTC-based model

- As argued earlier, PTCs in practice are likely generated in this fashion or something akin to it
- Besides, our modeling approach has dispensed with any *linear* structure for action space A; also, it would facilitate advances on mixed equilibria and equilibrium set's upper hemi-continuity

An Illustrative Example

- Let T = [0, 1], $A = \{-1, +1\}$, R = [0, 1], and each player t's preference $\psi(t)$ be ordered one of $\{(r, r') \in [0, 1]^2 : r \le r'\}$
- When a player t takes an action a in presence of a joint player-action distribution δ , suppose return $\rho(t, a, \delta)$ is

$$\sum_{n=1}^{+\infty} \left\{ [\sin(nta) + 1]/2 \right\} \cdot \delta \left([(n-1)/n, n/(n+1)) \times \{-1\} \right) \\ + \sum_{n=1}^{+\infty} \left\{ [\cos(nta) + 1]/2 \right\} \cdot \delta \left([(n-1)/n, n/(n+1)) \times \{+1\} \right),$$

which would not bring too much difficulty to our approach

In PTC setup, however, one has to undertake humongous task of figuring out whether P(t, a, δ) is Ø or {-a}; besides, as action space is not *convex* and externality is not expressible through a *finite* number of statistics, this example would not yield to Martins-da-Rocha and Topuzu's (2008) analysis

Strategies and Equilibria

- Consider set of joint player-action distributions whose *T*-marginals are θ ; namely, $\mathcal{D}|_T(\theta) \equiv \{\delta \in \mathcal{D} : \delta|_T = \theta\}$
- Each δ ∈ D|_T(θ) also spells out a *mixed strategy* as it gives sense of how likely a (t, a)-neighborhood would be visited
- Use $\rho(t, A', \delta)$ for set $\{\rho(t, a, \delta) : a \in A'\}$ of returns that player t, while facing δ , could expect to get by taking actions from set A'
- We shall consider $\delta^* \in \mathcal{D}|_T(\theta)$ an equilibrium for $\Gamma(\rho,\psi)$ when

$$\delta^* \left(\mathbb{B}(\delta^* | \rho, \psi) \right) = 1,$$

with $\mathbb{B}(\delta|\rho,\psi)\equiv\{(t,a)\in T\times A:\ \rho(t,A,\delta)\times\rho(t,\{a\},\delta)\subseteq\psi(t)\}$

Equilibrium-related Definitions

• As in Mas-Collel (1984), we define correspondence $\mathbb{F}(\cdot|\rho,\psi): \mathcal{D}|_T(\theta) \rightrightarrows \mathcal{D}|_T(\theta)$ so that

 $\mathbb{F}(\delta|\rho,\psi) \equiv \left\{\delta' \in \mathcal{D}|_T(\theta) : \ \delta'\left(\mathbb{B}(\delta|\rho,\psi)\right) = 1\right\}$

It is set of joint player-action distributions that could possibly arise when players optimally respond to a common environment δ

- $\delta^* \in \mathcal{D}|_T(\theta)$ would be a member to set $\mathbb{E}(\rho, \psi)$ of *equilibria* if and only if δ^* is a *fixed point* for $\mathbb{F}(\cdot|\rho, \psi)$ satisfying $\delta^* \in \mathbb{F}(\delta^*|\rho, \psi)$
- We can show that 𝔅(·, ·) is both *nonempty* and *upper hemi-continuous* as a correspondence from 𝔅 × 𝒫 to 𝔅|_T(θ)

Pure Equilibrium

- Suppose action space A is a finite $\{a_1,...,a_{|A|}\}$
- Suppose return $\rho(t, a, \delta) \equiv \tilde{\rho}(t, a, \delta|_A)$ for some $\tilde{\rho}: T \times A \times \tilde{D} \to R$ —game is *anonymous* so that other players influence a given player only through action distribution
- Suppose player distribution θ is *atomless* so that for any T' with $\theta(T') > 0$ there would be T'' with $0 < \theta(T'') < \theta(T')$
- Now at each $(\tilde{\rho}, \psi) \in \tilde{\mathcal{R}} \times \mathcal{P}$, tuple $(T, A, R, \theta, \tilde{\rho}, \psi)$ would help define an *anonymous* NG $\tilde{\Gamma}(\tilde{\rho}, \psi)$
- We have a similar result for $\tilde{\Gamma}(\tilde{\rho},\psi)$'s pure equilibria

Rich Player Space and Cruder Traits

- Also considered is Khan et al.'s (2013) setup where players form a rich enough (*saturated*) space $(I, \mathscr{I}, \lambda)$ and T contains *traits* that help provide external environment
- Let game $\hat{\gamma} \equiv (\hat{\theta}, \hat{\rho}, \hat{\psi})$ be defined through

(i) an I-to-T mapping $\hat{\theta}$ so that each $\hat{\theta}(i)$ is player *i*'s trait;

(ii) an *I*-to- $\mathscr{C}(A, \mathscr{P}(T \times A))$ mapping $\hat{\rho}$ so that each $\hat{\rho}(i)$ is player *i*'s return function—under action $a \in A$ and joint trait-action distribution $\delta \in \mathscr{P}(T \times A)$, player *i* will receive a return of $\hat{\rho}(i, a, \delta) \equiv [\hat{\rho}(i)](a, \delta)$;

(iii) an $I\text{-to-}\Psi$ mapping $\hat{\psi}$ so that a $\hat{\psi}(i)$ is player i 's preference

Pure Equilibria with Saturation

• We consider an I-to-A mapping $\hat{\alpha}^*$ equilibrium when

$$\hat{\rho}\left(i, A, \lambda \circ (\hat{\theta}, \hat{\alpha}^*)^{-1}\right) \times \hat{\rho}\left(i, \{\hat{\alpha}^*(i)\}, \lambda \circ (\hat{\theta}, \hat{\alpha}^*)^{-1}\right) \subseteq \hat{\psi}(i),$$

for $\lambda\text{-almost}$ very player i

- A saturated player space is capable of supplying player-to-action mapping $\hat{\alpha}^*$ that would, together with given player-to-trait mapping $\hat{\theta}$ already matching trait-marginal of a given joint trait-action distribution δ^* , weave out a player-to-trait/action-pair mapping whose law happens to be δ^*
- Equilibrium existence can be assured under *saturation*, though without upper hemi-continuity being guaranteed

Concluding Remarks

- Modeling general preferences *indirectly* through *returns* which are then influenced by player-action profiles *rather than directly* through latter has given us advantages in *realism* and *simplicity*
- Properties of *nonemptiness* and *upper hemi-continuity* of mixed-equilibrium sets in presence of *general preferences* have already been achieved for finite games; see, e.g., Yang (2018)
- While focusing on unleashing most potential benefits of indirect modeling of preferences through returns, we have not prioritized at attainment of *uttermost generality* for spaces and mappings—further generalizations could be just on horizon