A Nonatomic Game Involving Ambiguity

Jian Yang

Department of Management Science and Information Systems Business School, Rutgers University Newark, NJ 07102

March 2022

Essential Setups

- We study a *nonatomic game* (NG) with *ambiguity* considerations
- Besides a space I of *players* i and a space A of *actions* a, there is also a space Ω of *states* of the world ω
- Space R of returns r need not be real line \Re
- Under state ω , player i would receive return $\tilde{r}(\omega, i, a, \delta)$ when taking action a while other players form *external environment* δ
- For general *semi-anonymous* case, such external environments form space $\mathcal{D} \equiv \mathscr{P}(I \times A)$ of joint *player-action* distributions
- However, actual state ω is not completely observable

The Signal Space

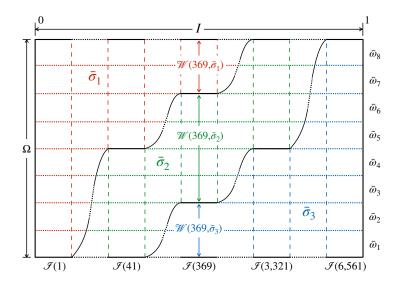
- Instead, player i would receive a signal $\sigma\equiv\tilde{s}(\omega,i)$ under state ω
- We have let all players share a common signal space Σ which is conceptually equivalent to every player i having her own space Σ'(i)—just treat Σ as ⋃_{i∈I} Σ'(i)
- Same signal σ could mean different things for different players; for instance, *color* red for player i and *sound* of wind for player i'
- When both state space Ω and signal space Σ are finite, there would be a finite space Σ^Ω of signal vectors s ≡ (s(ω))_{ω∈Ω}
- Each \vec{s} would correspond to a subset $\mathcal{I}(\vec{s})$ of players i whose signals $\tilde{s}(\omega, i)$ are same as $s(\omega)$ prescribed by \vec{s} for all states ω

State and Player Decompositions

- All players in same *I*(*s*) would for every signal *σ*, share a *common* subset *W*(*s*, *σ*) of states *ω* such that *s*(*ω*) = *σ*
- Note $(\mathcal{W}(\vec{s},\sigma))_{\sigma\in\Sigma}$ would form a *decomposition of state space* Ω
- Also, $(\mathcal{I}(\vec{s}))_{\vec{s}\in\Sigma^\Omega}$ would form a decomposition of player space I
- \bullet We have an example with $|\Omega|=8,$ I=[0,1], and $|\Sigma|=3$
- A signal vector can be associated to an integer between 1 and $|\Sigma|^{|\Omega|} = 3^8 = 6,561$; a number could be *skipped* if its corresponding $\mathcal{I}(\vec{s})$ happens to be *empty*

Nonatomic Game with Ambiguity

An Illustration with $|\Omega| = 8$, I = [0, 1], and $|\Sigma| = 3$



Return-distribution Vectors

- Call a player i who receives a signal σ the $(i,\sigma)\text{-player}$
- Under each state $\omega \in \mathcal{W}(\vec{s}, \sigma)$, this player could use her action lever to influence *distribution of return*, with deterministic return as a special case, that would come her way
- How each (i, σ) -player values all *return-distribution vectors* $\vec{\rho} \equiv (\rho(\omega))_{\omega \in \mathcal{W}(\vec{s}, \sigma)}$ or in parlance of Anscombe and Aumann (1963), *acts*, would be a key determinant of our game
- Under Harsanyi's (1967-8) expected-utility Bayesian framework, there would be a real-valued function $\tilde{u}(i,\sigma)$ and a prior $\tilde{k}(i,\sigma)$ such that on mind of (i,σ) is maximization of $\sum_{\omega \in \mathcal{W}(\vec{s},\sigma)} \tilde{k}(\omega|i,\sigma) \cdot \int_R \tilde{u}(r|i,\sigma) \cdot [\rho(\omega)](dr)$

Risk and Ambiguity

- A *linear treatment* of return distributions can be legitimized by von Neumann and Morgenstein's (1944) axioms; use of a *single prior* can be couched on Savage's (1954) arguments
- Allais (1953) questioned whether people use *linear functionals* of return distributions to reach decisions
- Ellsberg (1961) argued that probabilities purportedly being assigned to different states of world are often *not known*
- For instance, there are probably not enough data to estimate chance for a new pandemic to occur in next two years
- Starting from Schmeidler (1989), researchers applied tools like Choquet integrations to *single-agent* decision making involving *general ambiguity attitudes*; see, e.g., Gilboa and Marinacci (2013)

Ambiguity Considerations

 Under axioms associated with *ambiguity aversion*, Gilboa and Schmeidler (1989) popularized *worst-prior* form in which our (*i*, σ)-player should maximize

$$\min_{k\in \tilde{K}(i,\sigma)} \left\{ \sum_{\omega\in \mathcal{W}(\vec{s},\sigma)} k(\omega) \cdot \int_{R} \tilde{u}(r|i,\sigma) \cdot [\rho(\omega)](dr) \right\}$$

for some ambiguity set $\tilde{K}(i,\sigma)$ of priors k on $\mathcal{W}(\vec{s},\sigma)$

- We focus on *nonsingleton-prior* or more general ambiguity rather than *nonlinear-functional* risk attitudes
- Even when void of explicit risk considerations, most attention has been paid to ambiguity *aversion*

General Ambiguity Attitudes

- However, experiments involving human subjects showed ambiguity *seeking* could be equally prevalent; see, e.g., Curley and Yates (1989) and Charnes, Karni, and Levin (2013)
- We also believe optimistic assessment of uncertain gains is part of what drive people to participate in *auctions*, embark on exploratory *journeys*, and start new *companies*
- Given all these varieties of ambiguity scenarios, we believe it judicious to start from an all-inclusive *general case*
- Let us model each (i, σ) -player's ambiguity attitude by a preference relationship $\tilde{\psi}(i, \sigma)$ in space $(\mathscr{P}(R))^{\mathcal{W}(\vec{s}, \sigma)}$ of return-distribution vectors $\vec{\rho} \equiv (\rho(\omega))_{\omega \in \mathcal{W}(\vec{s}, \sigma)}$

More on Preferences

- A $\mathcal{W}(\vec{s},\sigma)$ might contain *summer* and *winter*, while our R might contain *ice cream* and *hot soup*
- A preference $\tilde{\psi}(i,\sigma)$ might spell out that

 $\vec{\rho}^{\ 0} \equiv$ "definitely ice cream in summer and definitely hot soup in winter" is better than $\vec{\rho}^{\ 0.5} \equiv$ "50% chance ice cream and 50% chance hot soup in either season"

and that latter is better than $\vec{\rho}^{\,1} \equiv$ "definitely hot soup in summer and definitely ice cream in winter"

• All $\tilde{\psi}(i,\sigma)$'s would constitute our *preference game*'s ambiguity profile $\tilde{\psi} \equiv (\tilde{\psi}(i,\sigma))_{\vec{s} \in \Sigma^{\Omega}, i \in \mathcal{I}(\vec{s}), \sigma \in \Sigma}$

Game-theoretic Details

- When all players adopt a strategy $\mu \equiv (\mu(\cdot|i,\sigma))_{i\in I,\sigma\in\Sigma}$ where each $\mu(\cdot|i,\sigma)$ is an (i,σ) -dependent distribution on actions a, there would emerge for each state ω a joint player-action distribution $\Delta(\omega,\mu)$, which counts as external environment faced by all players under prevalent state ω and common strategy μ
- By taking any action a, a player i would reap $\tilde{r}(\omega,i,a,\Delta(\omega,\mu))$
- An (i, σ) -player with i in some $\mathcal{I}(\vec{s})$ would certainly want to take actions a so that resulting return-distribution vectors are *no more* $\tilde{\psi}(i, \sigma)$ -preferred to by any other option
- There are *two* cases, one in which players can randomize among *actions a* that are no more preferred to, and another in which players can choose action *distributions* that are not preferred to

Two Equilibrium Notions

- The two possibilities would imply two equilibrium notions, namely, *action-* and *distribution-*based ones much as in a finite-player counterpart studied by Yang (2018)
- In option one, an *action*-based equilibrium μ would let almost every $\mu(\cdot|i,\sigma)$ devote entire weight to actions a that make $(\varepsilon(\tilde{r}(\omega,i,a,\Delta(\omega,\mu)))_{\omega\in\mathcal{W}(\vec{s},\sigma)}$ no more $\tilde{\psi}(i,\sigma)$ -preferred to by any other *action* a', where $\varepsilon(r)$ stands for Dirac measure at r
- In option two, a *distribution*-based equilibrium μ would make each $(\sum_{a \in A} \mu(a|i, \sigma) \cdot \varepsilon(\tilde{r}(\omega, i, a, \Delta(\omega, \mu)))_{\omega \in \mathcal{W}(\vec{s}, \sigma)}$ no more $\tilde{\psi}(i, \sigma)$ -preferred to by any other *action distribution* α'

Equilibrium Existence and Continuity

- Action-based equilibria would always exist; further, set $\mathcal{E}^{a}(\tilde{r},\tilde{\psi})$ of such equilibria would be *upper hemi-continuous* in both *return function* \tilde{r} and *preference profile* $\tilde{\psi}$
- We consider a preference ψ convex when $\vec{\rho}$ being no more ψ -preferred to than both $\vec{\rho}^{\,0}$ and $\vec{\rho}^{\,1}$ would together lead to $\vec{\rho}$ being no more ψ -preferred to than $(1 \beta)\vec{\rho}^{\,0} + \beta\vec{\rho}^{\,1}$ for any $\beta \in [0, 1]$
- When preferences $\tilde{\psi}(i,\sigma)$ are *convex*, set $\mathcal{E}^{\mathsf{d}}(\tilde{r},\tilde{\psi})$ of distribution-based equilibria would be nonempty and upper hemi-continuous in $(\tilde{r},\tilde{\psi})$
- We also get past this general preference game $\Gamma(\tilde{r},\tilde{\psi})$ to some of its special cases that warrant separate attention

Special Cases

- When each preference $\tilde{\psi}(i,\sigma)$ is representable by a real-valued function $\tilde{\zeta}(\cdot|i,\sigma)$ on $|\mathcal{W}(\vec{s},\sigma)|$ -long return-distribution vectors, we have a satisfaction game $\Gamma_{\mathbf{S}}(\tilde{r},\tilde{\zeta})$
- It would inherit properties from general case; especially, distribution-based equilibria would exist when each $\tilde{\zeta}(\cdot|i,\sigma)$ is *quasi-concave* to extent of $\tilde{\zeta}((1-\beta)\vec{\rho}^{\,0}+\beta\vec{\rho}^{\,1}|i,\sigma)$ being greater than $\tilde{\zeta}(\vec{\rho}^{\,0}|i,\sigma) \wedge \tilde{\zeta}(\vec{\rho}^{\,1}|i,\sigma)$ for any $\beta \in [0,1]$
- A further specialization would land us at an *alarmists' game* $\Gamma_{al}(\tilde{r}, \tilde{K}, \tilde{u})$ when each satisfaction level $\tilde{\zeta}(\vec{\rho}|i, \sigma)$ at a given return-distribution vector $\vec{\rho} \equiv (\rho(\omega))_{\omega \in \mathcal{W}(\vec{s},\sigma)}$ is worst among an *ambiguity set* $\tilde{K}(i, \sigma)$ of priors $k \equiv (k(\omega))_{\omega \in \mathcal{W}(\vec{s},\sigma)}$ that contribute weights to *expected-utility* terms $\int_{R} \tilde{u}(r|i, \sigma) \cdot [\rho(\omega)](dr)$

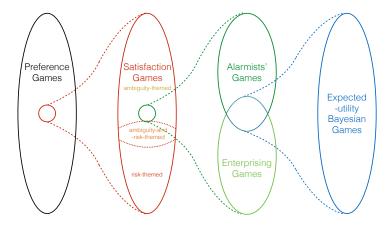
Alarmists' and Enterprising Games

- Beyond action-based equilibria, an alarmists' game would always have distribution-based ones due to concavity of each $\tilde{\zeta}(\cdot|i,\sigma)$
- We also study opposite enterprising game $\Gamma_{en}(\tilde{r}, \tilde{K}, \tilde{u})$ where best expected utility computed from among different prior choices in an ambiguity set is adopted
- Here, players exhibit *ambiguity-seeking* attitudes while betting optimistically on *most favorable* resolution of ambiguities
- Only action-based equilibria could be guaranteed for this case

The Expected-utility Bayesian Game

- On borderline between alarmists' and enterprising games lies expected-utility Bayesian game Γ_{bayes}(r̃, k̃, ũ) where earlier prior sets K̃(i, σ) have degenerated into single priors k̃(i, σ)
- It would allow both action- and distribution-based equilibria
- Like Yang's (2018) finite counterparts, we examine *relationships* between the two equilibrium notions for *satisfaction games*
- A *distribution-based* equilibrium must be *action-based* for game such as an *enterprising* one with *convex* satisfaction functions
- The two equilibrium notions would *merge into one* at *expected-utility Bayesian game*

A Depiction of the Various Games



Connections with Finite Games

- Nonatomic games (NGs) are abstractions of real situations; knowledge on former ought to *help* us understand latter
- We can achieve something in vein of Yang's (2021) study of expected-utility Bayesian games
- A newly encountered subtlety is *divergent* behaviors of the two equilibrium notions
- Both action- and distribution-based NG equilibria could spur mixed correspondents that suffice as ε-equilibria in some probabilistic sense for large enough finite games
- Yet, only action-based NG equilibria could randomly generate ε-equilibrium pure strategies for large finite games

Representative Literature

- Normal-form NG: Schmeidler (1973), Mas-Colell (1984), Rath (1992), Balder (1995, 2002), Khan, Rath, and Sun (1997), Loeb and Sun (2006), Podczeck (2009), and Khan et al. (2013)
- Finite incomplete-information game: Harsanyi (1967-8), Radner and Rosenthal (1982), Milgrom and Weber (1985), Balder (1988), Kalai (2004), and He and Sun (2019)
- Bayesian NG: Khan and Rustichini (1991), Balder (1991), Balder and Rustichini (1994), Kim and Yannelis (1997), Carmona and Podczeck (2020), and Yang (2021)
- Finite game incorporating ambiguity: Dow and Werlang (1994), Klibanoff (1996), Lo (1998), Epstein (1997), Eichberger and Kelsey (2000), and Marinacci (2000)

Ambiguity on External Factors

- In most *ambiguity*-themed games, players were allowed to have qualms about *opponents' behaviors*
- Like finite counterpart Yang (2018), we focus on complementary situation where players have vagueness about *external factors*
- (i) mixed strategies chosen by players are often enforceable
 (ii) uncertainties about state of world can pose a much bigger problem than those about other players' behaviors
 (iii) conventional tools built on countably additive probabilities would suffice for our analyses
- Besides, uncertainty about opponents' *signals* would indirectly lead to uncertainty about their *preferences* as well as *behaviors*

Action- and Distribution-based Equilibria

• Two equilibrium concepts would stem from different ways of enforcing *mixed strategies*:

action-based case—a player might be at almost total control of her own action in each play, but has to maintain agreed-upon *frequencies* to various actions in *long run*; this fits Dow and Werlang (1994) and Marinacci (2000)

distribution-based case—a player might be given a *random number generator* whose output is private knowledge in-game but public knowledge post-game, and player has to abide by an agreed-upon *mapping* from random device's *output* to her *action*; this fits Klibanoff (1996) and Lo (1996)

• Kajii and Ui (2006) called first kind "equilibria in beliefs" and second kind "mixed equilibria"

Our Preference NG

• Our preference NG $\Gamma(\tilde{r}, \tilde{\psi})$ is built on a finite space Ω of *states*, space $I \equiv [0, 1]$ of *players*, a compact space R of *returns*, a finite space Σ of signals, a finite space A of *actions*, a state-player-to-signal mapping $\tilde{s}(\cdot, \cdot)$ that can be represented by player sets $\mathcal{I}(\vec{s})$ and state sets $\mathcal{W}(\vec{s}, \sigma)$, an atomless player distribution $\hat{\lambda}$, a return function \tilde{r} which contains elements $\tilde{r}(\omega, i, a, \delta)$, and a preference profile which contains elements $\psi(i, \sigma)$

• For each *irreflexive* and *transitive* preference $\tilde{\psi}(i, \sigma)$, $(\vec{\rho}, \vec{\rho}') \in \tilde{\psi}(i, \sigma)$ if and only if (i, σ) -player prefers $\vec{\rho} \equiv (\rho(\omega))_{\omega \in \mathcal{W}(\vec{s}, \sigma)}$ no more than $\vec{\rho}' \equiv (\rho'(\omega))_{\omega \in \mathcal{W}(\vec{s}, \sigma)}$

A Prevalent Environment

- In a particular state ω , a particular player i would receive a signal $\tilde{s}(\omega, i)$, prompting her to adopt an *action distribution* $\mu(i, \tilde{s}(\omega, i)) \equiv (\mu(a|i, \tilde{s}(\omega, i)))_{a \in A}$ under a given *strategy* μ
- In aggregate, *joint player-action distribution* felt by everyone would be $\Delta(\omega, \mu)$ such that for any player subset I' and action a,

$$\left[\Delta(\omega,\mu)\right]\left(I'\times\{a\}\right)\equiv\int_{I'}\mu(a|i,\tilde{s}(\omega,i))\cdot\tilde{\lambda}(di)$$

- Mapping $\Delta(\omega, \cdot)$ from *strategies* to *externalities* under a given state ω would pose as an important feature for our game
- \bullet Note action distributions form simplex $\Theta_{|A|}$ in $[0,1]^{|A|}$

Return Distributions and Their Vectors

- A player *i*'s action distribution would drive her return distribution
- In any state ω , return distribution $\tilde{\rho}(\omega, i, \alpha, \mu | \tilde{r})$ achieved by her adopting action distribution α while all others adhering to strategy μ would satisfy, for any return subset R',

$$\left[\hat{\rho}(\omega, i, \alpha, \mu | \tilde{r})\right](R') = \sum_{a \in A} \alpha(a) \cdot \left[\varepsilon \left(\tilde{r}\left(\omega, i, a, \Delta(\omega, \mu)\right)\right)\right](R')$$

• Given signal vector \vec{s} , a player $i \in \mathcal{I}(\vec{s})$, and a signal σ , return-distribution vector resulting from (i, σ) -player wielding an action distribution α while all others adopt a strategy μ would be

$$\overrightarrow{\rho}(i,\sigma,\alpha,\mu|\widetilde{r}) \equiv \left(\widehat{\rho}(\omega,i,\alpha,\mu|\widetilde{r})\right)_{\omega \in \mathcal{W}(\vec{s},\sigma)}$$

• For any action-distribution subset M', let us adopt notation $\overrightarrow{\rho}(i,\sigma,M',\mu|\tilde{r}) \equiv \{\overrightarrow{\rho}(i,\sigma,\alpha,\mu|\tilde{r}): \alpha \in M'\}$

Equilibrium-related Notions

• Given a background strategy μ , an (i, σ) -player's set $\mathbb{A}^{\mathsf{a}}(i, \sigma, \mu | \tilde{r}, \tilde{\psi})$ of *best-responding pure actions* would be

$$\left\{a\in A:\ \overrightarrow{\rho}(i,\sigma,\varepsilon(A),\mu|\widetilde{r})\times\overrightarrow{\rho}(i,\sigma,\{\varepsilon(a)\},\mu|\widetilde{r})\subseteq\widetilde{\psi}(i,\sigma)\right\},$$

where $\varepsilon(A)$ should be understood as $\{\varepsilon(a):\;a\in A\}$

• Set $\mathbb{B}^{\mathsf{a}}(i, \sigma, \mu | \tilde{r}, \tilde{\psi})$ of *best-responding action distributions* would be $\left\{ \alpha \in \Theta_{|A|} : \sum_{a \in A} \alpha(a) \cdot [\varepsilon(a)] \left(\mathbb{A}^{\mathsf{a}}(i, \sigma, \mu | \tilde{r}, \tilde{\psi}) \right) = 1 \right\}$

• Set $\mathbb{B}^{\mathsf{d}}(i,\sigma,\mu|\tilde{r},\tilde{\psi})$ of *best-responding distributions* would be

$$\left\{\alpha \in \Theta_{|A|}: \overrightarrow{\rho}\left(i,\sigma,\Theta_{|A|},\mu|\tilde{r}\right) \times \overrightarrow{\rho}\left(i,\sigma,\{\alpha\},\mu|\tilde{r}\right) \subseteq \tilde{\psi}(i,\sigma)\right\}$$

Action- and Distribution-based Equilibria

• Define action(distribution)-based best-responding correspondence:

$$\mathbb{M}^{\mathsf{a}(\mathsf{d})}(\mu|\tilde{r},\tilde{\psi}) \equiv \{\mu' \in \mathcal{M}: \ \mu'(i,\sigma) \in \mathbb{B}^{\mathsf{a}(\mathsf{d})}(i,\sigma,\mu|\tilde{r},\tilde{\psi}), \\ \text{for any } \vec{s} \in \Sigma^{\Omega}, i \in \mathcal{I}(\vec{s}), \text{ and } \sigma\}$$

- We consider a strategy μ as belonging to set of action(distribution)-based equilibria E^{a(d)}(r̃, ψ̃) if and only if it is a fixed point for M^{a(d)}(·|r̃, ψ̃); that is, μ ∈ M^{a(d)}(μ|r̃, ψ̃)
- Using approaches that ultimately tap into Fan-Glicksberg theorem, we can show that $\mathcal{E}^{a}(\tilde{r}, \tilde{\psi}) \neq \emptyset$ and that $\mathcal{E}^{a}(\cdot, \cdot)$ is an *upper* hemi-continuous correspondence defined on space of return functions and preference profiles; same can be achieved for $\mathcal{E}^{d}(\cdot, \cdot)$ when preferences are convex (mixture being innocuous)

Special Cases

- In more special satisfaction game $\Gamma_{S}(\tilde{r}, \tilde{\zeta})$, an (i, σ) -player would either randomize over actions a whose $\varepsilon(a)$ maximize $\tilde{\zeta} (\overrightarrow{\rho}(i, \sigma, \cdot, \mu | \tilde{r}) | i, \sigma)$ or adopt a distribution α that achieve same
- For even more special alarmists' game Γ_{al}(r̃, K̃, ũ̃), to be maximized by each (i, σ)-player with i ∈ I(s̃) would be

$$\min_{k \in \tilde{K}(i,\sigma)} \left\{ \sum_{\omega \in \mathcal{W}(\vec{s},\sigma)} k(\omega) \cdot \int_{R} \tilde{u}(r|i,\sigma) \cdot \left[\hat{\rho}(\omega,i,\cdot,\mu|\tilde{r}) \right](dr) \right\}$$

Above min would become max in enterprising game $\Gamma_{en}(\tilde{r}, \tilde{K}, \tilde{u})$

• For expected-utility Bayesian game $\Gamma_{\text{bayes}}(\tilde{r}, \tilde{k}, \tilde{u})$, above would be

$$\sum_{\omega \in \mathcal{W}(\vec{s},\sigma)} \tilde{k}(\omega|i,\sigma) \cdot \int_{R} \tilde{u}(r|i,\sigma) \cdot \left[\hat{\rho}(\omega,i,\cdot,\mu|\tilde{r})\right](dr)$$

Relationships between Two Notions

- Due to *distribution*-based equilibria's "higher" requirements of competing with and winning over other *distributions* (with greater cardinalities) rather than *action-based* ones which deal with other *actions*, general message is that former are *rarer* than latter
- We need *convexity* of preferences and equivalently *quasi-concavity* of satisfaction functions for existence of *distribution*-based equilibria; there is no general guarantee for *enterprising game*
- For satisfaction game $\Gamma_{s}(\tilde{r}, \tilde{\zeta})$, we can actually show that $\mathcal{E}_{s}^{d}(\tilde{r}, \tilde{\zeta}) \subseteq \mathcal{E}_{s}^{a}(\tilde{r}, \tilde{\zeta})$ when $\tilde{\zeta}(\cdot|i, \sigma)$'s are convex, leading for enterprising game to satisfy $\mathcal{E}_{en}^{d}(\tilde{r}, \tilde{K}, \tilde{u}) \subseteq \mathcal{E}_{en}^{a}(\tilde{r}, \tilde{K}, \tilde{u}) \neq \emptyset$

• We indeed have
$$\mathcal{E}_{bayes}^{d}(\tilde{r}, \tilde{k}, \tilde{u}) = \mathcal{E}_{bayes}^{a}(\tilde{r}, \tilde{k}, \tilde{u}) \neq \emptyset$$

Finite *n*-player Games

- In an $n\text{-player game, player profile }i_{[n]}\equiv (i_m)_{m=1,\dots,n}$ would be randomly sampled from distribution $\tilde{\lambda}$
- Rather than common $\Delta(\omega, \mu)$, external environment faced by player m would be empirical player-action distribution $\varepsilon(i_{[n],-m}, a_{[n],-m})$ which assigns a (1/(n-1))-weight to each (i_l, a_l) -realization for l = 1, ..., m 1, m + 1, ..., n
- With $\overrightarrow{\rho}_n(i_m, \sigma_m, \alpha_m, \mu_{[n], -m})$ representing corresponding return-distribution vector, an action-based ϵ -equilibrium would randomize over actions a_m that push

$$\overrightarrow{\rho}_{n}\left(i_{m},\sigma_{m},\varepsilon(A),\mu_{[n],-m}\right)\times\overrightarrow{\rho}_{n}\left(i_{m},\sigma_{m},\{\varepsilon(a_{m})\},\mu_{[n],-m}\right)$$

inside $(\tilde{\psi}(i_m,\sigma_m))^\epsilon$; distribution-based case would be analogous

Convergence Results

- With empirical player-action distribution converging to $\Delta(\omega, \mu)$ in some *probabilistic* sense when *player number* n tends to $+\infty$, we can show usefulness of NG *equilibria* in both *action* and *distribution*-based senses in finite games
- For any NG equilibrium μ in a(d)-sense and $\epsilon > 0$,

$$\begin{split} \lim_{n \longrightarrow +\infty} \tilde{\lambda}^n (\{i_{[n]} \in I^n : \ \mu \text{ induces } \epsilon \text{-equilibrium in a(d)-sense} \\ \text{for } n \text{-player game with player profile } i_{[n]}\}) = 1 \end{split}$$

After sampling over λ to obtain *player profile* i_[n], we can further sample over *strategy* μ(·|i_m, σ) for each player m and each potential signal σ to obtain signal-based *pure-action* profile ã_[n] ≡ (ã_m)_{m=1,...,n} ≡ (ã_m(σ))_{m=1,...,n,σ∈Σ}

A Mixed-to-pure Link

• We can construct a *strategy-dependent* probability $\Lambda(\mu)$ on product player-action-plan space $I \times A^{\Sigma}$ so that for any player subset I' and signal-based action plan $\tilde{a} \equiv (\tilde{a}(\sigma))_{\sigma \in \Sigma}$,

$$\left[\Lambda(\mu)\right]\left(I' \times \{\tilde{a}\}\right) \equiv \int_{I'} \left[\prod_{\sigma \in \Sigma} \mu(\tilde{a}(\sigma)|i,\sigma)\right] \cdot \tilde{\lambda}(di)$$

• For any NG equilibrium μ in *a*-sense and $\epsilon > 0$,

 $\lim_{n \longrightarrow +\infty} (\Lambda(\mu))^n \left(\{ (i_{[n]}, \tilde{a}_{[n]}) \in (I \times A^{\Sigma})^n : \tilde{a}_{[n]} \text{ achieves} \\ \epsilon \text{-equilibrium for } n \text{-player game with player profile } i_{[n]} \} \right) = 1$

• A distribution-based counterpart seems unlikely because most any $\overrightarrow{\rho}(i,\sigma,\alpha,\mu)$ would be inimitable by any $\overrightarrow{\rho}_n(i,\sigma,\epsilon(a),\nu_{[n],-m})$ for some pure action a and strategy profile $\nu_{[n],-m}$

Concluding Remarks

- More general state space Ω , signal space Σ , and action space A can be considered by future research
- Removal or relaxation of certain *compactness* and *continuity* requirements should also be attempted
- More game varieties and more relationships between equilibrium notions await further exploration