The Weak Core, Partition-based Universal Stability, and their Risk Associations through a Partial Order

Jian Yang

Department of Management Science and Information Systems Business School, Rutgers University Newark, NJ 07102

April 2024

Coalitional Game and Core

- Consider a *coalitional game* with transferable utility (TU)
- Given a player set $N \equiv \{i_1,...,i_n\}$, let $\mathcal{C}(N)$ be its set of nonempty subsets or coalitions
- Game (N,\vec{v}) is characterized by $\vec{v}\equiv (v(C))_{C\in\mathcal{C}(N)}$, with a value v(C) attached to every coalition C
- Traditional core $\mathbb{X}^+(N, \vec{v})$ is made up of allocations $\vec{x} \equiv (x(i))_{i \in N}$ of grand coalition N that make $\sum_{i \in N} x(i) = v(N)$ and

$$\sum_{i \in C} x(i) \ge v(C), \qquad \quad \forall C \in \mathcal{C}(N)$$

Universal Stability

- Unfortunately, only balanced games possess nonempty cores
- A game is *balanced* when v(N) is above

$$\begin{array}{ll} \max & \sum_{C \in \mathcal{C}(N)} \delta(C) \cdot v(C) \\ \text{s.t.} & \sum_{C \in \mathcal{C}(N) \text{ and } C \ni i} \delta(C) = 1 & \forall i \in N \\ & \delta(C) \ge 0 & \forall C \in \mathcal{C}(N) \end{array}$$

- We aim at stability notions that are universal—every game (N, \vec{v}) has its own stable solutions
- Naturally, focus is on partitions $\mathcal{P} \equiv \{C_1, ..., C_p\}$ and allocations \vec{x} reasonably associated with them

Partition-allocation Pairs

- For any player set N, let set of partitions be $\mathscr{P}(N)$
- For $\mathcal{P} \in \mathscr{P}(N)$, let $\mathscr{X}(N, \vec{v}, \mathcal{P})$ be set of (N, \vec{v}) 's individually rational allocations that are efficient in \mathcal{P} 's constituent coalitions:

$$\left\{ \vec{x} \in \prod_{i \in N} [v(\{i\}), +\infty) : \sum_{i \in C} x(i) = v(C), \quad \forall C \in \mathcal{P} \right\}$$

• For game (N, \vec{v}) , its set of *partition-allocation* pairs is

$$\mathscr{Q}(N,\vec{v}) \equiv \bigcup_{\mathcal{P} \in \mathscr{P}(N)} \{\mathcal{P}\} \times \mathscr{X}(N,\vec{v},\mathcal{P})$$

• A stability notion S supplies a subset $S(N, \vec{v})$ of $\mathscr{Q}(N, \vec{v})$ to every game (N, \vec{v}) ; *universality* means $S(N, \vec{v})$ is always *nonempty*

An Illustrative Example

- Consideration of general (\mathcal{P}, \vec{x}) instead of special $(\{N\}, \vec{x})$ might still not be enough; *guiding principle* for core needs changing as well
- Suppose Alice wants to leave an unhappy marriage with Bob while also bringing along their daughter Carol; current core condoning *unilateral* change of status quo would allow her attempt to succeed as long as she and Carol could fare better afterwards
- In reality, Bob might try hard to prevent Alice and Carol from leaving him unless his fear of falls in living standards is assuaged
- Dissolution of union would be more realizable when intended change becomes *consensual*—Alice and Carol could still be better off after Bob is compensated enough to go on with his life style

The Weak Core

• Stability in old $\mathbb{X}^+(N, \vec{v})$ stipulates blocking of *unilateral* changes:

$$\begin{aligned} \{\vec{x} \in \mathscr{X}(N, \vec{v}, \{N\}): \text{ for any } \mathcal{P}' \in \mathscr{P}(N) \setminus \{\{N\}\}, \\ \forall C' \in \mathcal{P}' \text{ we have } \sum_{i \in C'} x(i) \ge v(C') \end{aligned}$$

- *Traditional core* is more about blocking of "*entrance*" by one sub-coalition unsatisfied with potential *making* of grand coalition
- Blocking of *consensual* changes leads to *weak core* $\mathbb{X}^{-}(N, \vec{v})$:

$$\begin{aligned} \{\vec{x} \in \mathscr{X}(N, \vec{v}, \{N\}) : \text{ for any } \mathcal{P}' \in \mathscr{P}(N) \setminus \{\{N\}\}, \\ \exists C' \in \mathcal{P}' \text{ so that } \sum_{i \in C'} x(i) \geq v(C') \} \end{aligned}$$

• Weak core is more about blocking of "exit" by one sub-coalition unsatisfied with potential *breaking* of grand coalition

An Intermediate Concept

• Define a partition $\mathcal{P}\text{'s worth}$

$$\tilde{w}(N, \vec{v}, \mathcal{P}) \equiv \sum_{C \in \mathcal{P}} v(C)$$

and then $\mathit{medium}\ \mathit{core}\ \mathbb{X}^0(N, \vec{v})$ by

$$\left(\begin{array}{cc} \mathscr{X}(N, \vec{v}, \{N\}) & \text{when } v(N) \geq \max_{\mathcal{P}' \in \mathscr{P}(N) \setminus \{\{N\}\}} \tilde{w}(N, \vec{v}, \mathcal{P}') \\ \emptyset & \text{otherwise} \end{array} \right)$$

 It is easy to show resistance to *unilateral* blocking ⇒ dominance in worth ⇒ resistance to *consensual* blocking; thus

$$\mathbb{X}^+(N,\vec{v}) \subseteq \mathbb{X}^0(N,\vec{v}) \subseteq X^-(N,\vec{v})$$

Both inclusions could be strict for some games

When $\mathbb{X}^0(N, \vec{v}) \setminus \mathbb{X}^+(N, \vec{v}) \neq \emptyset$

- Consider $N = \{1, 2, 3\}$, $v(\{1\}) = v(\{2\}) = v(\{3\}) = 0$, $v(\{1, 2\}) = v(\{1, 3\}) = v(\{2, 3\}) = 5$, and $v(\{1, 2, 3\}) = 6$
- Here, $\{N\}$ is dominant in its worth of 6 over others which top at 5
- Yet, there is no core member as x(1) + x(2) + x(3) = 6 contradicts with $x(1) + x(2) \ge 5$, $x(1) + x(3) \ge 5$, and $x(2) + x(3) \ge 5$

When $\mathbb{X}^{-}(N, \vec{v}) \setminus \mathbb{X}^{0}(N, \vec{v}) \neq \emptyset$

- Inspired by Alice-Bob-Carol story, consider $N = \{A, B, C\}$, $v(\{A\}) = 0$, $v(\{B\}) = 4$, $v(\{C\}) = 0$, $v(\{A, B\}) = 0$, $v(\{A, C\}) = 6$, $v(\{B, C\}) = 0$, and $v(\{A, B, C\}) = 8$
- Note $\vec{x} = (0, 6, 2)$ is in *weak core*—under this allocation plan, no attempt to split grand coalition N can make all resulting sub-coalitions strictly better off
- The most competitive alternative comes from $\{\{A, C\}, \{B\}\}$; while sub-coalition $\{A, C\}$ has strong incentives to leave grand coalition, player B would hold out

More on Core Concepts

- Against every partition attempt, *traditional* core lets one *separatist* group to break up a union; meanwhile, *weak* core allows one *unionist* group to hold a union together; *medium* core is in between
- Solving a mixed integer programming (MIP) could help determine whether *weak* core is nonempty; even closer to Bondareva-Shapley theory for traditional core, solving a linear programming (LP) or its dual would help determine whether *medium* core is nonempty
- Peleg's (1986) axiomatization effort has reached
 {(Γ⁺, Σ⁺)} = 𝔅_{ne} ∩ 𝔅_{ir} ∩ 𝔅_{rgp} ∩ 𝔅_{supa}; we can reach

$$\begin{cases} (\Gamma^{-}, \Sigma^{-}) & \in \mathfrak{S}_{\mathsf{ne}} \cap \mathfrak{S}_{\mathsf{ir}} \cap \mathfrak{S}_{\mathsf{po}} \cap \mathfrak{S}_{\mathsf{crgp}} \cap \mathfrak{S}_{\mathsf{supa}}^{C} \cap \mathfrak{S}_{\mathsf{wrgp}}^{C} \\ (\Gamma^{0}, \Sigma^{0}) & \in \mathfrak{S}_{\mathsf{ne}} \cap \mathfrak{S}_{\mathsf{ir}} \cap \mathfrak{S}_{\mathsf{po}} \cap \mathfrak{S}_{\mathsf{crgp}} \cap \mathfrak{S}_{\mathsf{supa}} \cap \mathfrak{S}_{\mathsf{wrgp}}^{C} \end{cases}$$

An MIP linked to the Weak Core

• $\mathbb{X}^{-}(N, \vec{v})$ would be nonempty if and only if v(N) is above optimal objective $z^{-}(N, \vec{v})$ of *mixed integer program* (MIP)

$$\begin{array}{ll} \min & \sum_{i \in N} x(i) \\ \text{s.t.} & \sum_{i \in C} x(i) + \left[\sum_{i \in C} v(\{i\}) - v(C) \right] \cdot y(C) \\ & \geq \sum_{i \in C} v(\{i\}) & \forall C \in \mathcal{C}(N) \setminus \{N\} \\ & \sum_{C \in \mathcal{P}} y(C) \geq 1 & \forall \mathcal{P} \in \mathscr{P}(N) \setminus \{\{N\}\} \\ & x(i) \in [v(\{i\}), +\infty) & \forall i \in N \\ & y(C) \in \{0, 1\} & \forall C \in \mathcal{C}(N) \setminus \{N\} \end{array}$$

• With |N| real variables x(i) and $2^{|N|} - 2$ binary variables y(C),

$$\sum_{i \in C} x(i) \ge \begin{cases} v(C) & \text{when } y(C) = 1\\ \sum_{i \in C} v(\{i\}) & \text{when } y(C) = 0 \end{cases}$$

Traditional Core and Credible Threats

- Following Ray (1989), let $\mathbb{X}^{+-}(\{i\},v)=\{v\}\neq \emptyset$ for any single-player game $(\{i\},v)$
- For any game (N,\vec{v}) with $|N|\geq 2,$ recursively define

$$\begin{split} \mathbb{X}^{+-}(N,\vec{v}) &\equiv \{ \vec{x} \in \partial(N,\vec{v}) : \sum_{i \in C} x(i) \ge v(C), \\ \forall C \in \mathcal{C}(N) \setminus \{N\} \text{ with } \mathbb{X}^{+-}(C,\vec{v}|_{\mathcal{C}(C)}) \neq \emptyset \} \end{split}$$

- A sub-coalition C may be *threatening* when $v(C) > \sum_{i \in C} x(i)$; only one with $\mathbb{X}^{+-}(C, \vec{v}|_{\mathcal{C}(C)}) \neq \emptyset$ poses a *credible* threat
- Not only X⁺(N, v) ⊆ X⁺⁻(N, v), but opposite was shown by Ray (1989) to be true—traditional-core member may thus be understood as facing no credible threat in any partition attempt

Weak Core and Credible Threats

- Let $\mathbb{X}^{--}(\{i\},v)=\{v\}\neq \emptyset$ for any single-player game $(\{i\},v)$
- For any game (N, \vec{v}) with $|N| \ge 2$, recursively define

$$\begin{split} \mathbb{X}^{--}(N,\vec{v}) &\equiv \{ \vec{x} \in \partial(N,\vec{v}) : \text{ for any } \mathcal{P}' \in \mathscr{P}(N) \setminus \{ \{N\} \}, \\ \exists C' \in \mathcal{P}' \text{ so that either } \mathbb{X}^{--}(C,\vec{v}|_{\mathcal{C}(C)}) = \emptyset \\ \text{ or } \sum_{i \in C'} x(i) \geq v(C') \} \end{split}$$

- An imputation $\vec{x} \in \mathbb{X}^{--}(N, \vec{v})$ when in any partition attempt, not all constituent coalitions pose credible threats; whereas, a coalition C's credibility is defined in weak sense of $\mathbb{X}^{--}(C, \vec{v}|_{\mathcal{C}(C)}) \neq \emptyset$
- It is easy to tell X⁻(N, v) ⊆ X⁻⁻(N, v); we can prove opposite—when a weak-core member is pitted against a proper partition, there must exist one constituent coalition that either is sufficiently content with allocation associated with this member or is not credible for its threat to be taken seriously

Fission and Fusion Resistances

- A partition \mathcal{P} 's fission-down-to neighborhood $\mathscr{I}(N, \mathcal{P})$ contains all partitions \mathcal{P}' that constitute splits of \mathcal{P} 's constituent coalitions
- A partition-allocation pair (\mathcal{P}, \vec{x}) in feasible set $\mathscr{Q}(N, \vec{v})$ is strong fission-resistant when for any $\mathcal{P}' \in \mathscr{I}(N, \mathcal{P})$,

$$\forall C' \in \mathcal{P}' \backslash \mathcal{P} \quad \text{we have} \quad \sum_{i \in C'} x(i) \geq v(C')$$

• With symmetrically defined *fusion-up-to* neighborhood $\mathscr{U}(N, \mathcal{P})$, a pair (\mathcal{P}, \vec{x}) is *fusion-resistant* when for any $\mathcal{P}' \in \mathscr{U}(N, \mathcal{P})$,

$$\forall C' \in \mathcal{P}' \backslash \mathcal{P} \quad \text{we have} \quad \sum_{i \in C'} x(i) \geq v(C'),$$

which is merely about $\sum_{C\in\mathcal{P},\;C\subsetneq C'}v(C)\geq v(C')$

More Stability Notions

• Medium fission resistance is about for any $\mathcal{P}'\in\mathscr{I}(N,\mathcal{P}),$

$$\sum_{i \in N} x(i) = \sum_{C \in \mathcal{P}} \sum_{i \in C} x(i) = \sum_{C \in \mathcal{P}} v(C) = \tilde{w}(N, \vec{v}, \mathcal{P}) \ge \tilde{w}(N, \vec{v}, \mathcal{P}')$$

 \bullet Weak fission resistance is about for any $\mathcal{P}' \in \mathscr{I}(N,\mathcal{P}),$

$$\exists C' \in \mathcal{P}' \backslash \mathcal{P} \quad \text{so that} \quad \sum_{i \in C'} x(i) \geq v(C')$$

- Let $\mathbb{Q}^{i*}(N, \vec{v})$ be set of all (\mathcal{P}, \vec{x}) 's that are *fission*-resistant, with * = + for *strong*, 0 for *medium*, and for *weak*; let $\mathbb{Q}^{u}(N, \vec{v})$ be set of all solution pairs that are *fusion*-resistant
- Define stability concepts $\mathbb{S}^*(N, \vec{v}) \equiv \mathbb{Q}^{i_*}(N, \vec{v}) \cap \mathbb{Q}^{u}(N, \vec{v})$

Other Stability-related Notions

• Each stability is corresponding-core-compatible:

$$\begin{split} & \mathbb{S}^*(N, \vec{v}) \cap [\{\{N\}\} \times \mathscr{X}(N, \vec{v}, \{N\})] \\ & = \mathbb{Q}^{\mathbf{i}*}(N, \vec{v}) \cap [\{\{N\}\} \times \mathscr{X}(N, \vec{v}, \{N\})] = \{\{N\}\} \times \mathbb{X}^*(N, \vec{v}) \end{split}$$

Of course, these sets could be simultaneously empty

• For every
$$\vec{v} \in \Re^{\mathcal{C}(N)}$$
, no matter how "poor" it is,

$$\mathbb{S}^+(N,\vec{v}) \subseteq \mathbb{S}^0(N,\vec{v}) \subseteq \mathbb{S}^-(N,\vec{v}) \qquad \text{and} \qquad \mathbb{S}^0(\mathbf{N},\tilde{\mathbf{v}}) \neq \emptyset$$

• There is no *universality* guarantee for strong stability \mathbb{S}^+ ; still, it might allow stable solutions (\mathcal{P}, \vec{x}) other than $\mathcal{P} = \{N\}$ and $\vec{x} \in \mathbb{X}^+(N, \vec{v})$

Fission-related Constructs

• Given a partition $\mathcal{P}\in \mathscr{P}(N),$ let patched-up core be

$$\mathbb{X}^{\mathbf{i}*}(N, \vec{v}, \mathcal{P}) \equiv \prod_{C \in \mathcal{P}} \mathbb{X}^*(C, \vec{v}|_{\mathcal{C}(C)})$$

• With
$$\mathbb{P}^{\mathbf{i}*}(N, \vec{v}) \equiv \left\{ \mathcal{P} \in \mathscr{P}(N) : \mathbb{X}^{\mathbf{i}*}(N, \vec{v}, \mathcal{P}) \neq \emptyset \right\}$$
,
 $\mathbb{Q}^{\mathbf{i}*}(N, \vec{v}) = \bigcup_{\mathcal{P} \in \mathbb{P}^{\mathbf{i}*}(N, \vec{v})} \{\mathcal{P}\} \times \mathbb{X}^{\mathbf{i}*}(N, \vec{v}, \mathcal{P})$

• Earlier inclusion relationships among cores would lead to

$$\mathbb{Q}^{\mathbf{i}+}(N,\vec{v}) \subseteq \mathbb{Q}^{\mathbf{i}0}(N,\vec{v}) \subseteq \mathbb{Q}^{\mathbf{i}-}(N,\vec{v})$$

Some More Structures

• An alternative definition for $\mathbb{P}^{\mathrm{i0}}(N,\vec{v})$ turns out to be

 $\left\{ \mathcal{P} \in \mathscr{P}(N): \ \tilde{w}(N, \vec{v}, \mathcal{P}) \geq \tilde{w}(N, \vec{v}, \mathcal{P}'), \quad \forall \mathcal{P}' \in \mathscr{I}(N, \mathcal{P}) \right\}$

• For $\mathbb{P}^{u}(N, \vec{v})$ defined *similarly* except with $\mathscr{U}(N, \mathcal{P})$ replacing $\mathscr{I}(N, \mathcal{P})$, it would follow that

$$\mathbb{Q}^{\mathsf{u}}(N,\vec{v}) = \bigcup_{\mathcal{P} \in \mathbb{P}^{\mathsf{u}}(N,\vec{v})} \{\mathcal{P}\} \times \mathscr{X}(N,\vec{v},\mathcal{P})$$

• What lead to *universality* are $\mathbb{P}^{i0}(N, \vec{v}) \cap \mathbb{P}^{u}(N, \vec{v}) \neq \emptyset$ and $\mathbb{S}^{*}(N, \vec{v}) = \bigcup \{\mathcal{P}\} \times \mathbb{X}^{i*}(N, \vec{v}, \mathcal{P})$

 $\mathcal{P} \in \mathbb{P}^{\mathbf{i}_{\ast}}(N, \vec{v}) \cap \mathbb{P}^{\mathbf{U}}(N, \vec{v})$

Reasons behind Earlier Structures

• Very importantly, we can show

 $(\mathcal{P}, \vec{x}) \in \mathbb{Q}^{\mathbf{i}*}(N, \vec{v}) \iff (\{C\}, \vec{x}|_C) \in \mathbb{Q}^{\mathbf{i}*}(C, \vec{v}|_{\mathcal{C}(C)}), \ \forall C \in \mathcal{P}$

• With $(\{N\}, \vec{x}) \in \mathbb{Q}^{\mathbf{i}*}(N, \vec{v}) \iff \vec{x} \in \mathbb{X}^*(N, \vec{v})$, this would result in $(\mathcal{P}, \vec{x}) \in \mathbb{Q}^{\mathbf{i}*}(N, \vec{v}) \iff (\{C\}, \vec{x}|_C) \in \mathbb{Q}^{\mathbf{i}*}(C, \vec{v}|_{\mathcal{C}(C)}), \ \forall C \in \mathcal{P}$ $\iff \vec{x}|_C \in \mathbb{X}^*(C, \vec{v}|_{\mathcal{C}(C)}), \ \forall C \in \mathcal{P}$ $\iff \vec{x} \in \mathbb{X}^{\mathbf{i}*}(N, \vec{v}, \mathcal{P})$

• Concerning fusion, we can also establish

$$(\mathcal{P}, \vec{x}) \in \mathbb{Q}^{\mathsf{u}}(N, \vec{v}) \iff \mathcal{P} \in \mathbb{P}^{\mathsf{u}}(N, \vec{v})$$

A Schematic Sketch of Various Entities

Road to Medium Stability

- Set $\mathscr{P}(N)$ can be decomposed into $\mathscr{P}^n(N)$, $\mathscr{P}^{n-1}(N)$, \cdots , $\mathscr{P}^1(N) \equiv \{\{N\}\}$ depending on member partitions' sizes
- One-step fission and fusion *arcs* link two neighboring $\mathscr{P}^{p+1}(N)$ and $\mathscr{P}^p(N)$, with $\mathscr{I}(N,\mathcal{P})$ understandable as "*left*" branch stemming from a given \mathcal{P} and $\mathscr{U}(N,\mathcal{P})$ "*right*" branch
- A steepest ascending method (SAM) can help reach a mediumly stable pair (P⁰, x⁰) from any starting partition by incessantly moving from one P to a P' ∈ I(N, P) ∪ U(N, P) that maximizes ũ(N, v, ·) until no improvement is possible
- After \mathcal{P}^0 is identified, \vec{x}^0 can be any member of $\mathbb{X}^{\mathbf{i}0}(N, \vec{v}, \mathcal{P}^0)$

A Graph Representation of Partitions

Core Stability in Literature

- If *fission-down-to* neighborhood in *strong fission* resistance or *fusion-up-to* one in *fusion* resistance were replaced by *space of all other partitions*, we would obtain *all-temptation resistance*
- This super-strong resistance seems to have propped up so-called "*core stability*" in coalition formation literature since Gale and Shapley (1962); see, e.g., Pycia (2012)
- Since universality is clearly out of the question, focus has been on identifying conditions that induce existence of stable partitions (coalition structures); see, e.g., Greenberg and Weber (1993), Banerjee, Konishi, and Sonmez (2001), Bogomolnaia and Jackson (2002), Papai (2004), and Alcalde and Romero-Medina (2006)
- Core stability is still (strong-)core-compatible by our standard

From Centripetality to Cooperation

- When (N, \vec{v}) is strictly positive with every v(C) > 0 except when |C| = 1 at which time only $v(C) \ge 0$ is required, we may take a fractional view on allocations with each $f(i) \equiv x(i)/v(C)$
- Earlier stability notions are *transplantable* here, after replacing $\mathscr{X}(N, \vec{v}, \mathcal{P})$ with $\mathscr{F}(N, \vec{v}, \mathcal{P})$, $\mathbb{X}^{\pm}(N, \vec{v})$ with $\mathbb{F}^{\pm}(N, \vec{v})$, and $\mathbb{X}^{i\pm}(N, \vec{v}, \mathcal{P})$ with $\mathbb{F}^{i\pm}(N, \vec{v}, \mathcal{P})$
- A centripetality partial order can be defined for games so that $(N, \vec{v}^{\,1}) \leq_{\rm CP} (N, \vec{v}^{\,2})$ if and only if

$$\frac{v^1(C^2)}{v^1(C^1)} \le \frac{v^2(C^2)}{v^2(C^1)}, \qquad \qquad \text{when } C^1 \subseteq C^2$$

• Consequences turn out to be $\mathbb{F}^{i\pm}(N, \vec{v}^1, \mathcal{P}) \subseteq \mathbb{F}^{i\pm}(N, \vec{v}^2, \mathcal{P})$, $\mathbb{Q}^{i\pm}(N, \vec{v}^1) \subseteq \mathbb{Q}^{i\pm}(N, \vec{v}^2)$, and $\mathbb{P}^{u}(N, \vec{v}^1) \supseteq \mathbb{P}^{u}(N, \vec{v}^2)$ Core, Stability, and Risk

An Illustration of Centripetality

A Schematic Sketch of Consequences

From Risk Aversion to Centripetality

- With centripetality ⇒ cooperation at hand, we can further demonstrate risk aversion ⇒ centripetality
- Each coalition C is associated with a random outcome $\Phi(C)$
- All players share a common strictly-positive-valued reward function \tilde{R} that is positively homogeneous in sense that

$$\tilde{R}(f \cdot Y) = f \cdot \tilde{R}(Y), \qquad \text{ if } f \ge 0$$

• When $Y = \phi(C) \cdot \sum_{i \in C} \Theta_i$ with i.i.d. Θ_i 's and

$$\tilde{R}(Y) \equiv \mathbb{E}[Y] - \bar{r} \cdot \sqrt{\mathbb{E}[Y^2] - (\mathbb{E}[Y])^2},$$

 $\bar{r}^1 \leq \bar{r}^2$ would lead to $(N, \vec{v}^{\,1}) \leq_{\sf CP} (N, \vec{v}^{\,2})$

Another Law-invariant Occasion

- In another *law-invariant* case, we characterize $\Phi(C)$'s by corresponding $\tilde{k}(C)$'s, where each $\tilde{k}(C)$ is *inverse* of $\Phi(C)$'s *cumulative distribution function*
- Let reward function \tilde{r} operating on above quantiles be parameterized by a probability density function $\bar{\mu}$ on [0, 1] so that

$$\tilde{r}(k) \equiv \int_0^1 \bar{a}(k,\alpha) \cdot \bar{\mu}(\alpha) \cdot d\alpha,$$

where $\bar{a}(\cdot, \alpha)$ is α -level conditional value at risk defined as in

$$\bar{a}(k,\alpha) \equiv \frac{1}{1-\alpha} \cdot \int_0^{1-\alpha} k(\beta) \cdot d\beta$$

Risk Aversion Promotes Cooperation

- For case above, $\bar{\mu}^1 \leq_{\mathsf{Ir}} \bar{\mu}^2$ would lead to $(N, \vec{v}^1) \leq_{\mathsf{Cp}} (N, \vec{v}^2)$ under mild conditions on *quantile functions* $\tilde{k}(C)$
- Thus, for both cases, we can show that *risk aversion* promotes resulting coalitional game's *centripetality*
- This link, when combined with already-established link about *centripetality* promoting *cooperation*, would deliver on message

risk aversion promotes cooperation

Concluding Remarks

- Using *partition-allocation* pairs and *weak core* based on *consensual blocking*, as well as certain middle grounds, we have identified stability notions that are *universal*
- We wonder if there are *universal* stability concepts that are still compatible with plain *core*
- Concerning link from *risk aversion* to *cooperation*, more on causes of *centripetality* would be welcome

Thank you! Comments and suggestions?