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Community Detection in Complex Networks

Complex networks in nature: social networks, biological networks, the
Internet, WWW.

� Community structures (clustered, closely knit groups).

Our project: use geometric tools, Ollivier Ricci curvature flow, to
analyze complex networks.

� Community detection.
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Curvatures on Surfaces vs. on Networks
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Ricci Flow on Manifold vs. on Networks

Hamilton introduced Ricci flow, a curvature guided process.

(b') network after Ricci flow

(c') network after surgery

(a') initial network

(b) manifold after Ricci flow 

(a) initial manifold

(c) manifold after surgery
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Facebook Ego Network

792 friends and 14025 edges. The colors represent 24 different friend
circles (communities).
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Discrete Ricci Curvature

Definition (Ollivier)

Let (X , d) be a metric space and let m1,m2 be two probability
measures on X . For any two distinct points x , y ∈ X , the (Ollivier-)
Ricci curvature along xy is defined as

κ(x , y) := 1− W1(mx ,my )

d(x , y)
,

where mx (my ) is a probability distribution defined on x (y) and its
neighbors, W1(µ1, µ2) is the L1 optimal transportation distance
between two probability measure µ1 and µ2 on X :

W1(µ1, µ2) := inf
ψ∈Π(µ1,µ2)

∫
(u,v)

d(u, v)dψ(u, v)
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Ricci flow for Community Detection

Given a graph G in which d(x , y) is the weight of the edge xy and
κ(x , y) is the discrete Ricci curvature, we run

di+1(x , y) = (di (x , y)− ε · κi (x , y) · di (x , y)) · N

Distribution on the neighbors of a node x :

� All prior work: uniform distribution.

� This work: ∼ exp(−d(x , xi )
p), for a constant p.

Perform surgery (remove long edges) to reveal hierarchical structure.
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Karate Club Network
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Ricci Curvature
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Cutoff Threshold vs Modularity

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR)
benchmark network (community size ∼ power law).

# Edges Remains vs Cutoff

Modularity
ARI (Ground truth)

# Community vs Cutoff
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LFR: 1000 Nodes, 9539 Edges, 30 Communities, μ=0.4
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Performance Comparison

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR)
benchmark network (community size ∼ power law).
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Parameter on the Exponent

Distribution on the neighbors of a node x : ∼ exp(−d(x , xi )
p), for a

constant p.

exp(-w3) exp(-w2) exp(-w1) exp(-w0)
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Computation

Use Sinkhorn Algorithm (approximate optimal transport distance) to
speed up computation by 4X.

Sinkhorn, 
AvgTime=1.607s, std=0.402s
Optimal Transport, 
AvgTime=6.417s, std=0.511s
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Hierarchical Community Structure

Emergent geometrical network model (GNet): a growing network with
high clustering coefficient using the triadic closure property.

(a-1) GNet, m=2, p=0.9 

Cutoff: 3.9, #Comm.: 6

(a-2) GNet, m=2, p=0.9

Cutoff: 3.2, #Comm.: 38

(a-3) GNet, m=2, p=0.9

Cutoff: 1, #Comm.: 108

13 of 14



Acknowledgement

� Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Feng Luo, Community
Detection on Networks with Ricci Flow, Nature Scientific Reports
9, Article number 9984, published 10 July 2019.
https://www.nature.com/articles/s41598-019-46380-9

� Github code:
https://github.com/saibalmars/GraphRicciCurvature

14 of 14


