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ABSTRACT
Graph filters are a recent and powerful tool to process in-
formation in graphs. Yet despite their advantages, graph
filters are limited. The limitation is exposed in a filtering
task that is common, but not fully solved in sensor networks:
the identification of a signal’s peaks and pits. Choosing the
correct filter necessitates a-priori information about the sig-
nal and the network topology. Furthermore, in sparse and
irregular networks graph filters introduce distortion, effec-
tively rendering identification inaccurate, even when signal-
specific information is available. Motivated by the need for
a multi-scale approach, this paper extends classical results
on scale-space analysis to graphs. We derive the family of
scale-space kernels (or filters) that are suitable for graphs
and show how these can be used to observe a signal at all
possible scales: from fine to coarse. The gathered informa-
tion is then used to distributedly identify the signal’s peaks
and pits. Our graph scale-space approach diminishes the
need for a-priori knowledge, and reduces the effects caused
by noise, sparse and irregular topologies, exhibiting: (i) su-
perior resilience to noise than the state-of-the-art, and (ii) at
least 20% higher precision than the best graph filter, when
evaluated on our testbed.

1. INTRODUCTION
Recently, there has been a surge of research focusing on

the processing of graph data. One of the breakthroughs
of the community has been the design of graph filters, dis-
tributed algorithms with applications to sensor, transporta-
tion, social and biological networks [21, 23]. Similar to how
classical filters operate on time signals and images, graph
filters operate on graph signals, i.e., signals defined on the
nodes of irregular graphs [24]. Being abstract representa-
tions of graph data, graph signals can be used in a variety of
contexts. In sensor networks for example, the graph mod-
els the communication network between wireless devices,
whereas the signal represents the data that devices sense.
One of the benefits of graph filters is that they allow one
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to observe graph data at different scales. For example, Fig-
ure 1 shows that a signal filtered with a low scale parameter
(s = 0), exposes fine details, while coarse signal trends are
observed at higher scales (s = 14). Based on the scale pa-
rameter, a low-pass graph filter controls the size of observ-
able signal structures, attenuating structures of small size,
such as noise [28]. Graph filters are also useful for revealing
communities [25], identifying event-regions (band-pass) [18],
and detecting anomalies (high-pass) [21].

Yet, despite their theoretical guarantees and distributed
computational efficiency, graph filters are also limited. A
common task that exposes their shortcomings is the identi-
fication of the peaks and pits of a graph signal. Beyond giv-
ing us insights about the signal itself, the peaks (and pits) of
a signal appear recurrently in a wide range of applications
in sensor networks. Peaks are implicitly used by event and
target tracking algorithms [1, 2, 8, 10] and form the basis
of topological methods for signal mapping and compression,
such as surface networks [11], iso-contour maps [22], and
Morse-Smale complexes [29]. Furthermore, peaks are im-
plicitly used by gradient-based navigation [9, 19], where a
discovered path is only useful if it leads to a true peak. An
accurate identification of peaks is thus a necessary prior step
for the proper operation of gradient-based methods.

On the surface, identifying the peaks and pits of a signal
appears deceptively simple: a node is at the summit of a
peak if its value is the largest amongst its neighbors (local
maximum). Equivalently, a node is at the bottom of a pit
if its value is the smallest amongst its neighbors (local min-
imum). In practice however, the accurate identification of
peaks and pits is challenging [10, 11]. The challenge arises
due to two key problems. First, extrema are inherently tied
to the local signal derivative and thus notoriously sensitive
to noise. Second, extrema are affected by how the network
is connected, and occur more often in sparse irregular net-
works. For these two reasons, graph signals often contain
false extrema—maxima and minima that do not correspond
to the real peaks and pits of the physical signal.

Though identifying peaks/pits is a filtering problem, graph
filters exhibit several drawbacks: (i) First, the filtering effi-
ciency depends on the correct choice of scale. For Figure 1,
this drawback maps to the following question: what scale
gives the most truthful representation of the underlying sig-
nal? To choose the scale of observation correctly, one must
have a-priori information about the observed phenomenon,
as well as of the instrument of observation—in our case, the
network topology. (ii) Second, even the correct choice of
scale results in loss of information. Every scale conveys use-
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Figure 1: The maxima of a graph signal across four different scales s. A number indicates the id of each
maximum. The three peaks are indicated with letters A-C. F and P indicate a false and a phantom extremum,
respectively. The sequence of signals across all scales gives rise to the signal’s scale-space.

ful information about a signal: coarse scales describe large
structures, whereas fine scales reveal details. Enforcing a
single scale of observation can lead us to ignore valuable in-
formation. (iii) Third, this paper shows that filtering over
irregular graphs, such as those found in real wireless net-
works, can cause phantom extrema, i.e., extrema that are
not present on the signal, but are an artifact of the filtering
process. These phantom extrema severely hamper identifi-
cation in practice, even when the scale is chosen correctly.

1.1 Related work
One of the standard approaches to overcoming the limi-

tations of filtering is the scale-space approach [26]. Accord-
ing to scale-space theory, to capture the full set of features
present in a signal, we must examine it across all possi-
ble scales of observation. Scale-space approaches are widely
used in computer vision for extracting image features, such
as extrema, saddles, and corner pixels, as well as for image
smoothing and edge detection [16, 27]. The central ques-
tion of scale-space is identifying the scale-space kernel (or
filter) that abides to a set of conditions, referred to as scale-
space axioms [17]. We currently know that, in both continu-
ous and discrete settings, the only kernel that abides to the
scale-space axioms is the heat kernel. However, even though
there are indications that the same kernel also applies to
graphs [12, 27], a rigorous examination of graph scale-space
is -to this point- missing. We prove that in graphs the heat
kernel is not the only kernel that abides to the scale-space
axioms; others do too. We also propose an efficient way to
compute them distributedly, which is especially relevant in
wireless sensor networks, due to the limited time and re-
sources available to communicate and process sensor data.

Scale-space is not the only approach to identify peaks
and pits: (i) In sensor networks, the first to recognize that
false extrema exist (also referred to as weak peaks/pits)
and to propose an algorithm for their identification were
Jeong et al. [10, 11]. We found that their algorithm does
improve identification accuracy, but only to a limited ex-
tend. Especially when the signal is noisy, the identification
is inaccurate. (ii) In the continuous setting, the peak iden-
tification problem is referred to as mode seeking [5]. From
that perspective, our methods are generalizations of a graph-
based mean-shift to multiple scales. Our evaluation reveals
that even the best single-scale method (i.e., graph-based
mean-shift with optimal bandwidth) cannot cope with the
abundance of phantom extrema present in wireless networks.
A multi-scale approach is necessary.

1.2 Contributions
Within this context, we provide three main contributions:

Contribution 1. Extending scale-space theory to
graphs (Section 3). We address two fundamental ques-
tions: What are the scale-space kernels that are appropriate
for graphs and how efficiently can we compute them dis-
tributedly? To answer this question, we first identify the
properties that graph scale-space kernels must have, and
then, evaluate the pros and cons of three candidate kernels.
We also show that in practice, synchronous implementations
of graph scale-space kernels seem to be the only viable option
in terms of time complexity. Our analysis suggests that syn-
chrony is a fundamental requirement of scale-space kernels
for graphs—in the sense that currently known asynchronous
algorithms exhibit much higher complexity. Last, we show
that scale-space kernels are essentially graph filters. Our
insight allows us to draw interesting connections between
scale-space theory and signal processing on graphs.

Contribution 2. Using the scale-space approach to
identify signals’ peaks and pits (Sections 4-5). Simi-
lar to images, instead of selecting a single scale, we observe
a signal at every possible scale and use the combined infor-
mation to identify the peaks and pits [17]. Intuitively, this
method follows a survival of the fittest approach, where the
longer a peak (or pit) survives across scale, the higher the
likelihood of being identified as a ‘true’ feature. Overall, the
scale-space approach entails three steps: (i) Using a scale-
space kernel, we progressively simplify the sensed signal (see
Figure 1). The sequence of scaled signals, each simpler than
the previous, gives rise to the signal’s scale-space. (ii) All
the while, we track how the simplification changes the sig-
nal extrema. The captured information, which is referred
to as the signal’s deep structure [13], contains the location
and lifetime of each extremum across scale (cf. Figure 3).
(iii) We use the deep structure to discern whether an ex-
tremum is true, false or phantom, essentially identifying the
peaks and pits of the underlying signal. All three steps are
computed locally within the network, require no location
information, and incur a computational overhead similar to
that of a graph filter.

Contribution 3. Defining the challenges of peak iden-
tification in real-world sensor networks (Section 6).
We implemented both state-of-the-art and scale-space algo-
rithms in a testbed consisting of (up to) 99 wireless sensor
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Figure 2: Even slight changes to the connectivity of
a path graph (black solid lines) and to the values
of the physical signal (black dashed line) can cause
false and phantom extrema to appear. On the top,
the noisy sensed signal (green dotted line) contains
two false maxima, caused by noise and irregular con-
nectivity. On the bottom, the filtered signal (green
dotted line) contains a phantom maximum.

nodes, and used the gathered information to benchmark the
accuracy of each method. To the best of our knowledge,
we are the first to evaluate such mechanisms in real-word
scenarios, thus including radio-specific effects like irregular
coverage, asymmetric links, packet loss and temporal link
variability. We discovered that these phenomena have a
drastic impact on the accuracy of peak/pit identification
and should be considered in the evaluation of future mech-
anisms. Moreover, we show that the superior resilience of
scale-space methods to radio effects makes our approach far
more resilient to noise than the state-of-the-art and at least
20% more precise than the best graph filter.

2. PRELIMINARIES
We start by describing the problem of peak and pit iden-

tification in sensor networks and discussing its main chal-
lenges. Section 2.2 presents an overview of our approach.

2.1 Peak and pit identification
Consider a sensor network G = (V, E) of n nodes and m

links that is monitoring its environment. Each node u ∈ V is
situated in some (possibly unknown) physical location, and
samples a physical signal present in a Euclidean space and
imbued with noise of unknown characteristics, such as mean,
variance, and type. The sensed information is captured by
a graph signal x : V → R, which assumes a real value x(u)
on each node u. Our objective is to identify the peaks and
the pits of the underlying physical signal.

Challenges. Identifying the extrema of the sensed graph
signal x is easy: a node u is a maximum if x(u) > x(v) for
all nodes v ∼ u in its communication vicinity (v ∼ u denotes
that v is a neighbor of u). Correspondingly, u is a minimum
if x(u) < x(v) for all v ∼ u. Nevertheless, the maxima and
minima of x do not necessarily correspond to the peaks and
the pits of the underlying physical signal. In Figure 1(a)
for example, there are four extrema but only three peaks
(A,B,C). These mismatches occur for three main reasons,
the first two reasons are well known in the community, while
the latter is an insight obtained through our work:

(i) Noise. Whether because of spatio-temporal pertur-
bations or sensor imprecision, signals can fluctuate signifi-
cantly around their original value, leading to false positives
and false negatives (cf. Figure 2(a)).

(ii) Graph irregularities. It is commonly assumed that
whenever two nodes are placed within a given radius, the
nodes are joined by a valid link. In practice, links exhibit
high spatial and temporal variability, leading to false posi-
tive extrema: a low-valued node connected to a high-valued
node would not select itself as a maximum, but if the link dis-
appears, it will. In Figure 2(a) for example, the fourth node
from the left perceives itself as a maximum only because it
has no link to the node on its right. This phenomenon is per-
vasive in real networks and particularly acute in graphs with
small average degree. Proposition 2 in the appendix shows
that the expected number of extrema arising from volatile
links grows with an exponential trend as the graph becomes
sparser1. This trend is later observed in our evaluation.

(iii) Phantom effects. Broadly speaking, graph filters al-
ter a signal by diffusing it locally. The filtering process is
thus determined by the underlying connectivity. If a regular
lattice is used –as is common in classical signal processing–
no bias is introduced by the topology in the filtering process.
In real deployments however, the node density varies across
the network and highly dense areas tend to ‘accumulate’ a
higher share of the diffused mass. This creates phantom ex-
trema: extrema that are neither present on the underlying
physical signal nor in the sensed signal, but they are an arti-
fact of filtering over an irregular topology (cf. Figure 2(b)).

2.2 The scale-space approach
In this paper, we use scale-space theory to identify the

peaks and pits of a signal. Our approach boils down to three
steps, each computed distributedly within the network:

Step 1. Extracting a signal’s scale-space. The cen-
tral idea of scale-space is that we can learn more about a
signal by systematically examining it across different scales
of observation: coarse scales give us the big picture (Fig-
ure 1(d)), whereas in fine scales details prevail (Figure 1(a)).
More concretely, the scale-space of a graph signal x consists
of a sequence {ys} of scaled signals, each simpler than the
previous. The scale-space is constructed by filtering x with
a family of n× n kernels Ks as

ys = Ksx, (1)

where the scale parameter s denotes that information is dif-
fused within the s-hop neighborhood. Scale determines the

1Note that the number of maxima (minima) is at most equal
to the size of the graph’s maximal independent set.



maximum size of structures that can be observed. In Sec-
tion 3, we identify appropriate scale-space kernels Ks and
give local algorithms for their computation.

Step 2. Tracking extrema across scale. As a signal
is progressively simplified, its extrema evolve. Peak B for
instance, is born on node 350 in Figure 1(a), moves to node
283 in Figure 1(b), and dies in Figure 1(d). This process
is compactly captured by the signal’s deep structure, which
visualizes the scale-trajectory of each extremum e (see Fig-
ure 3). The distributed computation and analysis of the
deep structure is given in Section 4.

Step 3. Extremum selection. In the last step, we use
the trajectory of each maximum (minimum) to infer the na-
ture and importance of the corresponding peak (pit). We
focus on two aspects: First, the extremum’s lifetime, which
is defined as the length of the scale-period over which e ex-
ists. Second, we focus on birth events. As explained before,
in contrast to images, graph filters distort signals in a way
that is unique to the graph topology, leading to phantom
extrema. In Section 5.2 we will see that phantom extrema
are easy to spot from the deep structure because they are
always born in large scales.

3. SCALE-SPACE THEORY ON GRAPHS
This section sets the necessary theoretical basis of scale-

space analysis in graphs. Though the ideas are rooted upon
the scale-space theory for continuous signals and images [14,
17], our analysis deviates from the original. In contrast to
the classic setting, graphs have irregular connectivity. Ad-
ditionally, in networks each node can only directly exchange
information with its neighbors. This motivates us to ask:
What type of kernels are appropriate for graphs and how
efficiently can we compute them distributedly?

We address this question in three steps: In Section 3.1,
we focus on the existence of graph scale-space kernels. We
derive necessary and sufficient conditions for a matrix to be a
scale-space kernel and we present three candidates kernels.
In Section 3.2, we focus on computation. We show that
scale-space kernels are locally computable if synchrony is
assumed, but that currently known practical asynchronous
algorithms are not local. Last, in Section 3.3 we expose
the connection between graph scale-space kernels and graph
filters. We show that each of the candidate graph scale-space
kernels forms a one-parameter family of graph filters. The
observation gives insight into the operation of kernels and
to their relation to the graph spectrum.

3.1 Axiomatic scale-space theory
The objective of scale-space theory is to provide a scale-

invariant observation of a signal x. This is achieved by dif-
fusing the signal with a family of kernels Ks, where the scale
parameter s determines the size of observed peaks and pits.
But which kernel should one use? One of the breakthroughs
of the scale-space community has been the axiomatization
of the theory [17]. A scale-space kernel is then the one that
satisfies the three main scale-space axioms2:

Axiom 1 (Linearity). Kernels Ks are linear operators.

2Though different combinations of axioms have been used in
the literature [17], the three mentioned here suffice for the
characterization of graph scale-space kernels.

Axiom 2 (Semi-group property). The family of scale-space
kernels forms a semi-group: Ks1Ks2 = Ks1+s2 .

Axiom 3 (Non-enhancement). The absolute value of any
extremum in Ksx must always decrease in Ks+1x.

The first axiom asserts that a scale-space kernel is not sig-
nal specific, in the sense that it abides to the superposition
principle: for any two signals x1 and x2, Ks(x1 + x2) =
Ksx1 + Ksx2. Additionally, Ks should act in the same way
at all scales. If the semi-group property is not met, diffusion
deforms the signal in a scale-specific way, which is unde-
sirable. Last, according to the non-enhancement axiom, a
kernel must always simplify existing signal extrema. Note
that guaranteeing the simplification of existing extrema at
higher scales (Axiom 3) is not the same as guaranteeing that
no new extrema appear. Signals often contain hidden struc-
tures, which diffusion reveals3. Thus, non-enhancement rep-
resents the weaker alternative of guaranteeing that existing
extrema are always simplified.

Even though the fundamental question of scale-space the-
ory –which scale-space kernel satisfies the scale-space ax-
ioms?– has been answered for the continuous and discrete
settings [14, 17], the answer does not directly apply to graphs.
Graphs exhibit irregular connectivity and are not, in general,
a metric space. This poses an analytical challenge as, unlike
images, differentiation is impossible. These differences moti-
vate us to address scale-space theory from a graph-theoretic
perspective. In the following, we show that a graph scale-
space kernel Ks that satisfies the scale-space axioms exists
and that it is connected to the graph spectrum.

Central to our discussion is the notion of an h-local matrix.
Intuitively, an h-local matrix is an operation that uses signal
information at most h hops away from each node.

Definition 1 (h-local matrix). An arbitrary matrix M is
h-local if, for all ui and uj in V with shortest-path distance
d(ui, uj) > h, Mij = 0.

We proceed with our main result.

Theorem 1. A kernel Ks satisfies the scale-space axioms
if and only if Ks = Ss, where the scale-space matrix S is
1-local and non-negative.

Proof. We start by noticing that, for any kernel satisfying
Axioms 1 and 2, it must be that Ks = SKs−1, where S =
K1. Applying this recursively, we obtain Ks = Ss. The
conditions that S is 1-local and non-negative are imposed by
Axiom 3 and are given in Lemmas 1 and 2, respectively.

Lemma 1. Kernel Ks = Ss satisfies the non-enhancement
axiom only if S is a 1-local matrix.

Proof. We show by method of contradiction that, kernel
Ks = Ss satisfies Axiom 3 only if S is 1-local. Any ma-
trix S is always h-local for h equal to the network diameter;
the question is whether h = 1. For sake of contradiction
assume that h > 1. We show that, if this is true, a sig-
nal x always exists (independently of G) that violates the

3For example, consider two peaks joined by a thin bridge.
If the lowest point of the bridge is slightly taller than the
lowest peak, then the signal has only one maximum. The
second maximum is however revealed when, due to diffusion,
the bridge collapses.



kernel name S sym. col.-st. row-st.

Ht heat I − L yes no no
Tt random-walk T no yes no
Pt consensus P no no yes

Table 1: Candidate scale-space kernels, along
with the properties of their scale-space matri-
ces S. ‘Row/col.-st’ refers to row- and column-
stochasticity, respectively, whereas ‘sym.’ is a short-
hand for symmetric.

non-enhancement axiom. Therefore the assumption is in-
correct and h = 1. The construction is as follows: Choose
two nodes ui, uj with d(ui, uj) = h > 1 such that Sij 6= 0.
Assign values x(ui) = 1 and x(v) = 0 otherwise. Clearly, ui
is a maximum and its value should decrease in in the next it-
eration (Sx)(ui). Nevertheless, a real number β � 1 always
exists for which, if x(uj) = β sign(Sij), then (Sx)(ui) > 1,
which is a contradiction.

Lemma 2. Kernel Ks = Ss satisfies the scale-space axioms
if and only if S is a 1-local and non-negative matrix.

Proof. We begin by establishing that, if the two conditions
hold, the scale-space axioms are satisfied. Let ui be a max-
imum of x. By definition, its neighbors uj have strictly
smaller values. It is easy to see that, if the non-negative
condition Sij ≥ 0 holds, then (Sx)(ui) ≤ x(ui), which is ex-
actly the non-enhancement axiom. As we can see, when S is
1-local and non-negative it always satisfies the three axioms.
The two proposed conditions are therefore sufficient. As we
show next, since the opposite is not always true, the two
conditions are also necessary. The proof is done by contra-
diction: if we assume that Sij < 0, we can always construct
a signal that breaks the non-enhancement axiom. That is
simply by assigning x(ui) = 1, and for each neighbor uj with
Sij < 0, x(uj) = −β, where β � 1. The non-negativity of
S’s diagonal guarantees that extrema do not oscillate be-
tween being maxima and minima as scale increases.

Remark. Though it is not requested by the scale-space
axioms, it also useful to impose that ‖Ksx‖ never grows
infinitely large. For this reason, in the following we only
consider scale-space matrices S with spectral radius smaller
or equal to one.

Candidate kernels. Though Theorem 1 establishes the
properties of graph scale-space kernels, it does not provide
an explicit form. In other words, many possible kernels may
exist that satisfy the scale-space axioms. We have identified
three such candidate kernels (cf. Table 1): The first is the
heat kernel Hs = (I − L)s, where L is Chung’s normalized
Laplacian matrix. Additionally to satisfying the conditions
of Theorem 1, the heat kernel is symmetric, which suits
applications working over undirected graphs. In wireless
networks however this property is not satisfied.

The next two kernels under consideration are asymmet-
ric. But to validate their suitability for peak identification,
we need to evaluate two important properties: column- and
row-stochasticity : (i) Column-stochasticity warrants that
the mass of x remains constant as it is being diffused, i.e.,
1>Ksx = 1>x for all s, where 1 is the all ones vector. The
random walk kernel Ts = T s = (AD−1)s, where D is the di-
agonal degree matrix and A the adjacency matrix, is column

stochastic. For our purposes however column-stochasticity
is not a desirable property, because the distribution of mass
gets strongly biased towards well connected nodes. Con-
sidering the high irregularity of wireless networks, column-
stochasticity would exacerbate the phantom extrema effect.
On the other hand, this kernel is suitable for purely graph-
based signals, such as web page centrality, and it has also
been used for graph partitioning by Chung [6]. (ii) Row-
stochasticity governs the behavior of a signal at very large
scales. Consider the consensus kernel Ps = P s = (D−1A)s,
our third scale-space kernel. Being row-stochastic, the con-
sensus kernel flattens signals completely as s → ∞. This
property is particularly useful for filtering physical signals,
such as the measurements of a sensor network, because it
progressively eliminates (smooths) structures based on their
size. Given that the consensus kernel Ps has the required
properties for peak and pit identification, we used it as the
default kernel for the rest of this paper.

Remark. The candidate kernels are easily generalized to
consider additional adjacency information, such as edge wei-
ghts. For instance, a node may choose to diffuse its value
with a weight that is inversely proportional to the physical
distance to its neighbors. Nevertheless, when only the com-
munication graph is available, a simple average presents the
most viable choice.

3.2 Distributed computation
We proceed to examine how graph scale-space kernels can

be computed efficiently in a distributed network. We show
that synchronous algorithms are the best option for prac-
tical implementations. In the asynchronous case, currently
known practical algorithms are non-local.

Computational models. For convenience, we will assume
that the computation proceeds in rounds t, during which
nodes exchange exactly one scalar with each of their neigh-
bors. Based on whether rounds of neighboring nodes overlap
or not, we distinguish two versions: the asynchronous and
the synchronous model. The main assumption posed, i.e.,
that at least one message is exchanged with each neighbor,
can be implemented in either of two ways: deterministically
by using a local schedule and probabilistically by random
beaconing. We quantify the computation cost in terms of
the algorithm’s time complexity (total number of rounds).

Synchronous algorithms. From Theorem 1, we can de-
rive that, in the synchronous model, Ks is computed by the
well known recursion:

y(t+1)(u)←
∑
v∼u

[S]uvy
(t)(v)

repeat every round

and y(0)(u)← x(u)

initialization

, (2)

where each exchanged packet contains exactly one scalar
(y(t)(v)). Since each node needs s rounds to compute the
desired information, the time complexity is O(s).

Asynchronous algorithms. How efficiently can scale-
space kernels be computed by a network without round-
level synchronization? To answer this question, we examine
the (only) three algorithmic approaches known to compute
graph kernels asynchronously. We then show that, even
though some of these approaches can be used to compute



scale-space kernels asynchronously, doing so incurs complex-
ity much higher than O(s).

The first algorithmic approach is straightforward: one can
synchronize the network via packet exchanges. Unfortu-
nately, enforcing synchronization requires global knowledge
and takes at least as long as Ω(diameter) rounds [4]. Con-
sidering that s needs to be roughly of the same order as the
diameter of the largest structure of interest in the signal,
we could have s � diameter. The first algorithm therefore
exhibits increased time-complexity and is not local. The sec-
ond approach follows from a simple observation: according
to Theorem 1, Ks is s-local. This means that each node
u needs only the values and connectivity of the nodes in
its s-hop vicinity to compute (Ksx)(u). Communicating
once with each neighbor in the s-hop vicinity is possible in
O(s) rounds if the packet-size can grow arbitrarily large.
However, in our model the size of each packet is bounded
to one scalar, and the time complexity is Ω(δs−1), where
δ is the minimum node degree. Its exponential complex-
ity renders the second algorithm impractical (especially in
dense networks). The third approach is slightly more com-
plex: instead of computing a graph kernel using power iter-
ation (as in (2)), we will use an alternative recursion that
-converges- linearly to the output without being affected by
asynchrony. Though such recursions have been shown to
hold great promise for graph kernels in general [18, 19], The-
orem 2 shows that they cannot be used in our case:

Theorem 2. No 1-st order recursion converges to Ks in
the asynchronous model.

Proof. Given in the Appendix.

The intuition of the proof is that, whereas (Ksx)(u) is
truncated, i.e., it takes into account -at most- the values in
an s-hop neighborhood of u, any kernel computed by the
third approach decays asymptotically with the number of
hops. Therefore, no 1-st order recursion converges exactly
to Ks. Though more tedious, the same argument applies
for showing that no recursion of any order converges to Ks

in the asynchronous model. Notice that, our results do not
suffice to prove that Ks are not locally computable in the
asynchronous model, but rather that no currently known
such algorithm exists.

3.3 Connection to graph filters
We give an alternative interpretation to graph scale-space

by noticing that each of the three candidate kernels is a
low-pass graph filter [24]. This brings forth two main in-
sights: First, scale acts as the parameter of a low-pass graph
filter. Therefore, the way that a scale-space kernel attenu-
ates peaks/pits is affected by the spectral graph properties.
Second, scale-space theory reveals the design characteristics
of a scale-invariant graph filter, i.e., a filter which does not
distort signals in a scale-specific manner.

First, we will show that the three candidate kernels are
low-pass graph filters [24]. Showing that Hs is a graph filter
is straightforward—any power series of a generalized Lapla-
cian matrix is a valid graph filter. The same also holds for
kernels Ts and Ps (up to a normalization factor). To see

this notice that, Ps = P s = D−1/2(I − L)sD1/2 and equiv-

alently, Ts = T s = D1/2(I − L)sD−1/2. Both Ts and Ps

are therefore power series of the normalized Laplacian L,
normalized by (diagonal) matrices D±1/2. Furthermore, the

frequency response of all three candidate kernels is given by
r(λk; s) = (1− λk)s, where λk is the k-th eigenvalue of L.

Insights. Our first insight concerns the attenuation prop-
erties of the scale parameter s. The frequency response
r(λk; s) of all three filters attenuates phenomena as a mono-
tonically decreasing function of λk. Taking into account that
high(er) eigenvalues are associated with high(er) frequency
events (such as noise), the larger s is, the simpler the graph
signal becomes. The way a scale-space kernel alters a signal
is therefore inherently tied to the spectral graph properties.
Intuitively, this means that peaks lying on sparse subgraphs
and containing many bottleneck links are attenuated first.
For a more in-depth characterization of the influence of the
graph spectrum, the reader is directed to the relevant liter-
ature on graph filters [18, 23].

Our analysis started from the premise that a signal should
be observed across all scales. However even if a single scale
is used, such as in graph filters, our analysis still carries a
valuable insight. As a consequence of Theorem 1, the only
filters that are signal- (Axiom 1) and scale-invariant (Axiom
2) must have a frequency response of r(λk; s) = (1 − λk)s,
for λk the eigenvalue of some generalized Laplacian. These
two properties are very desirable when one needs to filter a
signal without introducing scale-specific distortion.

4. TRACKING EXTREMA ACROSS SCALE
In this section we identify and track the extrema of graph

signals across scale. The computed trajectory, is a tree-
like abstraction, called the signal’s deep structure, reveals
information about the relation and relative importance of
peaks and pits.

Deep structure. As a signal is diffused, its extrema evolve.
But what does this reveal about the signal’s peaks and pits?
We distinguish two cases:

Drift. When a peak/pit changes shape, the corresponding
extremum drifts. In Figures 1(a) and 1(b) for example, as
peak B is flattened, the maximum drifts from node 350 to
283. In this case, we say that extremum 350 is unstable.
The movement of an unstable extremum e is captured in its
trajectory (ub, . . . , us, . . . ud), where us is the node e resides
on at scale s, b is the scale over which e is born and d
over which it dies. Notice that, even though the location
of the extremum can change, i.e. us 6= us+1, the extremum
continues to correspond to a single peak (or pit).

Collapse. When a peak/pit collapses, the corresponding
extremum dies. A collapse thus entails the destruction of
a signal structure. Consider for example peak C in Fig-
ure 1(b). By s = 7, the peak has collapsed and extremum
14 dies. It is also easy to see that, after peak C collapses,
it is drawn into peak B: a gradient ascent on y7 starting on
node 14 ends up on node 283.

Diffusion results in a tree-hierarchy of collapses, each cor-
responding to a structure merging with a larger nearby struc-
ture. This process is compactly captured by the signal’s deep
structure. As shown in Figure 3, the deep structure visual-
izes the trajectory (ub, . . . , ud) of each extremum e using a
black horizontal line. The trajectory spans the scales over
which e lives: it starts at scale b and ends at d. Collapses on
the other hand are depicted using dotted lines. Extremum
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14, for example, collapses at s = 3 in Figure 3, and is drawn
into extremum 283.

Tracking algorithm. We next present an algorithm for the
computation of the signal’s deep structure. In our approach,
the knowledge is distributed amongst the signal extrema.
For this reason, our algorithm’s time complexity O(dx) does
not depend on the network diameter d (no node knows the
complete deep structure), but on the diameter dx of the
largest peak/pit in the signal’s scale-space4.

We track the trajectory of extrema by forwarding infor-
mation greedily along the diffused signal’s gradient. The
algorithms are better understood from an extremum’s per-
spective: Consider an extremum e which at scale s resides
on node us. W.l.o.g., assume that e is a maximum5. If us
is also a maximum at scale s + 1, then no change occurred
and us+1 = us. On the other hand, if drift or collapse oc-
curs, a neighbor v will have a larger value than us. While
v may not be necessary a maximum, the maximum us+1 is
easily found by following the gradient ascent path, i.e., by
iteratively forwarding a tracking query to the neighbor with
the largest value (see Corollary 1 in the Appendix).

Even though the tracking algorithm is the same whether
the extremum drifts or collapses, it is easy to distinguish the
two cases locally: in a collapse, two distinct extrema merge
into one. Thus whenever a maximum receives more than one
gradient ascent (tracking) query, a collapse has occurred.

But if two extrema merge, which of the two collapsed?
Suppose that eu = (. . . , us, ws+1, . . . , wd) and ev = (. . . , vs,
ws+1, . . . , wd) are the trajectories of two maxima, which at
scale s + 1 merge at node ws+1. To figure out which maxi-
mum collapsed we use the following procedure: From Corol-
lary 2 in the Appendix, we know that the absolute value of
an unstable extremum always decreases. Thus, if the value
of maximum eu increased between scales s and s + 1, and
the value of ev decreased i.e., if

ys(vs) ≥ ys+1(ws+1) > ys(us), (3)

then eu collapsed and ev was unstable. But what if the value

4Though usually dx � d, it is possible to construct an ex-
ample in which dx = d.
5For ease of presentation, we focus our discussion on max-
ima. Our results however also hold for minima. Tracking
minima is equivalent to tracking the maxima of −x.

of both eu and ev decreased from scale s to s+ 1, i.e.,

ys(us) > ys+1(ws+1) and ys(vs) > ys+1(ws+1)? (4)

This phenomenon can occur in noisy signals, when a peak
is ‘hidden’ under nearby extrema (caused by noise): as the
signal is diffused and the extrema merge, their values jointly
decrease. In this case, there is no reliable way to distinguish
which extremum collapsed6. Thus the scale-space method
can discern that the merged extrema jointly form a peak,
but can not trace back the extremum to the most relevant
node at scale zero. In Figure 3, this case would be depicted
as two dotted lines merging into a new extremum.

5. EXTREMUM SELECTION
We now describe how we use the signal’s deep structure

to identify peaks and pits. We consider two criteria for ex-
tremum selection: The lifetime criterion aims at filtering
out false extrema, while the birth criterion aims at discard-
ing phantom extrema.

5.1 The lifetime criterion
One of the fundamental results of scale-space theory is

that the lifetime of extrema is a measure of the importance of
the corresponding peaks and pits [15]. Though a number of
definitions exist, the most natural defines the lifetime le of an
extremum e as the length of scale-period over which e exists:
le = de − be. Here, be and de denote the scale over which
e is born and dies, respectively. The lifetime criterion is
useful in separating small structures (false extrema) –caused
by small signal perturbations– from inherent signal trends
(true extrema): an extremum is true if le ≥ l, where l is a
user-defined lifetime threshold, and false otherwise. As we
will see in the following, by setting l we can (roughly) retain
peaks/pits that are bigger than l hops.

According to classic scale-space theory, the lifetime crite-
rion is successful because it captures two key properties of
the signal’s peaks and pits: volume and span. Volume is a
property that mainly depends on the signal, while span is
also affected by the graph topology. Important structures in
a signal have large volume. In Figure 1(a) for example, peak
A is the largest because it is tall and decreases slowly at each
direction. The volume in an s-hop neighborhood around e
is captured by ys(e) = (Ksx)(e) and is a weighted average
of all the information residing at most s hops away from e.
Additionally, a peak is important if it spans multiple hops.
In Figure 1(a), peak A is more significant than B because
A’s width covers more hops. Intuitively, lifetime gives the
size of the largest s-hop neighborhood centered around e.

5.2 The birth criterion
As depicted in Figure 2(b), a scale-space kernel introduces

distortion when the underlying graph is unevenly connected.
We call any effects that are present on the filtered signal, but
not on the underlying physical and sensed signal, phantom.
Phantom effects are particularly harmful as they obscure
real data (cf. Section 6). Nevertheless, in the particular
case of phantom extrema, there is an easy way to recognize
them from the signal’s deep structure. As we show in the
following, phantom effects occur only in large scales. As a
consequence, a phantom extremum e is always born at large
scales and be > 0. This is the birth criterion.

6In fact, one could argue that all extrema collapsed.



We examine phantom effects analytically by comparing fil-
tering of the same signal in two different topological spaces:
G models the network topology (e.g., an irregular and sparse
graph), whereas G models the space over which the signal is
defined (e.g., an ideal unbiased lattice). To demonstrate the
dependency between phantom effects, topology and scale,
we examine how the absolute quadratic error

es =

∣∣∣∣x>(Ks −Ks)x

x>x

∣∣∣∣ (5)

of the corresponding scale-space kernels Ks = S
s

and Ks =
Ss changes as the signal is filtered. We are interested in
how the error behaves when scale s increases. Using simple
operations we can see that 0 = e0 ≤ e∞, which indicates
that the error has an increasing trend. The following result
bounds the error between the extremes of s = 0 and s→∞,
when S is symmetric (all candidate kernels have symmetric
scale matrices).

Proposition 1. For any two graphs G = (V, E) and G =
(V, E), a signal x ∈ Rn, and a scale s ∈ N,

max(0, e∞ − 2λs2) ≤ es ≤ 1− λsmin + εs

where εs = (2ss)/(s+1)s+1 when s is odd and zero otherwise,
−1 < λmin < 0 is the smallest amongst the eigenvalues of
S and S, and 0 < λ2 < 1 is the smallest of the second
eigenvalues of S and S.

Proof. We split the proof of Proposition 1 in two parts: The
upper bound is given in Lemma 3 and the lower bound in
Lemma 4. Both can be found in the Appendix.

Note that both the lower and upper bounds increase with
s. Moreover, for all s ≤ log (λmin) (1 − e∞), es < e∞. This
suggests that phantom effects become more likely as scale
increases. We have to remark that, though unlikely, it is
possible that an extremum e born at a scale larger than zero
is not phantom. As discussed in Section 3, we can construct
a signal which contains hidden peaks; i.e., peaks revealed by
filtering. In that sense, the birth criterion is necessary but
not sufficient.

6. EVALUATION
We split our evaluation in two parts. Section 6.1 quantifies

the identification accuracy of our method and compares it
with the state-of-the-art. Section 6.2 evaluates a proof-of-
concept implementation in a large-scale wireless testbed.

6.1 Simulations
We conducted Matlab simulations using a test-set of ten

synthetic physical signals. Each signal was a mixture of
seven multi-variate Gaussian distributions with random mean
and covariance. The signal was sampled by 1024 nodes de-
ployed at random. The objective of the simulations was
to quantify the efficiency of identifying the seven Gaussian
peaks. We measured identification accuracy using the stan-
dard metrics of precision and recall. Precision measures the
fraction of true peaks present among all retrieved peaks, and
recall the fraction of true peaks with respect to the ground
truth. The ideal method therefore retrieves all true peaks
(recall = 1) and discards peaks caused by false/phantom
extrema (precision = 1).
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Figure 4: Precision/recall median and standard de-
viation for different methods and SNRs. Both oracle
and scale-space filters achieved significantly better
recall than state-of-the-art. Scale-space did so with
a fixed lifetime thresholds (l = 7). To diminish over-
lap, we perturbed the horizontal positioning of data
points.

To evaluate our algorithms, we compared the scale-space
approach (scale-space) to the state-of-art method for iden-
tifying peaks and pits (Jeong) [11]. Additionally, we com-
pared our method to the ‘raw’ unfiltered signal (unfiltered)
and to the single-scale graph filter with the best possible
performance (oracle). The latter was computed offline by
exhaustively searching, for each experiment, the scaled sig-
nal ys that maximized the minimum value of the metrics:
maxmins{precision(ys), recall(ys)}. While it is infeasible to
compute the oracle filter online, it serves as a benchmark for
judging the benefit of the scale-space approach (multi-scale)
over the best possible graph filter (vs. best single scale)

Because graph filters (and the scale-space approach) iden-
tify the peaks and pits of a signal by varying the scale of ob-
servation, an extremum of a scaled signal is not necessarily
located at the same node as in the physical signal. To verify
that an extremum in a large scale corresponded to a peak,
we checked whether the node that the extremum resided on
at the sensed signal was close to a true extremum. When ex-
trema merged without collapsing, we checked whether one of
them was close to a true extremum. Otherwise, the identifi-
cation was deemed a false positive. Analogously, peaks/pits
missed were deemed false negatives.

The effect of noise. To evaluate the influence of noise,
we perturbed the sensed signal with random Gaussian noise
of zero mean and progressively larger variance. This exper-
iment focused on well-connected topologies (average degree
between 13.7 and 14.3) and was devoid of sparsity effects.
The average diameter of the graph was 25.4. Figure 4 sum-
marizes our results over ten different random topologies, ten
signals, and six signal-to-noise ratios (SNR).

We have two main observations: First, the method by
Jeong et al. can be inaccurate for small SNR. Even though
the method improved over the unfiltered signal, it exhibited
a median precision of 0.12 for SNR = −5 dB. Second, the
accuracy of the scale-space approach, in both precision and
recall, is on par with the oracle filter. It should not be a
surprise that a hand-tuned graph filter is exceptionally effi-
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Figure 5: Precision/recall trade-off of scale-space for
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old used in our evaluation (l = 7).

cient in removing noise. It is however noteworthy that the
scale-space approach could achieve low error over so diverse
noise-levels with a single parametrization, a lifetime thresh-
old of l = 7. Extremum lifetime is little affected by small
signal perturbations. In fact, to demonstrate the robustness
of our approach to incorrect parametrization, we used the
same threshold (l = 7) in all simulations and experiments.

But how does the lifetime threshold l affect the identifi-
cation accuracy in noisy signals? In Figure 5 we depict five
precision-recall (PR) curves of the same experiment—each
curve corresponding to one SNR. The value of l ranges from
2 to 20. The maximum value of 20 is way larger than re-
quired to identify any of the seven peaks, but it was used
to be exhaustive in our exploration. As usual, a trade-off
exists between being too selective (high l) and not selective
enough (small l): a threshold that achieves high precision
suffers in recall, and vice versa. Nevertheless, we found that
our method improved upon state-of-the-art over all reason-
able parameterizations. The scale-space approach outper-
formed the method by Jeong et al. in precision for all tested
l, and in recall for 2 ≤ l ≤ 10. Note that, setting l > 10
would imply a peak diameter close to 20, which is signifi-
cantly larger than in our experiments.

The effect of sparsity. As shown by Proposition 2, spar-
sity presents a major challenge by introducing false extrema,
i.e., extrema not present in the physical signal. We evalu-
ated the impact of sparsity by progressively decreasing the
transmission radius of nodes (no noise was introduced). This
resulted in increasingly sparser networks with average degree
varying from 5.61 to 14.3. Figure 6 summarizes our results
over 700 runs (7 radii × 10 physical signals × 10 runs).

To begin with, the results confirm that sparsity severely
affects precision. We found that the number of false ex-
trema increases exponentially as the average node degree
decreases. The exponential trend has a devastating effect
on identification accuracy. A case in point is that, for the
smallest transmission radius (leftmost errorbars in the fig-
ure) the unfiltered signal contained ≈ 50 maxima (average)
compared to the seven peaks of the physical signal. Hence,
even in the absence of noise, some filtering is necessary. We
can also see that the scale-space approach achieves a slightly
higher precision than the state-of-the-art, while not signifi-
cantly sacrificing recall. In the absence of noise, the scale-
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Figure 6: Precision/recall median and standard de-
viation for different methods and average node de-
grees. To diminish overlap, we perturbed the hor-
izontal positioning of data-points. The dip in the
scale-space recall (top figure, average degree be-
tween 11 and 12) corresponds to the smallest per-
ceivable error from our experimental setup and is
attributed to experimental variability.

space approach and Jeong’s method trade-off precision for
recall. Given the overwhelming number of false extrema
(false positives) present in sparse graphs, optimizing for pre-
cision is very desirable. To give a sense of perspective, when
the average degree was 8.25 the scale-space approach had
zero false negatives and four false positives, whereas the
method by Jeong et al. had no false negatives but eight
false positives (in median).

It is important to remark the lack of accuracy of the or-
acle filter. If the scale of the oracle filter is hand-picked to
maximize its precision/recall, why does it behave so poorly?
Furthermore, how does the scale-space approach improve
upon it (even slightly)? Sparsity affects a graph filter in
two distinct ways. Whereas in small scales a signal is over-
whelmed by false extrema, in larger scales filtering causes
phantom extrema. This is a challenge that a simple filter
cannot overcome: no single scale depicts the extrema of the
physical signal clearly. On the contrary, the scale-space ap-
proach filters out false extreme at low scales while discarding
phantom extrema at higher scales.

6.2 Experiments
Contrary to common assumption, the connectivity of wire-

less networks is highly irregular. Especially indoors, wire-
less links exhibit high spatial and temporal variability, phe-
nomena which significantly affect peak and pit identification.
To evaluate the accuracy of identification methods in real-
world wireless networks, we implemented scale-space kernels
in Contiki [7] and ran an extensive set of experiments in a
100-node wireless testbed deployed above the ceiling tiles of
our office building. The scale-space computation was built
on top of a simple CSMA MAC protocol with round-level
synchronization (as discussed in Section 3.2, synchrony is
a fundamental requirement of scale-space analysis). Experi-
ments were conducted using 10 synthetic signals over 7 noise
levels (from -5 dB to 25 dB), resulting in 70 distinct runs.
Due to the limited size of our testbed, we inserted in each
synthetic signal three well-separated Gaussian distributions
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Figure 7: Average precision/recall for each noise
level in our testbed. The precision of the oracle fil-
ter is significantly hampered by the poor correlation
of wireless links with the underlying physical space.

with random mean and variance (as compared to seven in
our simulations). The number of distributions a network
can observe is directly related to its size. Intuitively, a node
can observe only peaks that span an area larger than that
of a neighborhood. We found experimentally that, even in
perfect conditions, our testbed could not reliably detect the
peaks of signals with more than three distributions. We
used the extracted data (the signals’ scale-space {ys} and
per-round connectivity) to evaluate and compare the afore-
mentioned methods offline. The number of nodes varied
from 73 to 99, resulting in a network diameter between 9
and 10 hops, and an average degree between 7.17 and 9.5
neighbors. Figure 7 summarizes our results.

We provide three main observations: First, the identi-
fication precision does not significantly increase when the
SNR increases. For the unfiltered signal, at 25 dB the av-
erage precision was only 0.1 higher than at -5 dB. The fact
that the precision was low even at high SNR is due to the
testbed being not only (relatively) sparse, but also differ-
ently connected from the random geometric graphs used in
our simulations. We found that a significant number of false
extrema were caused by graph irregularities, as depicted in
Figure 2(a). Nodes spatially adjacent to a true extremum
were not always in wireless proximity, thus wrongly identi-
fying themselves as extrema. At low SNR, the number of
false positives remained bounded (up to 15), which is not
surprising because the number of false extrema (either max-
ima or minima) is at most equal to the size of the graph’s
maximal independent set. Second, the identification recall
of Jeong’s method was much smaller than in simulations.
We found that the close proximity between peaks, as well as
link asymmetry, caused false negatives. We argue that, by
testing existing methods in a real-world scenario, we were
able to observe behaviors (problems) never observed before.
We therefore suggest that future mechanisms should include
testbed experiments in order to be evaluated in conditions
as diverse as possible. Third, the scale-space approach was
significantly more precise than the oracle filter. Different
from our simulation, the irregular patterns of real wireless
links can cause lots of phantom extrema (cf. Section 5.2).
In fact, phantom extrema can be so severe, that noise effects
pale in comparison. In our experiments, phantom extrema

were abundant at almost all scales, severely hampering the
precision of any (single-scale) graph filter, and thus of the or-
acle filter. In contrast, the scale-space approach was able to
distinguish and discard phantom extrema using the birth cri-
terion. In summary, our testbed experiments demonstrated
that, in real-word conditions, it is essential for a method to
be resilient to phantom and false extrema.

7. CONCLUSIONS
According to scale-space theory, to understand the struc-

tures of a signal, one must observe it at all possible scales.
But can we do so when the signal is defined on an irregu-
lar graph? By identifying the scale-space kernels appropri-
ate for graphs and studying their computation, this paper
in effect extends scale-space theory to graphs. We demon-
strated the value of the scale-space approach by applying it
to the problem of peak and pit identification in sensor net-
works. Beyond peak identification, we believe that principles
of scale-space analysis can be beneficial for other problems
in sensor networks. For instance, the deep structure could
be used to extend current topological methods for signal
mapping and compression to multiple scales [22, 29], thus
making distributed pattern recognition possible. A second
potential application is event-region detection [18]. Tracking
event-boundaries across scale has the potential to improve
the resilience of current algorithms to phantom effects.

Our work takes a step towards the distributed scale-invari-
ant analysis of graph signals. However, it also opens up new
challenges. The first challenge concerns the extension of the
theory to multiple dimensions. The results in this paper
are limited to graph signals with one value at each node
(x ∈ Rn). It is still an open question how the theory can be
applied to higher dimensional graph signals (e.g., x ∈ Rk×n
or Cn). We also found that filtering in graphs can cause
phantom effects and we gave bounds on the induced error.
Yet the process is little understood. For instance how does
this error relate to the properties of the underlying graph?
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APPENDIX
Proposition 2. The expected number of maxima (minima)
X appearing if k out of m edges of a random geometric graph
are deleted at random is E[X] > n (ek/m−e−m/n−ε), where
ε becomes negligibly small when k > m/n.

Proof. The event that a node u becomes an extremum after
deleting k edges is described by an indicator r.v. Xu =
{0, 1}. Xu depends on the number Yu of neighbors v ∼ u
with x(v) ≥ x(u) (correspondingly x(v) ≤ x(u)). Because
u becomes a maximum (minimum) if all edges to neighbors
with larger (smaller) values are deleted, we have that

E[Xu = 1|Yu = y] = P(Xu = 1|Yu = y) =

(
k

y

)(
m

y

)−1

.

Moreover, from independence, the expected number of ap-
pearing maxima (minima) X is

E[X] =
∑
u∈V

E[Xu] = n

k∑
y=1

P(Xu = 1|Yu = y)P(Yu = y).

Since Yu is always smaller than the node degree, we obtain
a lower bound by substituting Yu with the degree r.v. D.
In particular, for a random geometric graph with average
degree m/n,

E[X] > n

k∑
i=1

(
k

i

)(
m

i

)−1
(m/n)ie−m/n

i!

= n (ek/m − e−m/n − ε),

where ε = 1 − Γ(k,m/n)/Γ(k, 0) is negligibly small for k >
m/n and Γ is the incomplete gamma function.

Theorem 2. No 1-st order recursion computes Ks in the
asynchronous model.

Proof. In the most general sense, 1-st order recursions are
given by

y(t+1) = A(t)y(t) +B(t)x and y(0) = x, (6)

where, because {A(t)} and {B(t)} are sequences of 1-local
matrices, nodes only directly communicate with their neigh-
bors. By standard arguments, (6) is stable if, |λmax(A(t))| <
1 for all t. To ensure feasibility in the asynchronous model
we have to additionally impose that no τ exists for which
A(t) = 0n×n or B(t) = 0n×n and for all t > τ . Indeed, if such
τ exists system (6) degenerates to (2), which is synchronous.
The steady state is of the system is

K′x = lim
t→∞

t−1∑
τ=0

Φ(t− 1, t− τ)B(t−τ−1)x, (7)

where Φ(t1, t2) = A(t1)A(t1−1) . . . A(t2) when t1 ≥ t2 and
Φ(t1, t2) = I otherwise.



To deduce that K′ 6= Ks, we will consider the signal infor-
mation each kernel depends on. We will show that, whereas
Ks only considers the signal in an s-hop vicinity around
each node, K′ depends on the entire signal. The two ma-
trices therefore cannot be equal. From Theorem 1, Ks is
exactly s-local. But do matrix sequences {A(t)} and {B(t)}
exist such that K′ is s-local? Being a product of (t1− t2 +1)
1-local matrices, Φ(t1, t2) is (t1− t2 +1)-local. Furthermore,

it is non-zero: if A(k) 6= 0 for every k ∈ [t− τ, t− 1],

‖Φ(t− 1, t− τ)‖ ≥
t−1∏

k=t−τ

σmin(A(k)) > 0,

where σmin is the minimum singular value [20]. Terms Φ(t−
1, t−τ)B(t−τ−1)x thus violate the locality requirement when-
ever t ≥ s+ τ − 2. Thus K′ can only be s-local if the coeffi-
cients of successive terms cancel out, which is impossible as
(from Theorem 1) all coefficients are non-negative.

Corollary 1. If a node us has a locally maximal value at
scale s, but not at scale s+ 1, the gradient ascent path from
us to the new local maximum us+1 can have arbitrary length.

Proof. We construct an example in which us and us+1 are
k hops away. Because of the semi-group axiom, it is suffi-
cient to give an example for s = 0, ys = x and ys+1 = y1.
Let G a line graph and x a signal with strictly monotoni-
cally increasing values ys(ui+1) = ys(ui) +B for all ui ∈ V.
Create a maximum at ui by setting ys(ui) = ys(ui+1) + β
for some small positive β. We will show that for any scale
space kernel, y1(ui−1) < y1(ui) < y1(ui+1) if B > β/3.
The maximum will therefore move until it reaches node un
(k = n − i hops) at the end of the line graph. The value
of a node ui at scale 1 is αlx(ui−1) + αcx(ui) + αrx(ui+1),
where α are kernel dependent positive coefficients for the left
(αl), center (αc), and right (αr) neighbors. Furthermore,
αl = αr as the nodes in a line-graph have no way of dis-
tinguishing between their left and right neighbors. Inequal-
ity y1(ui−1) < y1(ui) holds if: (i) αlx(ui−2) < αrx(ui+1)
and (ii) (αc − αl)x(ui−1) < (αc − αr)x(ui−2). Due to
our construction, both inequalities are satisfied. Following
the same reasoning, inequality y1(ui) < y1(ui+1) holds if
3B = x(ui+2)− x(ui−1) > x(ui)− x(ui+1) = β.

Corollary 2. The absolute value of an extremum always
decreases, |ys(us)| ≥ |ys+1(us+1)|, where us is the node the
extremum resides on at scale s.

Proof. Let us 6= us+1 the nodes over which an unstable
extremum e resides on at scales s and s + 1, respectively.
W.l.o.g., the extremum is a maximum and the claim is that
ys(us) ≥ ys+1(us+1). By Theorem 1, the value of a node
in scale s + 1 is bounded by the maximum value at most
1-hop away from it in scale s (this includes the node it-
self). Thus, the only way that the inequality does not hold
is that there exists node v at most 1-hop away from us+1

with ys(v) > ys(us). This implies that a second extremum
e′ exists near us+1 which is reachable by gradient ascent.
Moreover, e collapses to e′ at s+ 1, a contradiction.

Lemma 3. For any two graphs G = (V, E) and G = (V, E),
signal x ∈ Rn, and scale s ∈ N, es ≤ 1 − λsmin + εs, where
εs = (2ss)/(s + 1)s+1 when s is odd and zero otherwise.
Furthermore, −1 < λmin < 1 is the smallest amongst the
eigenvalues of S and S.

Proof. Denote by λmax(S) and λmin(S) the largest and small-
est eigenvalue of a matrix S. It is well known that for any
symmetric matrix S, λmin(S)x>x ≤ x>Sx ≤ λmax(S)x>x [3].
Furthermore, as S’s spectral radius is smaller or equal to
one, λmax(S) = 1 and −1 < λmin(S) < 1. Combining the
inequalities for matrices S

s
and Ss we have that

λsmin(S)− 1 ≤ x>(S
s − Ss)x
x>x

≤ 1− λsmin(S).

Setting λmin = min(λmin(S), λmin(S)), we get a first upper
bound es ≤ 1− λsmin. When s is odd, 1− λsmin > 1, which is
loose. We can improve upon it using the triangle inequality:

es+1 =

∣∣∣∣∣∣
x>
(
Ss+1− Ss + S

s − Ss+1
+ Ss − Ss

)
x

x>x

∣∣∣∣∣∣
≤
∣∣∣∣x>(Ss+1− Ss)x

x>x

∣∣∣∣+

∣∣∣∣∣x>(S
s+1− Ss)x
x>x

∣∣∣∣∣+ es (8)

Term x>(Ss+1 − Ss)x captures the distance traveled in one
step by each of the two dynamical systems and is∣∣∣∣x>(Ss+1 − Ss)x

x>x

∣∣∣∣ =

∣∣∣∣∣
∑n
k=1

(
λs+1
k − λsk

)
(ψ>k x)2

x>x

∣∣∣∣∣
≤

∣∣∣∣∑n
k=1

((
s
s+1

)s+1

−
(

s
s+1

)s)
(ψ>k x)2

∣∣∣∣
x>x

=
ss

(s+ 1)s+1
. (9)

Above, ψk is the k-th eigenvector of S and, in the second
step, we bounded the convex function λs+1

k − λsk using its
minimum value. Substituting (9) into (8), we obtain the
desired bound.

Lemma 4. For any two graphs G and G, signal x ∈ Rn,
and scale s ∈ N, es+1 ≥ max(0, e∞ − 2λs2) where 0 < λ2 =
min(|λ2(S)|, |λ2(S)|) < 1 is the smallest of the second eigen-
values of matrices S and S.

Proof. We will express Ss−Ss in terms of the e∞. Because
scale-space kernels are marginally stable, e∞ is bounded.
Furthermore, it is easily computable when scale-space ma-
trices S and S are known.

es =

∣∣∣∣∣x>
(
S∞ − S∞ + S

∞ − Ss − S∞ + Ss
)
x

x>x

∣∣∣∣∣
≥ e∞ −

∣∣∣∣x>(S
∞ − Ss)x
x>x

∣∣∣∣− ∣∣∣∣x>(S∞ − Ss)x
x>x

∣∣∣∣ (10)

Note that above we abuse notation and refer to lims→∞ S
s

as S∞. For both the second and third terms in (10) the
following simple upper bound holds:∣∣∣∣x>(S∞ − Ss)x

x>x

∣∣∣∣ =

∣∣∣∣∣
∑n
s=2 λ

s
i (S)(ψ>i x)2

x>x

∣∣∣∣∣ ≤ |λs2(S)| (11)

Substituting (11) into (10), we obtain the lower bound

es ≥ e∞ − λ2(S)s − λ2(S)s ≥ e∞ − 2λs2 (12)

which holds as long as s ≥ log (λ2) e∞. Otherwise, we use
the trivial lower bound es ≥ 0.


