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Abstract—The k-complex contagion model is a social contagion model which describes the diffusion of behaviors in
networks where the successful adoption of a behavior requires influence from multiple contacts. It has been argued that
complex contagions better model behavioral changes such as adoption of new beliefs, fashion trends or expensive
technology innovations. A contagion in this model starts from a set of initially infected seeds and progresses in rounds. In
any round any node with at least k > 1 infected neighbors becomes infected.
Previous work on k-complex contagions was focused on networks with uniform degree distributions. However, many
real-world network topologies have non-uniform degree distribution and evolve over time. We analyze the spreading rate of
a k-complex contagion in a general family of time-evolving networks which includes the preferential attachment (PA) model.
We prove that if the initial seeds are chosen as the k earliest nodes in a network of this family, a k-complex contagion
covers the entire network of n nodes in O(logn) rounds with high probability (w.h.p). We prove that the choice of the
seeds is crucial: in the PA model, even if a much larger number of seeds are chosen uniformly randomly, the contagion
stops prematurely w.h.p. Although the earliest nodes in a PA model are likely to have high degrees, it is actually the
evolutionary graph structure of such models that facilitates fast spreading of complex contagions. The general family of
time-evolving graphs with this property even contains networks without a power law degree distribution.
Finally, we prove that when a k-complex contagion starts from an arbitrary set of initial seeds on a general graph,
determining if the number of infected vertices is above a given threshold is P-complete. Thus, one cannot hope to
categorize all the settings in which k-complex contagions percolate in a graph.

Index Terms—Social Networks, Complex Contagion, The Preferential Attachment Model, Time-Evolving Networks,
Branching Processes, Stochastic Coupling
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1 Introduction
Social behavior is undoubtedly one of the defining

characteristics of us as a species. Social acts are influenced
by the behavior of others while at the same time influencing
them. Understanding the dynamics of influence and model-
ing it in social networks is thus a key step in comprehending
the emergence of new behaviors in societies. Similar to
rumors or viruses, behavior changes manifest contagion
like properties while spreading in a social network. Some
of these contagions are beneficial (e.g., adopting a healthy
lifestyle) or profitable (e.g., viral marketing), while some
others are destructive and undesirable (e.g., teenage smok-
ing or alcohol abuse). To effectively promote desirable
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contagions and discourage undesirable ones, the first step
is to understand how these contagions spread in networks
and what important parameters facilitate fast spreading.

In this paper, we focus on contagions that are com-
plex [1], contagions that require social reaffirmation from
multiple neighbors, as opposed to simple ones, which can
spread through a single contact, e.g., viruses or rumors. It
has been argued in sociology literature that when agents’
actions and behavioral changes are involved, complex con-
tagions represent most of the realistic settings – making
an important distinction between the acquisition of infor-
mation and the decision to act on the information. While
it takes only a single tie for people to hear about a new
belief or fashion, “it is when they see people they know
getting involved, that they become most susceptible to
recruitment”, Centola and Macy [1]. Many examples of
complex contagions have been reported in social studies,
e.g., buying pricey new technologies, decision to migrate,
etc. [2], [3]. Studies of online social networks have also con-
firmed complex contagions. A study on Facebook showed
that having two or more friends already on Facebook who
are not connected to each other substantially increases the
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likelihood of joining Facebook [4]. A study on Twitter
showed a similar phenomenon, that repeated exposures to a
topic plays an important role in the diffusion of hashtags [5].

Simple contagions have been extensively studied [6].
Simple contagions can spread fast in social networks be-
cause these networks typically have the small world prop-
erty. In contrast, fast spreading of complex contagions
appears to be much more delicate and difficult. Previous
studies [1], [7], [8] show that for a number of small world
models, in which simple contagions are super fast, complex
contagions are exponentially slower. These results use a
simple yet elegant model called the k-complex contagion
– starting from a set of initially infected seeds, any node
with at least k infected neighbors gets infected (k = Θ(1)).
Remarkably, these results are the only known rigorous anal-
yses on complex contagions, despite the crucial importance
of them in modeling a wide range of social behaviors.
The difficulty of formal analysis arises in two aspects.
First, the required multiple infections means that subsequent
exposures do not always have diminishing returns which
turns out to be mathematically challenging. For example, it
violates submodularity and subadditivity, on which many
analyses depend. Second, the superadditive character of
complex contagions means that they are integrally related to
community structure, as they spread better in dense regions
of a network [3]. Indeed, the analysis in small world models
shows that the social network structure is crucial in enabling
successful complex contagions [7], [8].

In this paper we provide the first rigorous study of
how complex contagions spread in time-evolving graphs. A
particularly interesting case of this family is the preferential
attachment (PA) model with power law degree distribution.
None of the models we studied in [7], [8] had power
law degree distribution, which limits how the mathematical
results can be used to understand contagions in the real
world. Our results in this paper fill this gap.

In a graph with power law degree distribution, the
number of nodes with degree d is proportional to 1/dγ ,
where γ = Θ(1) > 0. One of the most studied generative
models with a power law degree distribution is the PA
model. Price in [9] attributed the appearance of power
law degree distributions to the mechanism of “cumulative
advantage”, known as preferential attachment, phrased by
Barabasi et al. [10]. The PA model considers an evolving
network in which newcomers link to nodes already in the
network. In general, a new node chooses its neighbor using
the preferential attachment rule with probability p ∈ [0, 1]
and choose a neighbor uniformly randomly with probability
1 − p. Under the preferential attachment rule, a potential
neighbor node is selected with a probability proportional to
its current degree. Thus, as the network evolves, high degree
nodes have an advantage in attracting even more links.

In a time-evolving network with a power-law distribu-
tion, not all the nodes are homogeneous. This mirrors reality
in that people may be different in how connected they are,
and hence have different positions in a social network. A

number of previous works acknowledge such differences
and compute the ‘network’ value of a user, e.g., the expected
profit from sales to the customers who may influence others,
and so on [11]. This heterogeneity allows us to study the
effect of selecting the initial seeds, an aspect of complex
contagions not examined in previous theoretical work.

Our results. The main result of this paper is to show that
complex contagions spreads in polylogarithmic number of
rounds in a general family of time-evolving networks that
includes the preferential attachment models [12], [10], [13].
We prove that if the initial seeds are the k oldest nodes in
a network of this family, a k-complex contagion covers the
entire network of n nodes in O(log n) steps.

For the PA model, when the probability of creating
edges using the preferential attachment rule, p, is in [0, 1)
(ref. to Def. 1) we conjecture that the diameter is Θ(log n)
with high probability, and so our result is tight up to a con-
stant factor1. This means that, if the initial seeds are properly
chosen, the speed of simple and complex contagions differ
only by a constant factor. When p = 1, it is known [16],
[15] that the diameter is Θ(log n/ log log n), and so in this
setting complex contagions are at most a log log n factor
slower than simple contagions.

We also show that the choice of the initial seeds is
crucial: there exists a polynomial threshold f(n) such that
if o(f(n)) initial seeds are chosen uniformly at random in
the PA model, the contagion almost surely does not spread.
This is in stark contrast to the case were we only need to
infect the k–a constant–oldest nodes. Second, we show that
if Ω(f(n) log n) initial seeds are randomly infected, then,
with high probability, the k oldest nodes become infected
and by the above results, the whole graph gets infected in
O(log n) rounds. This signifies not only the importance
of the choice of initial seeds, but also the delicacy of the
diffusion in a complex contagion.

The oldest nodes in a PA model are likely to have
high degrees. However, we remark that it is actually not
the power law degree distribution per se that facilitates the
spread of complex contagions, but rather the evolutionary
graph structure of such models. Indeed, the time-evolving
family also includes heavily concentrated degree distribu-
tions with the largest degree being only O(log n), e.g. the
PA model with p = 0.

While one might hope to categorize all the settings in
which complex contagions spread, we show that this is
unlikely. We prove that given a graph, a list of initially
infected nodes, and a threshold, it is P-complete to decide if
the number of infected nodes surpasses the threshold or not.

1. Dommers et al. [14] show that, if the exponent of the power-law
distribution is ≥ 3, then the PA model has a diameter of Θ(logn).
Berger et al. [15] prove that if p ∈ [0, 1) in Def. 1, then the exponent
of the power-law distribution is ≥ 3. However, while Berger et al. use
the same PA model as Def. 1, the model in Dommers et al. is slightly
different. It is beyond the scope of this paper to extend the results of
Dommers et al. to this setting, but we know of no barriers to doing so.
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Thus, in some sense, the best one can do (in the worst-case)
is to simulate the contagion.

The main thrust of this paper is theoretical but we
believe that the analysis is fundamental in how we under-
stand contagions in the real world. A contagion in reality
may involve a lot of factors that are not captured by our
model: the variations in personal influence, tie strength, and
resistance to social influence, to name a few. Characterizing
these factors under a specific contagion scenario using real
data sets is an research direction that we are working on
simultaneously but is beyond the scope of this paper.
Organization of this paper. In Section 2, we explore some
of the related work. Section 3 provides formal definitions
and models. We prove our main result on the polylogarith-
mic speed of k-complex contagions in Sections 5, 6, 7 and 8.
However, we first provide an overview of the challenges and
techniques for this result in Section 4. Section 9 provides
simulation results that match the polylogarithmic speed
bound that we prove theoretically. Section 10 addresses the
random choice of initial seeds for a k-complex contagion
in the PA graph. In Section 11 we present a theorem
showing that computing the extent of k-complex contagions
in general graphs is P-complete.

2 Related Work
Diffusion of information/viruses has been an active research
topic in different areas of science. For a full review, please
refer to [7]. We describe the most relevant results here.

Our model of complex contagions belongs to the general
family of threshold models in the study of diffusions. In the
threshold model, each node has a threshold on the number
of infected neighbors needed to become infected [17] – in
a k-complex contagion, all nodes have the same threshold
k. The threshold model is motivated by coordination games
in which a user benefits from adopting the same behavior
as her neighbors, which tend to have threshold strategies
in equilibrium. Most studies focus on the stable states, and
structural properties that prevent complete adoption of the
advanced technology or the better behaviors [18]. Montanari
et al. [19] is one of the few that relate the steady state
convergence speed of the game to the network structure.

Diffusion of simple contagions in PA models has been
extensively studied [15], [20], [21]. On the empirical side,
there are many studies of diffusion in networks [22], [5].
Most of the studies related to ours examine influence on
Twitter. Bakshy et al. [23] observed that users who have
been influential in the past and have a large in-degree would
generate the largest cascades.

When the initial seeds are chosen uniformly randomly,
the diffusion is termed as the bootstrap percolation [24],
[25]. Previous work on bootstrap percolation have examined
the Erdos-Renyi graph [26], the random regular graph [27],
the configuration model [28] with power-law exponent
γ > 3, and the Chung-Lu model with power-law exponent
2 < γ < 3 [29]. In all these results, when the graphs
have constant average degree (similar to our setting), when

the size of initial seed set is sublinear, the process will not
cover a significant part of the graph. Coja-Oghlan et al.
in [30] studied the problem of finding a “contagious set”,
a set whose infection would lead to the infection of the
entire graph, in d-regular expander graphs in the bootstrap
percolation setting. Under different expansion assumptions,
they give upperbounds on the size of contagious sets in the
2-complex contagion diffusion model.

3 Preliminaries
Preferential Attachment Model: There are different
definitions of the preferential attachment model, in which
the difference lies in the subtle ways that the edges are
created. We first explain the independent model [12].
Definition 1. We define the independent preferential at-
tachment model, PAp,m(n): We start with a complete
graph on m + 1 nodes. At each subsequent time step
t = m + 2, · · · , n a node v arrives and adds m edges
to the existing vertices in the network. Denote the graph
containing the first n − 1 nodes as Gn−1. For each new
vertex, we choose w1, w2, · · · , wm vertices, possibly with
repetitions from the existing vertices in the graph. Specif-
ically, nodes w1, w2, · · · , wm are chosen independently
of each other conditioned on the past. For each i, with
probability p (0 ≤ p ≤ 1), wi is selected from the set
of vertices of Gn−1 with probability proportional to the
vertices’ degree in Gn−1; and with probability 1− p, wi is
selected uniformly at random. Then we draw edges between
the new vertex and the wi’s. Repeated wi’s cause multiple
edges. Note that

∑
v∈V (Gn)

deg(v) = 2mn.
There are two other variations of the PA model. In the

conditional model [13], a new edge is chosen conditioned
on it being different from the other edges already built; in
the sequential model [31], the m edges of the new node v
are built sequentially such that the i-th edge of v is chosen
preferentially assuming the previous i − 1 edges of v have
been included in the graph and their degrees are counted.
In the following we mainly focus our discussion on the
sequential PA model. Our analyses will also apply to the
other two variations with slight modifications.
k-complex contagion: We define a k-complex contagion
process in an undirected graph, where k = O(1). We
assume that we are given a graph G, which might have
been generated by an evolving process. But in the contagion
process, the topology of G is fixed.
Definition 2. Given a graph G, a k-complex contagion
CC(G, k, I) is a contagion that initially infects vertices of
I , initial seeds, and spreads over graph G. The contagion
proceeds in rounds. At each round, each vertex with at least
k infected neighbors becomes infected. The vertices of I
are infected in round 0. We are interested in the minimum
number of rounds for all the nodes to be infected.

4 Challenges and Proof Overview
We prove that when initial seeds are chosen as the oldest k
nodes, k-complex contagions in a family of time-evolving
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networks infect every node in O(log n) rounds. This family
includes all the variants of the PA graph. We provide a proof
overview before diving into the technical details.

Let D be a graph created according to the PA model
(Def. 1). First, let us sketch a proof for k = 1, i.e. that with
high probability D has diameter O(log n). Then we show
where the analogous proof runs into trouble for k > 1.
This will motivate the machinery that we develop. Label
the vertices 1, 2, 3, . . . according to their arrival order. We
sketch a proof that the distance from an arbitrary node v to
vertex 1 is O(log n) w.h.p. and the result follows from a
union bound. Consider the following procedure: a) Start at
v; b) Follow the edge out of v whose end point, u has the
lowest label; c) If the label of u is 1, stop. Otherwise, repeat
the procedure for node u. We claim that this procedure ends
in O(log n) steps w.h.p. Consider that at some point, the
process is at vertex u. Consider the induced subgraph on the
vertices {1, 2, . . . , u}. If we have no prior knowledge, then
it is easy to show that the lowest labelled neighbor of u will
be, in expectation, at most αu for some α < 1. The result
follows from standard concentration arguments. However,
the process has knowledge of the graph when a vertex u is
processed. Namely, it knows the neighbors of all the vertices
it has previously processed! Fortunately, it is not too hard
to show that if all these endpoints have indices greater than
u, then the marginal distribution of edges on the induced
subgraph of vertices {1, 2, . . . , u} remains unchanged.

Things go awry when we let k = 2. First, we need better
concentration to be able to handle many nodes at the same
time. With k = 1, if we get unlucky and the first few steps
did not move backward much from v, we are still doing at
least as well as when we started. However, when k = 2 and
the first ` steps did not move backward much, we have 2`

vertices to process which is a problem when ` = Ω(1).
One solution is to partition the graph into stages. Let

stage 0 contain the first k vertices, while stage i contains
the vertices labeled between k(1 + ε)i−1 and k(1 + ε)i.
Thus, each stage will have a (1 + ε) fraction more vertices
than the last. The probability that a vertex in stage i does
not connect to k vertices in previous stages can be upper
bounded by a constant that depends on k and ε and thus can
be made arbitrarily small. We can show that it takes at most
an (expected) constant number of steps to get from one stage
to the previous stages. While this is sufficient for the proof
to work when k = 1, it is not enough when k ≥ 2. The
reason is that only knowing the expectation does not give
a tight enough bound when we process many vertices. We
need to bound the maximum rather than just the average.

To solve this problem, we model the above process
as a labeled branching process, introduced in Section 5.
A branching process is a Markov process modeling a
population where individuals in generation i produce some
number of individuals in generation i + 1 according to a
probability distribution. In a labeled branching process,
each individual has a label, and the probability distribution
of producing an offspring is dependent on the labels of the

parent/offspring. We intend to couple the random process
that creates D with a labeled branching process B. The
labels in B are proxies of the stages of nodes in D. After
the coupling, the height of D is bounded by the extinction
time of B. We use a potential function argument to study
the extinction time of the labeled branching process. We
show that with high probability, the population becomes
extinct in O(log n) generations. The coupling argument
must make correspondence between the nodes/edges in D
and nodes/branches in B and thus relies on showing that
the marginal probabilities of creating edges in B and in D
match. The edges of D are created in the arrival order of
a PA graph (Def. 1). However, B reveals nodes/edges from
last to first. That is, the root branches (edges) are the first
edges to be revealed in a branching process and the root
corresponds to the node labeled n. Therefore, the coupling
argument should follow a revealing process that processes
nodes in the reverse arrival order of the PA graph.

Unfortunately, at this point, more subtle problems arise.
As k is increased to 2, new dependencies appear. Say we are
processing the 100-th arriving node, which has neighbors
with arriving orders 33 and 50. Then when we go to process
node 50, we have information about node 33, namely that it
connects to node 100. In general, we are processing a node
u, but the process has already revealed many outgoing edges
from nodes {w}w>u to a node ss<u, then the outgoing
edges of u are more likely to be connected to s in the PA
graph conditioned on the information revealed so far. In
contrast, in the arrival order of the PA graph, at the time u
created its edges, s might not have had a high degree and
thus the edges of u would not be likely to be connected
to s. This ruins the above approach. To rectify things, we
need to be careful about the order in which the edges are
revealed. Instead of revealing the neighbors of a particular
vertex we query if individual edges (e.g. (u, v)) exist in the
graph. By the end, we have queried all the edges, but we
do so in a carefully chosen order. We do not “process v”
any more. Instead this ordering processes two edge points
at a time. However, when we process an edge (u, v) we
are able to relate the probability that this edge exists to a
probability that it is created in a more natural revelation
ordering (similar to the definition of PA).

We formally define a revealing process that generates a
graph according to an arbitrary ordering of edges (Sec. 6).
We also describe the above staging schema for such re-
vealing processes, which we call the staging property. In
Section 7, we show that under a specific ordering of edges,
backward-forward (BF) ordering, revealing processes with
staging property can be coupled with a labeled branching
processB. In Section 8, we show that under the BF ordering
there exists a revealing process with staging property for
the PA graph. Using the results of Sections 5, 6, 7, 8,
we can overcome the aforementioned proof difficulties and
upperbound the speed of k-complex contagions starting
from the first arriving nodes as initial seeds.
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5 Labeled Branching Processes
In this section, we describe one of our main tools in ana-
lyzing the speed of complex contagions on time-evolving
graphs. We define a labeled branching process and analyze
its extinction time.

Definition 3. For constants m and 0 < α ≤ 1, we
call a branching process aB(m,x, α)-labeled branching
process, if

1) It starts with one node (root) labeled x at depth 0
(where x is a positive integer);

2) at each subsequent depth, every i-labeled node (where
i 6= 0) produces m children. Each child has label i−1
with probability α and label i with probability 1− α;

3) 0-labeled nodes produce no children.

The following lemma bounds the extinction time of a
labeled branching process by O(log n), when there are x =
O(log n) labels and α is a constant satisfying α > 1−1/m.

Lemma 1. If α > 1−1/m, and x = c1 log n for a constant
c1, then the probability that B(m,x, α) has not died out
after depth t = c2 log(n) is at most n−(c3+1), where c3 is
a constant, c2 = (c3 + 1 + c1/ logmd(e))/ log(1/δ), d =
mα/(1−m(1−α)), and δ = m(1−α)+1/m−(1−α).

Proof: We refer to a node as an (i − 1)-labeled
origin if it is (i−1)-labeled but its parents are not. Let d be
the expected number of (i − 1)-labeled origin descendants
of an i-labeled node v. First note that d does not depend
on i. Clearly, any (i− 1)-labeled children of v are (i− 1)-
labeled origins, and any i-labeled children of v will produce
in expectation d descendants that are (i−1)-labeled origins.
This gives us the equation that d = mα + m(1 − α)d.
Assuming that α > 1− 1/m, we can solve d = mα/(1−
m(1−α)). Then by independence, the expected number of
0-labeled leaves of the root of the branching process is dx.

We define a potential function φ(t) on the branching
process B at time t. Let Nt(j) be the number of j-labeled
nodes of B at depth t. Note that N0(x) = 1, and N0(j) =
0 for 0 ≤ j ≤ x− 1. Let

φ(t) =
x∑
j=1

Nt(j)(md)j .

We can verify that φ(0) is a polynomial in n, because
φ(0) = (md)x = (md)c1 logn = nc1/ logmd(e).

Next, we show that this potential function decreases ex-
ponentially with the time. Let Ft = σ(Nt(0), . . . ,Nt(x))
be the sigma algebra generated by the random variables
{Nt(0), . . . ,Nt(x)}.
Claim 2. E[φ(t + 1)|F(t)] ≤ δφ(t), where δ = m(1 −
α) + 1/m− (1− α).

Proof: At level t, a node v of label i contributes
(md)i to φ(t) for depth t. Node v’s contribution to φ(t+1)
at depth t + 1 is at most m(α(md)i−1 + (1 − α)(md)i)
in expectation. We factor (md)i out, insert the value for d
from above and simplify to get δ. Notice that as long as
α > 1− 1/m we have that δ < 1.

We prove by induction that E[φ(t)] < δtφ(0).
Base case t = 1. F(0) is the trivial sigma-algebra so we
drop it in our notation. E[φ(1)] ≤ δφ(0).
Inductive case. Assume that E[φ(z)] ≤ δzφ(0). We have

E[φ(z + 1)] = E[E[φ(z + 1)|Fz]]
≤ E[δφ(z)] by Claim 2,

≤ δz+1φ(0) by induction hypothesis.
Let c2 = (c3 + 1 + c1/ logmd(e))/ log(1/δ). Then

E[φ(c2 log n)] = δc2 lognφ(0) < n−(c3+1). If a node
at time t = c2 log n existed it would contribute at least
(md)1 ≥ 1 to φ. Thus, by Markov’s inequality, we con-
clude that the probability that there are any nodes on the
level t is at most n−(c3+1).

Our notion of labeled branching process is closely
related to the notion of multitype Galton-Watson branching
processes in the Markov process literature [32]. Although
the extinction time of multitype processes have been studied
before [32], this literature has not explored the extinction
time when the number of types in the process is not
a constant. In our setting however, the number of types
(labels) is Ω(1) and Lemma 1 can be generalized to any
number of labels bigger than log n with slight modification.
In this sense, Lemma 1 might be useful in its own right in
multitype Galton-Watson branching processes theory.

6 Revealing Processes and the Stag-
ing Property
In this section we first define the notion of a revealing pro-
cess. A revealing process takes a graph generation process
over time and changes the order in which the random edges
of the graph are revealed/created. We then introduce the no-
tion of revealing processes that possess a staging property.
A graph that is generated by a revealing process with staging
property can be divided into a number of ordered stages
such that the probability that an outgoing edge of a vertex
from stage i does NOT land in preceding stages is bounded.
Under some specific ordering of edges, revealing processes
with staging property bear similarities to the notion of the
labeled branching process that we analyzed in Sec. 5. We
use this similarity and couple the two random processes. We
finally introduce the aforementioned specific ordering on all
the possible edge incidences, which we call the backward-
forward ordering. Let G be a distribution of graphs that is
defined by a graph generation process over time.

Definition 4. We will say that distribution Gm-generates a
graph over time if: i) The process G starts with a complete
graph on m+ 1 nodes at time 0. At each time step at most
one vertex arrives. The i-th arriving node is labeled index i.
ii) Each arriving vertex v has at least m edges to previously
added vertices2. For each edge v → u, u < v.

While the edges of a graphH generated by G are created
in a specific ordering, it is possible to reveal the edges of
H in other arbitrary orderings. We rigorously define such

2. These edges are possibly generated in a randomized way.
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a revealing process through a filtration process with an
adapted probability measure.

Definition 5. Let n be the size of the graph to be genrated.
Let u < v ∈ [n] and j ∈ [m]. Each triple (u, v, j) is called
an edge incidence triple.

An edge incidence triple (u, v, j) corresponds to the j-
th edge that could be (potentially) issued by node v linking
to u in the (randomly) generated graph. Let T be the number
of edge incidence triples in an m-generated graph of size n.

Definition 6. A total ordering O on the edge incidence
triples is a function O : N → N3 such that there is
a natural bijection between O([T ]) and the set of edge
incident triples. We treat O as being 0-indexed.

Definition 7. We define a revealing process through a
family of σ-algebras (filtration).

1) Let Ω ={(u, v, j)|(u, v, j) is an edge incidence triple}
be the set of all possible outcomes and
FO,0 = {∅,Ω} be the trivial σ-algebra. For
each i, let event EO,i to be the yes/no answer to the
outcome O[i].

2) For each i ∈ [T ], we take FO,i to be the natural
filtration: FO,i = σ(EO,0, . . . , EO,i−1). Since
FO,i ⊆ FO,i+1, (Ω,FO,t) forms a filtration.

3) Let {QO,t} be a family of probability measures
adapted to the filtration (Ω,FO,t), meaning QO,i is
a probability measure with respect to FO,i for each i.

Then, (Ω,FO,t, QO,t) is a revealing process which gener-
ates a graph G with n vertices.

From Def. 7 a revealing process is also a graph gen-
eration process, but a process where the size of the graph,
the arriving order of the nodes and their labels is already
determined from the beginning (Def. 4). We intentionally
call it a revealing process because we are interested in
defining {QO,t} such that (Ω,FO,t, QO,t) is compatible
with some distribution of graphs G, that is, it generates
graphs with the same probability distribution as G.

Definition 8. Let G be a graph generated by a reveal-
ing process (Ω,FO,t, QO,t). We say that (Ω,FO,t, QO,t)
has the (r,m,α)-staging property if there exists an
ordering on the vertices of G and an ordered partition
S0, S1, . . . , Sr of the nodes into r + 1 stages (the nodes
in stage i are ordered before those of i+ 1) such that:

i) |S0| < log(n);
ii) Each vertex hasm edges to nodes prior in the ordering;

iii) Assume that node v is in stage i. Let W be the set
of nodes in stage i that precede v (they have smaller
indices). LetRO,(W,v,j) be the probability of the jth
outgoing edge of v landing in the set W , i.e.:

RO,(W,v,j) =
∑
u∈W

QO,h(EO,h)

where h = O−1[(u, v, j)].

Then it must be that RO,(W,v,j) ≤ 1− α.
A graph G generated by (Ω,FO,t, PO,t) with staging
property is said to be (r,m,α)-staged.

The backward-forward ordering sorts the incidence
triples by the decreasing order of the edge-receiving
vertices, and for nodes with the same landing vertices
sorts them by the increasing order of the edge-issuing
vertices. We are interested in the BF ordering, because
(Ω,FBF,t, QBF,t) with (r,m, α)-staging property have
similar stochastic characteristics to B(m, r, α)-labeled
branching processes.

Definition 9. A backward-forward (BF) ordering on triples
is as follows: (u1, v1, j1) < (u2, v2, j2) if a) u1 > u2 or;
b) if u1 = u2, and v1 < v2 or; c) if u1 = u2, v1 = v2,
and j1 < j2.

7 Speed of Complex Contagions in
Staged Graphs Generated by a BF-
ordered Revealing Process
In this section, we use the similarities between a
(Ω,FBF,t, QBF,t) with (r,m, α)-staging property and a
B(m, r, α)-labeled branching process to form a coupling
argument between them. Such a coupling allows us to apply
Lem. 1 and bound the length of the longest path from a node
u to node 1 in a graph generated by the former process by
the depth of a corresponding labeled branching process. We
additionally show that the speed of k-complex contagions
in an m-generated network starting with the oldest nodes as
the initial seeds is bounded by the length of the longest path
to the initial seeds in a graph.

Let G be a graph generated by a revealing process
(Ω,FBF,t, QBF,t) with (O(log n), k, α)-staging property
(where α > 1 − 1/k). The following theorem states that
starting from the oldest nodes, a k-complex contagion on G
has polylogarithmic speed with high probability. It is note-
worthy to observe that the same scenario also happens for
k-complex contagions on graphs generated by a revealing
process (Ω,FBF,t, QBF,t) with (O(log n),m, α)-staging
property wherem ≥ k. We assume both k,m are constants.

Theorem 3. Let G be a graph generated by a revealing
process (Ω,FBF,t, QBF,t) with (x, k, α)-staging property
where α > 1−1/k, and x = O(log n). Let I be the set of k
first arrived vertices in G according to Def. 4. A k-complex
contagion CC(G, k, I) will infect the entire graph with
probability 1−1/nc3 in less than c2 log n number of rounds
where c2 = (c3 + 1 + x/(log n logkd(e)))/ log(1/δ) + 1,
d = kα/(1−k(1−α)), and δ = k(1−α)+1/k−(1−α).

Proof: Consider a directed subgraph of G, in which
we only keep the k edges from each vertex pointing to the
smaller labeled vertices. We say u follows v if there is a
directed edge from u to v. Node u becomes infected in the
next round if it follows k infected neighbors. By removing
extra edges and making the propagation directed we only
make the contagion spread slower. Thus, we get an upper
bound on the speed.

We prove by induction that the time it takes to infect
a vertex v is no greater than the length of the longest path
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from v to the vertices in I in this directed graph. The first k
vertices have longest paths of length 0 to I and are infected
at time 0. Assume the hypothesis for nodes with path length
`. Let `+1 be the length of the longest path from a vertex u
to I . Then the k out-neighbors of u have paths of length at
most ` to the first k vertices. By induction, they are infected
at time `, and so is u at time `+ 1.

Pick an arbitrary node u. We will show that u is infected
in timeO(log n) with probability 1−1/nc3+1. Then taking
a union bound on all nodes, we will have our result. Note
that if u is in stage 0, then it will be infected in time log n
because stage 0 has only log n nodes and the path back
to the original k vertices makes progress at each step, and
thus takes time at most log n. Next, we let u be in stage
i > 0. We will bound the time t it takes all paths starting
at u to get back to stage 0, and this will bound the time to
infect u by t + log(n). Next, we only need to show that
t ≤ (c2 − 1) log n with probability at least 1− n−(c3+1).

Coupling the longest path with the branching process.
We will create a coupling so that the longest path from u
to stage 0 is bounded by the time it takes an appropriate
labeled branching process to terminate. Let B(y) denote a
B(k, i, α)-labeled branching process rooted at node y (ref.
to Def. 3). We consider the branching process B(û) that is
rooted at node û labeled i. Node û corresponds to the node
u inG and because u is in stage i, û is also labeled i. We use
the same letter to show correspondence between the branch-
ing process and the graph nodes, while node letters in B(u)
will carry the ˆ hat. G is generated by (Ω,FBF,t, QBF,t),
which means that the random choices corresponding to edge
incidence triples are revealed according to the BF ordering.

We couple the j-th branch of û to the j-th neighbor of
u in G. If the j-th neighbor of u is NOT in stage i, then we
couple this to the j-th branch of û so that its label is i− 1.
This coupling is truthful to the marginal probabilities:

a) The probability that the j-th edge of u is in stage i,
RBF,(W,v,j), is at most 1 − α according to the staging
property (Def. 8);

b) and the probability that û has a branch of label i is 1−α.

Consider a fixed node v in G; we explain how we find
the corresponding node v̂ in the branching process. We
wait until all the oriented edge triples (v, w, k) have been
revealed by (Ω,FBF,t, QBF,t). When all these triples have
been revealed, we know if v has:

1) No corresponding parent in the branching process tree;
2) Exactly one corresponding parent p̂ in the branching

process tree;
3) More than one parent in the branching process tree.

We treat these cases as follows:

1) We don’t couple the probabilities;
2) We correspond the child of p̂ with v and name it v̂. We

couple the events as we described above;
3) We know which parent is deeper in branching process,

we couple with this branch and ignore the rest.

The detailed coupling procedure maintains the invariant that
the label of v̂ is always ≥ the stage of the corresponding
node v in G. Lemma 1 states that the B(k, x, ε)-labeled
branching process B(û) dies out after (c2 − 1) log n levels
with probability at least 1 − n(−c3+1). Hence, the length
of the longest path from u to initial nodes is also ≤ (c2 −
1) log n with probability at least 1− n−(c3+1).

8 Staging Property in PA Graphs
In this section, we first show that there exists a family
of probability measures {PBF,t} adapted to the filtra-
tion process (Ω,FBF,t) such that the revealing process
(Ω,FBF,t, PBF,t) is compatible with the sequential pref-
erential attachment model, PAp,m(n), which means that
(Ω,FBF,t, PBF,t) generates graphs with the same proba-
bility distribution as PAp,m(n). As a stand-alone result, this
lemma states that by knowing the size of the network, it is
possible to generate a PA graph backwards. We then prove
that (Ω,FBF,t, PBF,t) satisfies a (log n,m, 2/3)-staging
property. By combining these two results with Theorem 3,
we get that a k-complex contagion with initial seeds as
the oldest nodes in the PAp,m(n) infects all the nodes in
O(log n) rounds with high probability.

The Arrival-Time (AT) ordering on edge incidence
triples is a sequential ordering of all possible edges that
corresponds to the order that they are built in the graph
generation process G. That is, a node that arrives earlier
will have its edges placed earlier. For the edges placed by
the same node v, we sort them according to the inverse
arriving order of their tails.

Definition 10. An arrival-time (AT) ordering on triples is
as follows: (u1, v1, j1) < (u2, v2, j2) if a) v1 < v2 or;
b) if v1 = v2 and j1 < j2 or; c) if v1 = v2 and j1 = j2
and u1 > u2.

Before defining the aforementioned family of probabil-
ity measures {PBF,t}, we give a set of useful definitions.

Definition 11. Let O[i] = (u, v, j). For each u ∈ [n]:

• revO,i(v, j) = {w|{w} ∈ FO,i and ∃ x,w =
(x, v, j)} as the set of edge incidence triple outcomes
corresponding to the j-th outgoing edge of node v that
the filtration (Ω,FO,t) has revealed thus far.

• examO,i(v, j) = {x |{w} ∈ FO,i and w =
(x, v, j)} as the set of vertices we have examined
thus far to determine the receiving end of the j-th
outgoing edge of vertex v.

• Let 1EO,i(w) be the indicator function for an outcome
w ∈ Ω, i.e.:

1EO,i(w) =

{
1 if w ∈ EO,i
0 if w /∈ EO,i

Since each event EO,i is concerned with exactly one
outcome in Ω, we can drop the (w) from our notation
and use 1EO,i

.
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• We define the in-degree of a node in FO,i based on the
edges originated from a range of vertices [x1, x2] as

idegO,i(u, [x1, x2]) =
∑

0≤r≤i, ∃ y,z s.t.O[r]=(u,y,z), x1≤y≤x2, 0≤z≤m

1EO,r

We define a family of probability measures {PO,t}
adapted to the filtration (Ω,FO,t) that mimics the preferen-
tial attachment rule (Def. 1)3. However, this does NOT guar-
antee that (Ω,FO,t, PO,t) is compatible with PAp,m(n)
for an arbitrary ordering.
Definition 12. Let O[i] = (u, v, j). The probability mea-
sure PO,i is as follows.

1) If
∑i

t=0

∑
∀x, w=(x,v,j) 1EO,t

(w) > 0 then the j-th
outgoing edge of v has already been created and thus

PO,i(EO,i) = 0,

2) Otherwise, the edge (u, v, j) is created preferentially
with probability qO,i(u, v, j) and uniformly with proba-
bility 1− qO,i(u, v, j).

PO,i(EO,i) = qO,i(u, v, j)
m+ idegO,i(u, [u, v])

2m(v − 1) + 2(j − 1)

+
(1− qO,i(u, v, j))

v − 1− |examO,i(v, j)|

We define qO,i(u, v, j) to be an updated version of p
in Def. 1 using Bayes’ rule. This is necessary because the
probability that the edge (u, v, j) is chosen preferentially
changes based on the information in FO,i that the jth edge
of v was not in revO,i(v, j).

qO,i(u, v, j) =
psO,i(u, v, j)

psO,i(u, v, j) + (1− p) v−1−|examO,i(v,j)|
v−1

sO,i(u, v, j) = 1−
∑

x∈examO,i(v,j)

m+ idegO,i(x, [x, v])

2m(v − 1) + 2(j − 1)

Note that the above family of probability measures is
only preferential in a pseudo post-hoc sense in that it
assumes that the total sum of degrees of nodes before v
excluding the out-going edges of v is m(v− 1) at all times
during the filtration. Also, note that a graph G generated
by (Ω,FAT,t, PAT,t) is a sequential PA graph, PAp,m(n).
We now argue that (Ω,FBF,t, PBF,t) is compatible with
(Ω,FAT,t, PAT,t).
Lemma 4. Fix any m-generated graph H of size n. Let
PAT (H) and PBF (H) denote the probability that H
is generated by (Ω,FAT,t, PAT,t) and (Ω,FBF,t, PBF,t)
respectively. Then PAT (H) = PBF (H).

Proof: We can write the generation probability of
H as the conjunction of the edge incidences (occurring/not
occurring). There is a unique set of fixed edge incidence
events EAT,0, EAT,1, . . . , EAT,T that exactly correspond to
the occurrence of the graph H4. Recall that FAT,i is the set
of events {EAT,0, EAT,1, . . . , EAT,i−1}. So, we have
PAT (H) = PAT,0(EAT,0|FAT,0)× . . . PAT,T (EAT,T |FAT,T ).

(1)

3. This means that PO,i is a probability measure with respect to
FO,i for each i.

4. T is the total number of edge incidence triples

PBF (H) is also concerned with the same unique set
of edge incidence events albeit in a different order
BF [0], BF [1], . . . , BF [T ]:
PBF (H) = PBF,0(EBF,0|FBF,0)× . . . PBF,T (EBF,T |FBF,T ).

(2)
We prove by induction on the index of the BF ordering that

if AT [i1] = BF [i2] = (u, v, j), then
PBF,i2(EBF,i2 |FBF,i2) = PAT,i1(EAT,i1 |FAT,i1)5. (3)

The claim of the lemma will follow as PBF (H) and
PAT (H) will be the multiplication of equal probabilities
in Equations 1 and 2.

We first prove examAT,i1(v, j) = examBF,i2(v, j).
examAT,i1(v, j) = {u+ 1, u+ 2, . . . , v − 1} By Def. 10
examBF,i2(v, j) = {u+ 1, u+ 2, . . . , v − 1} By Def. 9

⇒ examAT,i1(v, j) = examBF,i2(v, j)

Base Case: i2 = 0. We consider the first edge incidence
triple revealed in the BF ordering, BF [0] = (n − 1, n, 1).
Since examBF,0(n, 1) = ∅, and idegBF,1(n − 1, [n −
1, n]) = 0 we have that:

sBF,0(n− 1, n, 1) = 1

qBF,0(n− 1, n, 1) = p

PBF,0(E0) = p
m

2m(n− 1)
+ (1− p) 1

n− 1
.

There exists an index h such that AT [h] = (n − 1, n, 1).
By Def. 10, AT−1[(f, n, 1)] > AT−1[(n − 1, n, 1)] = h
for f < n − 1. Hence, examAT,h(n, 1) = ∅. Again,
by Def. 10, h is the smallest index such that the AT
ordering looks at the incoming edges to node n− 1, hence
idegAT,h(n− 1, [n− 1, n]) = 0. Therefore, we have:

sAT,h(n− 1, n, 1) = 1

qAT,h(n− 1, n, 1) = p

PAT,h(Eh) = p
m

2m(n− 1)
+ (1− p) 1

n− 1

= PBF,0(E0).

Inductive Case. We run induction on the index d of
the edge incidence events in the backward forward order.
Suppose the d-th edge incident event in the backward
forward order is the d′-th event in the arriving order. That
is, BF [d] = (u, v, j) = AT [d′]. By induction hypothesis,
for any index e with e < d, let e′ be the index of the same
event in the arriving order, i.e., BF [e] = AT [e′]. Then

PBF,e(EBF,e|FBF,e) = PAT,e′(EAT,e′ |FAT,e′).
We have shown that examBF,d(v, j) = examAT,d′(v, j).

We now exhibit that for ∀x ∈ examBF,d(v, j),
idegBF,d(x, [x, v]) = idegAT,d′(x, [x, v]).

First, by closely looking at Def. 9, we see that ∀x ∈
examBF,d(v, j) = {u+ 1, u+ 2, . . . , v − 1}, we have

idegBF,d(x, [x, v])|FBF,d
=

∑
0≤r≤d, ∃ y,z s.t.BF [r]=(x,y,z), x≤y≤v, 0≤z≤m

1EBF,r

=

j−1∑
z=1

∑
y=v

1EBF,t +

m∑
z=1

v−1∑
y=x

1EBF,t ,

where t = BF−1[(x, y, z)].

5. Note that EBF,i2 = EAT,i1 are the same edge incidence events
but we denote them differently for convenience.
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Also, from Def. 10, we have that ∀x ∈ examAT,d′(v, j):

idegAT,d′(x, [x, v])|FAT,d′

=
∑

0≤r≤d′, ∃ y,z s.t.AT [r]=(x,y,z), x≤y≤v, 0≤z≤m

1EAT,r

=

j−1∑
z=1

∑
y=v

1EAT,t +

m∑
z=1

v−1∑
y=x

1EAT,t ,

where t = AT−1[(x, y, z)].

Note that by Def. 9 and Def. 10 all indices t, t′

above are smaller than d and d′ respectively. Since
the edge incidence events we are conditioning on
are fixed in H , both idegAT,d′(x, [x, v])|FAT,d′ and
idegBF,d(x, [x, v])|FBF,d compute to a number and equal
each other. Hence we have:

∀ x ∈ examBF,d(v, j), (4)
idegBF,d(x, [x, v])|FBF,d = idegAT,d′(x, [x, v])|FAT,d′ .

By Definition 12, we get that

sBF,d(u, v, j)|FBF,d = sAT,d′(u, v, j)|FAT,d′ (5)
qBF,d(u, v, j)|FBF,d = qAT,d′(u, v, j)|FAT,d′ . (6)

Finally, we have that

idegBF,d(u, [u, v])|FBF,d
=

∑
0≤r≤d, ∃ y,z s.t.BF [r]=(u,y,z), u≤y≤v, 0≤z≤m

1EBF,r

=

j−1∑
z=1

∑
y=v

1EBF,t +

m∑
z=1

v−1∑
y=u

1EBF,t ,

where t = BF−1[(u, y, z)],

idegAT,d′(u, [u, v])|FAT,d′

=
∑

0≤r≤d, ∃ y,z s.t.AT [r]=(u,y,z), u≤y≤v, 0≤z≤m

1EAT,r

=

j−1∑
z=1

∑
y=v

1EAT,t +

m∑
z=1

v−1∑
y=u

1EAT,t ,

where t = AT−1[(u, y, z)].

Again, because edge incidence events we are conditioning
on are fixed inH , both these terms compute to a number and
equal each other. By Definition 12, PBF,d(EBF,d|FBF,d)
and PAT,d′(EAT,d′ |FAT,d′) are equal in every component
and thus are equal to each other. This completes the induc-
tion proof.

Lemma 5. The (Ω,FBF,t, PBF,t) revealing process satis-
fies the (log n,m, 2/3)-staging property.

Proof: We define the stages as follows. Stage S0

contains the first 2 nodes and for each i, Si = {vs|(3/2)i <
s ≤ (3/2)i+1}. Let W be the set of nodes in stage i
that arrived before v. Let HBF be the space of all graphs
generated by the (Ω,FBF,t, PBF,t) process. By Lemma 4
we have that HBF = HAT . Given a fixed graph H , let
1(vj → W ) indicate whether the j-th outgoing edge of v

in H lands in the set W . We can rewrite RBF,(W,v,j) as

RBF,(W,v,j) =
∑
u∈W

QBF,h(EBF,h) where h = BF−1[(u, v, j)]

=
∑

H∈HBF

PBF (H)1(vj →W )

=
∑

H∈HAT

PAT (H)1(vj →W ) by Lemma 4

= RAT,(W,v,j). (7)

We bound RAT,(W,v,j) by directly using Def. 1. In the case
that the edge of v was chosen uniformly, the probability of
choosing an edge in stage Si−1 or smaller is greater than
2/3. In the case that the edge was chosen preferentially, we
know that the total sum of nodes before u is 2m(v − 1),
and the sum of degrees for the nodes in stage i − 1 or
smaller is at least 2m(3/2)i. Since v < (3/2)i+1, then
the probability that the preferentially selected neighbor is
among the first i − 1 stages is bigger than 2/3. Hence
RBF,(W,v,j) = RAT,(W,v,j) < 1/3.

Theorem 6 is a direct corollary of Thm. 3 and Lem. 5.

Theorem 6. Let I be the set of first k arrived vertices in
the PAp,m(n) graph and let k ≤ m = O(1), and 0 ≤
p ≤ 1. A k-complex contagion CC(G, k, I) infects all of
PAp,m(n) in O(log n) rounds w.h.p.

Remark 1. It is noteworthy that the family of graphs
PAp,m(n) does not always generate a power-law graph. In
fact, the PA0,m(n) model generates a heavily concentrated
degree distribution with the largest degree being O(log n).
We emphasize that our results about the spread of complex
contagions hold for all the members of this family regardless
of them having a power-law distribution or not6.

9 Simulations
We provide simulation results that show that our theoretical
analysis of the polylogarithmic speed of k-complex conta-
gions in PA networks (Thm. 6) also matches a simulated
contagion. Figure 1 shows that the number of rounds that
it takes a k-complex contagion to infect PA0.7,3(n), a PA
network of size n and parameters p = 0.7 and m = 3, lies
closely with a O(log n) function.

10 Bootstrap Percolation in the PA
Model
In this section, we focus on bootstrap percolation in the
independent PA model (Def. 1)7. In other terms, we ana-
lyze complex contagions when the initial seeds are chosen
uniformly at random. First, we show that there exists a
polynomial threshold f(n) such that if o(f(n)) initial seeds
are chosen uniformly at random, the contagion almost surely

6. The G(n, p) graph also has a heavily concentrated distribution
with largest degree being O(logn). However, unlike PA0,m(n),
deterministic choice of a constant number of initial seeds in the G(n, p)
would not cause complex contagions to spread [26].

7. However, the same result (Theorem 7) applies to the other two
variations of the PA model (Definition 1) with slight modification.
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Fig. 1: Speed of a 3-complex contagion in PA0.7,3(n) net-
works of different sizes

does not spread. Second, we show that if Ω(f(n) log n)
initial seeds are infected, the whole graph gets infected with
high probability in O(log n) rounds. This shows that the
first few nodes in the arriving order of the network are
critical in their roles of enabling a complex contagion.

10.1 No New Infections
The following theorem shows that if we select initial seeds
randomly in a PA graph, then until the size of these initial
seeds is a polynomial in the size of the graph, the contagion
almost surely does not spread to any other node.
Theorem 7. Let 0 < p ≤ 1 and consider the PAp,m(n)
graph. A k-complex contagion CC(PAp,m(n), k, S) would
not spread to other nodes with probability 1 − o(1), if we
choose S as follows.

1) If k ≥ 2/p, S = {o
(
n1−p/2

)
random initial seeds};

2) If k < 2/p, S = {o
(
n1−1/k

)
random initial seeds}.

Proof: Assume that the network edges are undirected
and let s = |S|. Let X be the number of infected nodes in
the first round. X is the number of nodes that have at least k
neighbors in S. We show that the expectation of X is o(1).
By Markov’s inequality, the number of infected nodes will
be zero with probability 1− o(1). Let di and νi(S) denote
the degree of the i-th node, and the number of neighbors of
node i in set S respectively. Then E[X] can be written as:

E[X] =

n∑
i=1

Prob {νi(S) ≥ k}

=

n∑
i=1

mn∑
x=k

Prob {νi(S) ≥ k|di = x} Prob {di = x} .

In the proof of Lemma 10, we show that

Prob {νi(S) ≥ k|di = x} ≤ min
{(xs

n

)k ( 1

1− xs/n

)
, 1

}
.

Let W = Prob {νi(S) ≥ k|di = x} and E[Nx] be the ex-
pected number of nodes of degree x in the PA graph of n
vertices,

E[X] ≤
n∑
i=1

mn∑
x=k

W · Prob {di = x} ≤
mn∑
x=k

W · E[Nx].

Thus, a critical step in the proof is to upper bound
E[Nx]. We utilize the master equation method [33] to do
this computation. However, instead of directly solving the

recurrence as is done for the case of p = 1 for the sequential
PA model in [34] and for the conditioned PA model in [35],
we upper bound it for all values of 0 < p ≤ 1 in Lemmas. 8
and 9.

Let Nt(x) denotes the number of nodes with degree x
in the graph of t vertices and denote by nt(x) = E[Nt(x)].
The following recurrence holds for the PAp,m model:

E[Nt+1(x)|Nt(x)] =
(

1− ax
t

)
nt(x) +

ax−1

t
nt(x− 1) + cx.

in which ax and cx are non-negative values that depend on
the specific model and ax+1 ≥ ax.

In the PAp,m model, each node issues m edges to
existing nodes. With probability p, each edge connects to a
node with preferential attachment rule and with probability
1−p, an edge connects to a uniformly random chosen node.

ax =
px

2
+m(1− p), cx = δ(m+1)x =

{
1 x = m+ 1

0 x 6= m
.

We ignore the possibility of more than one edge being
attached to one vertex and the self-loops. The proofs for the
following four lemmas are delayed until Subsection 10.3.

Lemma 8. Let Nx be the number of nodes of degree x in
the PAp,m(n) model. For all 0 < p ≤ 1, we have that
E[Nn(x)] ≤ mnηx, where ηx = ax−1

1+ax
ηx−1 + cx

1+ax
.

Lemma 9. In the preferential attachment PAp,m(n) model,
we have ηx = Θ(x−(1+2/p)) for all 0 < p ≤ 1.
Lemma 10. Let S be chosen as stated in Theorem 7, X
be the number of infected nodes in the first round of the
complex contagion CC(PAp,m(n), k, S), and 0 < p ≤ 1.
We have that,

E[X] = O

 sk

nk−1

n/2s∑
x=k

xk−1−2/p + n

mn∑
x=n/2s+1

1/x1+2/p

 .

Lemma 11. Let S be chosen as stated in Theorem 7, X
be the number of infected nodes in the first round of the
complex contagion CC(PAp,m(n), k, S), and 0 < p ≤ 1.
We have that E[X] = o(1).

Applying Markov inequality on Lem. 11 proves Thm. 7.

10.2 Oldies But Goodies
We use the expected degree of early nodes in the PA model
to show that they become infected with high probability
once enough random seeds are infected at round 0. Once all
the first k nodes in the graph are infected, the k-complex
contagion will spread to the rest of the graph quickly. This
emphasizes the role of early nodes in the PA model.

A computation of the expected degree of nodes for
p = 1 and m = 1 is presented in [36]. We follow their
approach and prove the expected degree for all values of
0 < p ≤ 1,m ≥ 2 in the following Lemma (proved in
Subsection 10.3). We will work with the independent model
here, but the other two variations are similar.

Lemma 12. Let dt(s) denote the degree of node s in a
PAp,m at time t, and 0 < p ≤ 1. We have E[dn(s)] =

Θ
(

(n/s)
p/2
)

.
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Theorem 13. Let 0 < p ≤ 1. If we choose I as
Ω
(
n1−p/2 log n

)
random initial seeds, then a k-complex

contagion CC(PAp,m(n), k, I) will spread to all the nodes
with high probability in O(log n) rounds.

Proof: We focus on the first k arrived nodes in the
PA graph. By Lem. 12, each of the first k nodes have
expected degree of at least m2(1− p)

(
n
k

)p/2
. We focus on

node vk, the node that arrived at time k, from now on. If we
infect Ω

(
n1−p/2 log n

)
nodes, vk would have Ω(log n)

infected neighbors in expectation in round 0. This would
mean that w.h.p. vk would have ≥ k infected neighbors in
round 0. This means that all the first k nodes will be infected
with high probability in round 1. Once the first k nodes are
infected, Thm. 6 can be applied to show that the speed of
contagion is O(log n) with high probability.

10.3 Proofs of Computational Lemmas
Proof of Lemma 8: We prove the claim by induction
on t, the number of nodes in the graph. In the base case
N0(k) = 0 for all x, so the claim is trivially true. Suppose
that the claim is true for t, i.e., nt(x) ≤ mtηx. And ηx−1 =
(1 + ax)ηx/ax−1 − cx/ax−1. By the recurrence we have
nt+1(x) ≤

(
1− ax

t

)
mtηx +

ax−1

t
mtηx−1 + cx

≤
(
1− ax

t

)
mtηx

+ax−1m ((1 + ax)ηx/ax−1 − cx/ax−1) + cx
≤ m(t+ 1)ηx.

which proves the statement.

Proof of Lemma 9: The statement for p = 1 is proved
in [35]. We follow a similar strategy to prove it for all the
values of 0 < p ≤ 1. From the recursive definition of ηx,
we can write:

ηx =

x∑
j=1

cj
1 + aj

x∏
i=j+1

ai−1

1 + ai
.

However, cj = 0 for all j > m+ 2. Hence for x ≥ m+ 2
we can write:

ηx = ηm+2

x∏
j=m+3

aj−1

1 + aj

= ηm+2

x∏
j=m+3

p(j − 1)/2 +m(1− p)
1 + pj/2 +m(1− p) .

Define αp = m−mp−p/2
p/2 and βp = m−mp+1

p/2 and notice
that for p < 1, −1 < αp < βp. We have:
log(x) = log(ηm+2)+

x∑
j=m+3

log

(
p(j − 1)

2
+m(1− p)

)

−
x∑

j=m+3

log

(
1 +

pj

2
+m(1− p)

)

= log(ηm+2) +

x∑
j=m+3

log

(
1 +

αp
j

)
− log

(
1 +

βp
j

)
.

f(x) = log(1 + x) is a continuous function. So by the
mean value theorem we have:

∀j, ∃ψj αj/j < ψj < βj/j, f ′(ψj) =
f(βj)− f(αj)

βj − αj
.

Hence we get:

log(x) = log(ηm+2) +

x∑
j=m+3

(
βj − αj

j

)
1

1 + ψj

= log(ηm+2)− 2 + p

p

x∑
j=m+3

1

j(1 + ψj)
.

Furthermore, we have that
x∑

j=m+3

1

j + βp
≤

x∑
j=m+3

1

j(1 + ψj)
≤

x∑
j=m+3

1

j + αp
;

which means that ηx = Θ
(
x−(1+2/p)

)
.

Proof of Lemma 10: Let di and νi(S) denote the degree
of the i-th node, and the number of neighbors of node i in
set S respectively. We have:

E[X] =

n∑
i=1

Prob {νi(S) ≥ k}

=

n∑
i=1

mn∑
x=k

Prob {νi(S) ≥ k|di = x} Prob {di = x} .

We can rewrite Prob {νi(S) ≥ k|di = x} as:
Prob {νi(S) ≥ k|di = x}

= min


x∑
j=k

Prob {νi(S) = j|di = x} , 1


≤ min


x∑
j=k

xj
( s
n

)j
, 1


≤ min

{(xs
n

)k ( 1

1− xs/n

)
, 1

}
if
xs

n
< 1.

We claim that if xsn < 1/2, then
(
xs
n

)k ( 1
1−xs/n

)
< 1 be-

cause
(

1
1−xs/n

)
< 2, and k ≥ 2. We upper bound E[X]:

E[X] =

n∑
i=1

mn∑
x=k

Prob {νi(S) ≥ k|di = x} Prob {di = x}

≤
mn∑
x=k

min
{(xs

n

)k ( 1

1− xs/n

)
, 1

} n∑
i=1

Prob {di = x}

≤
mn∑
x=k

min
{(xs

n

)k ( 1

1− xs/n

)
, 1

}
E[Nx].

Now we cut off the summation at xs/n = 1/2. Although
this cut-off is not sharp, since we are bounding the expecta-
tion from above it is ok.

E[X] ≤
mn∑
x=k

min
{(xs

n

)k ( 1

1− xs/n

)
, 1

}
E[Nx]

≤
n/2s∑
x=k

(xs
n

)k ( 1

1− xs/n

)
E[Nx] +

mn∑
x=n/2s+1

E[Nx]

≤
n/2s∑
x=k

2
(xs
n

)k
E[Nx]

+

mn∑
x=n/2s+1

E[Nx] since
(

1

1− xs/n

)
< 2.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, FEB 2017 12

We now can use Lemmas 8, 9:

E[X] ≤
n/2s∑
x=k

2
(xs
n

)k
mnηx +

mn∑
x=n/2s+1

mnηx (Lemma 8),

≤
n/2s∑
x=k

2
(xs
n

)k
mnΘ

(
x−(1+2/p)

)
+

mn∑
x=n/2s+1

mnΘ
(
x−(1+2/p)

)
(Lemma 9),

= O

 sk

nk−1

n/2s∑
x=k

xk−1−2/p + n

mn∑
x=n/2s+1

x−1−2/p

 .

Proof of Lemma 11: We do case analysis onE[X] based
on Lem. 10:

Case 1: k > 2/p.
E[X] = O

(
sk

nk−1

(
n
2s

)k−2/p
+ n

(
n
2s + 1

)−2/p)
,

which solves to E[X] = O
(

s2/p

n2/p−1

)
. If s = o

(
n1−p/2

)
,

we get E[X] = o(1).
Case 2: k = 2/p.
E[X] = O

(
sk

nk−1 log(n/2s) + n
(
n
2s + 1

)−2/p)
,

which solves to E[X] = O
(
s2/p log(n/2s)

n2/p−1

)
. If

s = o
(
n1−p/2(log n)−p/2

)
, we get E[X] = o(1).

However if n1−p/2(log n)−p/2 < s = o
(
n1−p/2

)
, the

log(n/2s) term inE[X] would beO(1) andE[X] = o(1).
Case 3: k < 2/p.
We have E[X] = O

(
sk

nk−1 + s2/p

n2/p−1

)
that solves to

E[X] = O
(

sk

nk−1

)
. If s = o

(
n1−1/k

)
, we get that

E[X] = o(1) again.
Proof of Lemma 12: We write a recursive relation based
on the edge probabilities.

E[dt(s)|dt−1(s)] = dt−1(s) + pm
dt−1(s)

2m(t− 1)
+ (1− p)m 1

t− 1

E[dt(s)] =
2t− 2 + p

2t− 2
E[dt−1(s)] +

m(1− p)
t− 1

.

Starting with ds(s) = m, we get:

E[dn(s)] =

n∑
j=s

m(1− p)
j − 1

n∏
i=j+1

t− 1 + p/2

t− 1

=

n∑
j=s

m(1− p)
j − 1

ds(s)

n∏
i=j+1

t− 1 + p/2

t− 1

=

n∑
j=s

m2(1− p)
j − 1

Γ(n− 1 + p/2)

Γ(n− 1)

Γ(j)

Γ(j + p/2)

= m2(1− p)
n∑
j=s

1

j − 1

(
n

j

)p/2(
1 +O

(
1

j

))
using Stirling’s formula for Γ(.);

= Θ

(
m2(1− p)np/2

n∑
j=s

1

jp/2(j − 1)

)

= Θ

(
m2(1− p)

(n
s

)p/2)
.

11 Complexity of Computing The
Extent of Complex Contagions
We prove that it is P-complete to decide if a k-complex
contagion completely infects a graph or stops at a small
fraction of its nodes.

Theorem 14. For any integer k ≥ 2, given a triple
(G,S,M) where G is an undirected graph, S is a subset of
vertices, and M is an integer, it is P-complete to determine
if the size of the resulting k-complex contagion on G when
the vertices of S are initially infected is at least M . Let n
be the number of vertices in G. In fact for any 0 < ε < 1,
the promise problem of deciding if the size of the k-complex
contagion is n or at most nε, is promise P-complete.

The reduction comes from the MonotoneCircuitValue
problem in circuit complexity.

Definition 13. In the MonotoneCircuitValue (MCV) prob-
lem we are given a circuit C with 0, 1, AND, and OR
gates and one gate g∗ designated as output. We insist
that C is layered, that is we can partition the gates into
levels {0, 1} = L0, L1, . . . , L`−1, L` = {g∗} such that
wires always connect gates at levels i and i + 1 for
some 0 ≤ i ≤ `− 1. C ∈ MCV if the circuit is a properly
encoded, layered, monotone circuit and evaluates to 1.
Otherwise C 6∈ MCV.

Theorem 15 ([37]). The MCV problem is P-complete.

Proof of Theorem 14: These problems are in P or
promise-P because an algorithm can simply simulate the
contagion and count the number of infected nodes. To show
the hardness result the idea is to reduce from MCV. Given
such a circuit C we create a graph as follows:

Fix ε, k. Given a circuit C with m gates we create the
triple (G,S,M) as follows: Let M = (3k3m)1/ε. We next
create the vertices of G:
• For each gate ga of C , we create k vertices
Ga = {gia}0≤i<k.

• For each wire wab of C connecting gate ga to gate gb,
create k2 vertices Wab = {wi,jab }0≤i,j<k.

• Create M additional vertices T = {ti}0≤i<M .
Next, we create the edges:
• Consider a non constant gate gc of C with input gates
ga and gb (assume an arbitrary ordering over the input
gates).
– Add the k3 edges to connect all vertices in Gx to all

vertices in Wxc for x ∈ {a, b}.
– If gc in an OR gate, connect wi,jx,c to gic for 0 ≤
i, j < k for x ∈ {a, b}.

– If gc in an AND gate, connect wi,ja,c to gic for 0 ≤ i <
k and 0 ≤ j < dk/2e.

– If gc in an AND gate, connect wi,jb,c to gic for 0 ≤ i <
k and 0 ≤ j < bk/2c.

• Add the k2 edges between G∗ and ti for 0 ≤ i < M .
• For all the vertices v ∈ G \ T , add k edges between
v and k vertices of T . But, each vertex of M can
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only be used once. Let R = 3k2m. Because every
gate has at most 2 in-wires, and each gate/wire has at
most k2 corresponding nodes, R is an upper bound
on the number of vertices not in T . Therefore, M =
(3k3m)1/ε > 3k3m = kR is big enough to satisfy
the use-once constraint on the vertices of T .

Let S = G1, the vertices corresponding to the constant 1
gate. It is easy to verify that (G,S,M) can be constructed
in logspace8. Now, we will show that T is infected if and
only if C evaluates to 1. The proof will follow from the
following lemma:

Lemma 16. Consider a 0 ≤ t ≤ 2`. If t is even, we claim
that the only newly infected nodes at time t correspond
to gates at level t/2 in C which evaluate to 1. We claim
that for an odd t, the only newly infected nodes at time
t correspond to the wires wab connecting gates at level
(t− 1)/2 and (t+ 1)/2 where the gate at level (t− 1)/2
evaluates to 1.

Using the lemma, at time 2` the only nodes that can
possibly become infected are those corresponding to the
output gate. If they do become infected, then at time 2t+ 1
all the nodes of T will become infected. Ultimately, at time
2t+ 2 all the graph will become infected.

Notice that each node in T only has one edge outside
the nodes of output gate G∗. Therefore, if at time 2` the
output gate does not become infected, then at that step no
additional nodes become infected and the contagion is over.
We prove the lemma first:

Proof: The proof proceeds by induction. At time t =
0 this is true, because the only nodes at level 0 are constant
gates, and the only constant gates that evaluate to 1 is the
1 gate. By construction G1 = S and so these vertices are
initially infected at time t = 0. Assuming that the statement
is true up to time t < 2`, we show that the statement is true
at time t+ 1.
The case where t is even: At time t + 1 any node that
becomes infected must be connected to a node that was
infected at time t. By the inductive hypothesis, the only
nodes that become infected at time t are those that corre-
spond to gates at level t/2. By construction, these nodes are
connected to nodes corresponding to wires connecting gates
at level t/2−1 and level t/2 as well as nodes corresponding
to wires connecting gates at level t/2 and level t/2 + 1.

The nodesWab that correspond to wires wab connecting
a gate ga at level t/2 − 1 and a gate gb level t/2 are, by
construction, attached to the nodes Ga and the nodes Gb.
The nodes of Wab can only be infected at time t + 1 if
they were not already infected at time t. By the inductive
hypothesis, the nodes of Wab are not infected at time t if
and only if ga evaluates to 0 in which case, again by the
inductive hypothesis, the nodes of Ga are also not infected
at time t. However, if the nodes corresponding to Ga are

8. Note that multiplication, powering, and division are known to be
in logspace [38]. However, these results are not needed if we simply
compute a number M > (3k3m)1/ε

not infected at time t, then the nodes in Wab will not be
infected at time t+ 1 as, by construction, each node in Wab

has only one neighbor outside of Ga and k ≥ 2.

The case where t is odd: By the inductive hypothesis,
the only nodes that become infected at time t are those that
correspond to wires that connect nodes in level (t−1)/2 and
level (t+ 1)/2. By construction, these nodes are connected
to nodes corresponding to gates at level (t− 1)/2 and level
(t + 1)/2. By the inductive hypothesis, all the neighbors
that these newly infected nodes’ wires connect to at level
(t−1)/2 are already infected. Let’s consider then the nodes
corresponding to gates at level (t+ 1)/2.

If gc is an OR gate with inputs ga and gb, then, by
construction, each node in Gc is attached to k nodes in
Wac and k nodes in Wbc. Thus, if either ga or gb evaluate
to 1, then, by the inductive hypothesis, either the nodes in
Wac or the nodes in Wbc will be infected at time t and thus
at time t+ 1 the nodes in Gc will become infected. On the
other hand, if neither ga or gb evaluate to 1, then, by the
inductive hypothesis, neither the nodes in Wac or the nodes
in Wbc will be infected at time t. By construction, any other
neighbors of nodes in Gc correspond to wires connecting
gates at level (t − 1)/2 and (t + 1)/2. By the inductive
hypothesis, these gates are not infected at time t. Thus, the
nodes of Gc will not be infected at time t+ 1.

If gc is an AND gate with inputs ga and gb, then, by
construction, each node in Gc is attached to dk/2e nodes
in Wac and bk/2c nodes in Wbc. Thus, if both ga or gb
evaluate to 1, then, by the inductive hypothesis, the nodes
in Wac and the nodes in Wbc will be infected at time t and
thus at time t + 1 the nodes in Gc will become infected.
On the other hand, if either ga or gb evaluate to 0, then,
by the inductive hypothesis, either the nodes in Wac or the
nodes in Wbc will be not infected at time t. By construction,
any other neighbors of nodes in Gc correspond to wires
connecting gates at level (t − 1)/2 and (t + 1)/2. By the
inductive hypothesis, these gates are not infected at time t.
Thus, the nodes of Gc will not be infected at time t+ 1.
The reduction is complete because:

• If C ∈ MCV, then T becomes infected and at least M
nodes (and all the nodes in the graph) are infected.

• If C 6∈ MCV, then T does not become infected. Re-
member that R = 3k2m is an upper bound on the
number of vertices not in T and thus an upper bound
on the number of nodes that become infected. But
R = 3k2m < M ε = 3k3m < nε. Thus, fewer than
nε nodes are infected.
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