
On Cyclic Solutions to the Min-Max Latency
Multi-Robot Patrolling Problem

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao∗, Maarten
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Robot patrolling problem

k robots with maximum unit speed collectively patrol n sites in a
metric space.

k

Patrol schedules are infinite sequences.
Goal: minimize the maximum time duration (latency) between
consecutive visits to any site.
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Robot patrolling problem

k = 1: travelling salesman problem. NP-hard.

Every site is visited every L = |TSP| unit time.

■ General metric setting: 3/2-approximation (Christofides’76),
3/2− δ, δ > 10−36 (Karlin, Klein, Gharan’21).

■ Euclidean setting: (1 + ε)-approximation (Arora’98, Mitchell’99).
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Challenges

k ≥ 2: there can be optimal solutions that are chaotic.

A

B
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D
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(a) (b)

r1

r2

Not clear if the problem (whether opt latency < L) is decidable if
distances are not integers.
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What about approximations?

[ABBGLNRSWY’20] If there is an α-approximation to

■ k-path cover problem: find k paths to cover n sites with min max
path length.

■ min-max k-tree cover problem: find k trees to cover n sites with
min max tree weight.

■ min-max k-cycle cover problem: find k cycles to cover n sites with
min max cycle length.

there is a 2α-approximation to k-robot patrol problem.
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What about approximations?

■ k-path cover problem: 4 [Arkin, Hassin, Levin’06]

■ min-max k-tree cover problem: 8/3 [Xu, Liang, Lin’13]

■ min-max k-cycle cover problem: 16/3 [Xu, Liang, Lin’13]

Best known approximation to k-robot patrol: 16/3.
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Cyclic solutions

We focus on cyclic solutions:

■ n sites partitioned into ℓ ≤ k groups P1,P2, · · ·Pℓ.

■ Group Pi is allocated one or more robots, evenly spread along
TSP(Pi ).

k
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Main Results

1. An optimal cyclic solution is a 2(1− 1/k) approximation to the
optimal overall solution.

■ When k = 2, the optimal cyclic solution is optimal overall.

2. Approximating the optimal cyclic solution ⇒ approximating TSP
on some input, with

■ an extra 1 + ε approximation factor.

■ an extra O((k/ε)k) factor in running time.

3. Solving multi-robot patrol problem:

■ General metric setting: 3− 3/k + ε approximation.

■ Euclidean setting: 2− 2/k + ε approximation.
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Outline

■ Robot patrolling problem

■ Cyclic solutions

■ Find a (1 + ε)-approximte cyclic solution

■ Open problems
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Periodic schedule w/ 2-approximation

Take an OPT solution w/ latency = L. All n sites must be visited
during a time window L.

r1

r2

r3

r4

r5

L
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Periodic schedule w/ 2-approximation

Take an OPT solution w/ latency = L. All n sites must be visited
during the time window L. ⇒ Wrap around, we get a solution with
latency ≤ 2L.

r1

r2

r3

r4

r5

L
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Improve 2-approximation?

If we can shrink the window by ε on both sides yet still cover all sites,
we get latency ≤ 2(1− 2ε) · L.

r1

r2

r3

r4

r5

L
ε
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Shrinking process

Sweep from both ends inward, until we meet a site (say p1).
If p1 is still covered, ignore & keep going.

r1

r2

r3

r4

r5

L

p1

p1

⇒

p1

p1
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Shrinking process

Sweep from both ends inward, until we meet a site (say p1).
If p1 is “critical”, freeze the endpoint of r4 at p1 .

r1

r2

r3

r4

r5

L

p1 p1

⇒
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After shrinking process

Frozen segments: left endpoints A, right endpoints B.
Robot r1 at A1 visits site p with sweep distance ℓ(A1).

L

A1 B1

ℓ(A1)

No robot
visits p

A robot must
visit p

2ℓ(A1)
r1

ℓ(B2)

r2
A2 B2

p

≤ ℓ(A1)

p

Shortcut: r2 moves from B2 to visit f1(A1), pay cost ≤ ℓ(A1) + ℓ(B2).
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How to use the shortcut edges? An easy case

Add a matching of shortcut edges to the frozen segments ⇒ a set of
bichromatic cycles ⇒ a cyclic solution.

I2

I3

I4

I1
A1

A2

A3

A4 B4

B3

B2

B1

No increase in latency: cost paid no greater than saving.

But, can we find a matching of shortcut edges?
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Shortcut graph and bag graph

Bag graph: capture potential shortcuts.

L

I5

I2

I3

I4
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B1
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A2B2 B2 A3

A3 B3

B3A4B4 B4 A4

Place an edge between two bags if they share a common endpoint
label.
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Shortcut graph and bag graph

Shortcut graph: connect endpoints with potential shortcuts.

L
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Shortcut graph is isomorphic to the line graph of the bag graph.

[Sumner’74] The line graph of a connected graph with an even
number of edges has a perfect matching.
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Modify into a cyclic solution: Add shortcuts

Case study on connected components of the bag graph:

■ even # vertices ⇒ a perfect matching.

■ odd # vertices, no empty segment ⇒ a matching + a triangle.

■ odd # vertices, w/ empty segment ⇒ a matching + a vertex.
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Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

A1 B1 A3 B3 A4

B4

1 2

3
45 I3

I4

I1
A1

A3

A4 B4

B3

B1

A1 B1I1

A3 B3I3

1

2

3

4

5

Issue: pay extra cost for duplicated black edges.
Analyze # duplicated edges & #“useless” robots.
Max lantency ≤ 2(1− 1/k)L.
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Outline

■ Robot patrolling problem

■ Cyclic solutions

■ Find a (1 + ε)-approximate cyclic solution

■ Open problems
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An optimal cyclic solution

An optimal cyclic solution:

■ Paritioning the sites into clusters Π = {P1,P2, · · · ,Pt}, t ≤ k .

■ Assign k robots to these clusters: k1 + k2 + · · ·+ kt = k.

■ For each cluster, we place robots evenly along TSP(Pi ).

k

Issue 1: how to find the partition Π?
Issue 2: how to assign robots to a partition Π?
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How to assign robots to a partition?

Assume a γ-approximate TSP algorithm tsp.

■ Assign one robot to each cluster. ki = 1, ∀i .
■ Max latency maxi tsp(Pi )/ki .

■ Iteratively assign the next robot to the cluster w. the largest
latency.

This gives a γ-approximation to optimal solution with partitioning Π.

■ General metric space: γ = 1.5− δ, δ > 10−36. [Karlin et.al. ’21]

■ Euclidean setting: γ = 1 + ε, [Arora’98, Mitchell’99]

Issue 1: how to find the partition Π?
Issue 2: how to assign robots to a partition Π? ✓
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A ‘well-separated’ (1 + ε)-approximate cyclic solution

OPT cyclic solution has latency L.

■ There exists a (1 + ε)-approximate cyclic solution with a partition
Π s.t. the min distance between clusters is ≥ εL/k .

> εL/k

Add all short edges to an opt cyclic solution.
For each component keep the “minimum spanning” edges.
Turn each connected component to a new cycle.
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Find a (1 + ε)-approximate cyclic solution?

Start with the MST T .

■ MST has ≤ k(1 + k/ε) long edges (≥ εL/k).

■ Enumerate a subset of at most k long edges to remove.

> εL/k > εL/k

Extra factor of O((k/ε)k) time to find the correct partition.
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Open problems

■ Improve approximation factor of 2(1− 1/k) by the optimal cyclic
solution.

■ Conjecture: the optimal cyclic solution is overall optimal.
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More open problems

Weighted version: minimize maxi wiLi .

■ k = 1, O(log n)-approximation. [Alamdari et.al. ’14]

■ k ≥ 2, O(k2 log wmax
wmin

)-approximation. [Afshani et.al. ’20].

s1 s2 s3 s4

w = 1 w = 4 w = 4 w = 1

l = 3 l = 1 l = 3

t1

t2

t3

t4

t5

t6

r1 r2

Even in 1D, optimal solution do not use disjoint cycles. Solutions
with disjoint cycles are arbitrarily worse.
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Questions and comments

■ On Cyclic Solutions to the Min-Max Latency Multi-Robot
Patrolling Problem, SoCG’2022.

■ Approximation Algorithms for Multi-Robot Patrol-Scheduling with
Min-Max Latency, WAFR’2020.
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