On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Peyman Afshani, Mark de Berg, Kevin Buchin, <u>Jie Gao</u>*, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, Hao-Tsung Yang

> Rutgers University http://sites.rutgers.edu/jie-gao

> > June 2023

k robots with maximum unit speed collectively patrol n sites in a metric space.

k robots with maximum unit speed collectively patrol *n* sites in a metric space.

Patrol schedules are infinite sequences. Goal: minimize the maximum time duration (latency) between consecutive visits to any site.

k = 1: travelling salesman problem. NP-hard.

Every site is visited every L = |TSP| unit time.

k = 1: travelling salesman problem. NP-hard.

Every site is visited every L = |TSP| unit time.

- General metric setting: 3/2-approximation (Christofides'76), $3/2 \delta$, $\delta > 10^{-36}$ (Karlin, Klein, Gharan'21).
- Euclidean setting: $(1 + \varepsilon)$ -approximation (Arora'98, Mitchell'99).

 $k \ge 2$: there can be optimal solutions that are chaotic.

Challenges

 $k \ge 2$: there can be optimal solutions that are chaotic.

Challenges

 $k \ge 2$: there can be optimal solutions that are chaotic.

Not clear if the problem (whether opt latency < L) is decidable if distances are not integers.

[ABBGLNRSWY'20] If there is an α -approximation to

- k-path cover problem: find k paths to cover n sites with min max path length.
- min-max k-tree cover problem: find k trees to cover n sites with min max tree weight.
- min-max k-cycle cover problem: find k cycles to cover n sites with min max cycle length.

there is a 2α -approximation to k-robot patrol problem.

- k-path cover problem: 4 [Arkin, Hassin, Levin'06]
- min-max k-tree cover problem: 8/3 [Xu, Liang, Lin'13]
- min-max k-cycle cover problem: 16/3 [Xu, Liang, Lin'13]

Best known approximation to k-robot patrol: 16/3.

Cyclic solutions

We focus on cyclic solutions:

- *n* sites partitioned into $\ell \leq k$ groups $P_1, P_2, \cdots P_\ell$.
- Group P_i is allocated one or more robots, evenly spread along TSP(P_i).

1. An optimal cyclic solution is a 2(1 - 1/k) approximation to the optimal overall solution.

1. An optimal cyclic solution is a 2(1 - 1/k) approximation to the optimal overall solution.

• When k = 2, the optimal cyclic solution is optimal overall.

1. An optimal cyclic solution is a 2(1 - 1/k) approximation to the optimal overall solution.

- When k = 2, the optimal cyclic solution is optimal overall.
- 2. Approximating the optimal cyclic solution \Rightarrow approximating TSP on some input, with
- an extra $1 + \varepsilon$ approximation factor.
- an extra $O((k/\varepsilon)^k)$ factor in running time.

1. An optimal cyclic solution is a 2(1 - 1/k) approximation to the optimal overall solution.

- When k = 2, the optimal cyclic solution is optimal overall.
- 2. Approximating the optimal cyclic solution \Rightarrow approximating TSP on some input, with
- an extra $1 + \varepsilon$ approximation factor.
- an extra $O((k/\varepsilon)^k)$ factor in running time.
- 3. Solving multi-robot patrol problem:
- General metric setting: $3 3/k + \varepsilon$ approximation.
- Euclidean setting: $2 2/k + \varepsilon$ approximation.

Outline

- Robot patrolling problem
- Cyclic solutions
- Find a $(1 + \varepsilon)$ -approximte cyclic solution
- Open problems

Periodic schedule w/ 2-approximation

Take an OPT solution w/ latency = L. All n sites must be visited during a time window L.

Periodic schedule w/ 2-approximation

Take an OPT solution w/ latency = L. All n sites must be visited during the time window L. \Rightarrow Wrap around, we get a solution with latency $\leq 2L$.

Improve 2-approximation?

If we can shrink the window by ε on both sides yet still cover all sites, we get latency $\leq 2(1 - 2\varepsilon) \cdot L$.

Shrinking process

Sweep from both ends inward, until we meet a site (say p_1). If p_1 is still covered, ignore & keep going.

Shrinking process

Sweep from both ends inward, until we meet a site (say p_1). If p_1 is "critical", freeze the endpoint of r_4 at p_1 .

After shrinking process

Frozen segments: left endpoints A, right endpoints B. Robot r_1 at A_1 visits site p with sweep distance $\ell(A_1)$.

Shortcut: r_2 moves from B_2 to visit $f_1(A_1)$, pay cost $\leq \ell(A_1) + \ell(B_2)$.

Add a matching of shortcut edges to the frozen segments \Rightarrow a set of bichromatic cycles \Rightarrow a cyclic solution.

No increase in latency: cost paid no greater than saving.

Add a matching of shortcut edges to the frozen segments \Rightarrow a set of bichromatic cycles \Rightarrow a cyclic solution.

No increase in latency: cost paid no greater than saving. But, can we find a matching of shortcut edges?

Shortcut graph and bag graph

Bag graph: capture potential shortcuts.

Place an edge between two bags if they share a common endpoint label.

Shortcut graph and bag graph

Shortcut graph: connect endpoints with potential shortcuts.

Shortcut graph is isomorphic to the line graph of the bag graph.

Shortcut graph and bag graph

Shortcut graph: connect endpoints with potential shortcuts.

Shortcut graph is isomorphic to the line graph of the bag graph. [Sumner'74] The line graph of a connected graph with an even number of edges has a perfect matching.

18 of 28

Modify into a cyclic solution: Add shortcuts

Case study on connected components of the bag graph:

- even # vertices \Rightarrow a perfect matching.
- odd # vertices, no empty segment \Rightarrow a matching + a triangle.
- odd # vertices, w/ empty segment \Rightarrow a matching + a vertex.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Issue: pay extra cost for duplicated black edges.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Issue: pay extra cost for duplicated black edges. Analyze # duplicated edges & # "useless" robots. Max lantency $\leq 2(1 - 1/k)L$.

Outline

- Robot patrolling problem
- Cyclic solutions
- Find a $(1 + \varepsilon)$ -approximate cyclic solution
- Open problems

An optimal cyclic solution

An optimal cyclic solution:

- Paritioning the sites into clusters $\Pi = \{P_1, P_2, \cdots, P_t\}, t \leq k$.
- Assign k robots to these clusters: $k_1 + k_2 + \cdots + k_t = k$.
- For each cluster, we place robots evenly along $TSP(P_i)$.

An optimal cyclic solution

An optimal cyclic solution:

- Paritioning the sites into clusters $\Pi = \{P_1, P_2, \cdots, P_t\}, t \leq k$.
- Assign k robots to these clusters: $k_1 + k_2 + \cdots + k_t = k$.
- For each cluster, we place robots evenly along $TSP(P_i)$.

Issue 1: how to find the partition Π ? Issue 2: how to assign robots to a partition Π ?

22 of 28

How to assign robots to a partition?

Assume a γ -approximate TSP algorithm *tsp*.

How to assign robots to a partition?

Assume a γ -approximate TSP algorithm *tsp*.

- Assign one robot to each cluster. $k_i = 1, \forall i$.
- Max latency $\max_i tsp(P_i)/k_i$.
- Iteratively assign the next robot to the cluster w. the largest latency.

How to assign robots to a partition?

Assume a γ -approximate TSP algorithm *tsp*.

- Assign one robot to each cluster. $k_i = 1, \forall i$.
- Max latency $\max_i tsp(P_i)/k_i$.
- Iteratively assign the next robot to the cluster w. the largest latency.

This gives a γ -approximation to optimal solution with partitioning Π .

- General metric space: $\gamma = 1.5 \delta$, $\delta > 10^{-36}$. [Karlin et.al. '21]
- Euclidean setting: $\gamma = 1 + \varepsilon$, [Arora'98, Mitchell'99]

How to assign robots to a partition?

Assume a γ -approximate TSP algorithm *tsp*.

- Assign one robot to each cluster. $k_i = 1, \forall i$.
- Max latency $\max_i tsp(P_i)/k_i$.
- Iteratively assign the next robot to the cluster w. the largest latency.

This gives a γ -approximation to optimal solution with partitioning Π .

- General metric space: $\gamma = 1.5 \delta$, $\delta > 10^{-36}$. [Karlin et.al. '21]
- Euclidean setting: $\gamma = 1 + \varepsilon$, [Arora'98, Mitchell'99]

Issue 1: how to find the partition Π ? Issue 2: how to assign robots to a partition Π ? \checkmark

OPT cyclic solution has latency L.

• There exists a $(1 + \varepsilon)$ -approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L/k$.

OPT cyclic solution has latency L.

• There exists a $(1 + \varepsilon)$ -approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L/k$.

OPT cyclic solution has latency L.

• There exists a $(1 + \varepsilon)$ -approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L/k$.

Add all short edges to an opt cyclic solution.

OPT cyclic solution has latency L.

• There exists a $(1 + \varepsilon)$ -approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L/k$.

Add all short edges to an opt cyclic solution. For each component keep the "minimum spanning" edges.

OPT cyclic solution has latency L.

• There exists a $(1 + \varepsilon)$ -approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L/k$.

Add all short edges to an opt cyclic solution. For each component keep the "minimum spanning" edges. Turn each connected component to a new cycle.

Find a $(1 + \varepsilon)$ -approximate cyclic solution?

Start with the MST T.

- MST has $\leq k(1 + k/\varepsilon) \log \operatorname{edges} (\geq \varepsilon L/k)$.
- Enumerate a subset of at most *k* long edges to remove.

Find a $(1 + \varepsilon)$ -approximate cyclic solution?

Start with the MST T.

- MST has $\leq k(1 + k/\varepsilon) \log \operatorname{edges} (\geq \varepsilon L/k)$.
- Enumerate a subset of at most *k* long edges to remove.

Extra factor of $O((k/\varepsilon)^k)$ time to find the correct partition.

Open problems

Improve approximation factor of 2(1 - 1/k) by the optimal cyclic solution.

Open problems

- Improve approximation factor of 2(1 1/k) by the optimal cyclic solution.
- Conjecture: the optimal cyclic solution is overall optimal.

More open problems

Weighted version: minimize $\max_i w_i L_i$.

- k = 1, $O(\log n)$ -approximation. [Alamdari et.al. '14]
- $k \ge 2$, $O(k^2 \log \frac{w_{\max}}{w_{\min}})$ -approximation. [Afshani et.al. '20].

Even in 1D, optimal solution do not use disjoint cycles. Solutions with disjoint cycles are arbitrarily worse.

Questions and comments

- On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem, SoCG'2022.
- Approximation Algorithms for Multi-Robot Patrol-Scheduling with Min-Max Latency, WAFR'2020.