On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao*, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, Hao-Tsung Yang

Rutgers University
http://sites.rutgers.edu/jie-gao

$$
\text { June } 2023
$$

Robot patrolling problem

k robots with maximum unit speed collectively patrol n sites in a metric space.

ㅁㅁㅁ

Robot patrolling problem

k robots with maximum unit speed collectively patrol n sites in a metric space.

ㅁㅁํ

Patrol schedules are infinite sequences.
Goal: minimize the maximum time duration (latency) between consecutive visits to any site.

Robot patrolling problem

$k=1$: travelling salesman problem. NP-hard.

Every site is visited every $L=|T S P|$ unit time.

Robot patrolling problem

$k=1$: travelling salesman problem. NP-hard.

Every site is visited every $L=|T S P|$ unit time.

- General metric setting: 3/2-approximation (Christofides'76), $3 / 2-\delta, \delta>10^{-36}$ (Karlin, Klein, Gharan'21).
- Euclidean setting: ($1+\varepsilon$)-approximation (Arora'98, Mitchell'99).

Challenges

$k \geq 2$: there can be optimal solutions that are chaotic.

Challenges

$k \geq 2$: there can be optimal solutions that are chaotic.

Challenges

$k \geq 2$: there can be optimal solutions that are chaotic.

Not clear if the problem (whether opt latency $<L$) is decidable if distances are not integers.

What about approximations?

[ABBGLNRSWY'20] If there is an α-approximation to

- k-path cover problem: find k paths to cover n sites with min max path length.
- min-max k-tree cover problem: find k trees to cover n sites with min max tree weight.
- min-max k-cycle cover problem: find k cycles to cover n sites with min max cycle length.
there is a 2α-approximation to k-robot patrol problem.

What about approximations?

- k-path cover problem: 4 [Arkin, Hassin, Levin'06]
- min-max k-tree cover problem: 8/3 [Xu, Liang, Lin'13]
- min-max k-cycle cover problem: 16/3 [Xu, Liang, Lin'13]

Best known approximation to k-robot patrol: 16/3.

Cyclic solutions

We focus on cyclic solutions:

- n sites partitioned into $\ell \leq k$ groups $P_{1}, P_{2}, \cdots P_{\ell}$.
- Group P_{i} is allocated one or more robots, evenly spread along $T S P\left(P_{i}\right)$.

Main Results

1. An optimal cyclic solution is a $2(1-1 / k)$ approximation to the optimal overall solution.

Main Results

1. An optimal cyclic solution is a $2(1-1 / k)$ approximation to the optimal overall solution.

- When $k=2$, the optimal cyclic solution is optimal overall.

Main Results

1. An optimal cyclic solution is a $2(1-1 / k)$ approximation to the optimal overall solution.

- When $k=2$, the optimal cyclic solution is optimal overall.

2. Approximating the optimal cyclic solution \Rightarrow approximating TSP on some input, with

- an extra $1+\varepsilon$ approximation factor.
- an extra $O\left((k / \varepsilon)^{k}\right)$ factor in running time.

Main Results

1. An optimal cyclic solution is a $2(1-1 / k)$ approximation to the optimal overall solution.

- When $k=2$, the optimal cyclic solution is optimal overall.

2. Approximating the optimal cyclic solution \Rightarrow approximating TSP on some input, with

- an extra $1+\varepsilon$ approximation factor.
- an extra $O\left((k / \varepsilon)^{k}\right)$ factor in running time.

3. Solving multi-robot patrol problem:

- General metric setting: $3-3 / k+\varepsilon$ approximation.
- Euclidean setting: $2-2 / k+\varepsilon$ approximation.

Outline

- Robot patrolling problem
- Cyclic solutions
- Find a $(1+\varepsilon)$-approximte cyclic solution
- Open problems

Periodic schedule w/ 2-approximation

Take an OPT solution w/ latency $=L$. All n sites must be visited during a time window L.

$$
L
$$

Periodic schedule w/ 2-approximation

Take an OPT solution $w /$ latency $=L$. All n sites must be visited during the time window $L . \Rightarrow$ Wrap around, we get a solution with latency $\leq 2 L$.

Improve 2-approximation?

If we can shrink the window by ε on both sides yet still cover all sites, we get latency $\leq 2(1-2 \varepsilon) \cdot L$.

Shrinking process

Sweep from both ends inward, until we meet a site (say p_{1}). If p_{1} is still covered, ignore $\&$ keep going.

Shrinking process

Sweep from both ends inward, until we meet a site (say p_{1}). If p_{1} is "critical", freeze the endpoint of r_{4} at p_{1}.

After shrinking process

Frozen segments: left endpoints A, right endpoints B. Robot r_{1} at A_{1} visits site p with sweep distance $\ell\left(A_{1}\right)$.

Shortcut: r_{2} moves from B_{2} to visit $f_{1}\left(A_{1}\right)$, pay cost $\leq \ell\left(A_{1}\right)+\ell\left(B_{2}\right)$.

How to use the shortcut edges? An easy case

Add a matching of shortcut edges to the frozen segments \Rightarrow a set of bichromatic cycles \Rightarrow a cyclic solution.

No increase in latency: cost paid no greater than saving.

How to use the shortcut edges? An easy case

Add a matching of shortcut edges to the frozen segments \Rightarrow a set of bichromatic cycles \Rightarrow a cyclic solution.

No increase in latency: cost paid no greater than saving. But, can we find a matching of shortcut edges?

Shortcut graph and bag graph

Bag graph: capture potential shortcuts.

Place an edge between two bags if they share a common endpoint label.

Shortcut graph and bag graph

Shortcut graph: connect endpoints with potential shortcuts.

Shortcut graph is isomorphic to the line graph of the bag graph.

Shortcut graph and bag graph

Shortcut graph: connect endpoints with potential shortcuts.

Shortcut graph is isomorphic to the line graph of the bag graph. [Sumner'74] The line graph of a connected graph with an even number of edges has a perfect matching.

Modify into a cyclic solution: Add shortcuts

Case study on connected components of the bag graph:

- even \# vertices \Rightarrow a perfect matching.
- odd \# vertices, no empty segment \Rightarrow a matching + a triangle.
- odd \# vertices, w/ empty segment \Rightarrow a matching + a vertex.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Issue: pay extra cost for duplicated black edges.

Modify into a cyclic solution: Eulerize

Duplicate certain frozen edges to make the graph Eulerian.

Issue: pay extra cost for duplicated black edges.
Analyze \# duplicated edges \& \#"useless" robots.
Max lantency $\leq 2(1-1 / k) L$.

Outline

- Robot patrolling problem
- Cyclic solutions
- Find a $(1+\varepsilon)$-approximate cyclic solution
- Open problems

An optimal cyclic solution

An optimal cyclic solution:

- Paritioning the sites into clusters $\Pi=\left\{P_{1}, P_{2}, \cdots, P_{t}\right\}, t \leq k$.
- Assign k robots to these clusters: $k_{1}+k_{2}+\cdots+k_{t}=k$.
- For each cluster, we place robots evenly along $T S P\left(P_{i}\right)$.

ㅁㅁㅁ

An optimal cyclic solution

An optimal cyclic solution:

- Paritioning the sites into clusters $\Pi=\left\{P_{1}, P_{2}, \cdots, P_{t}\right\}, t \leq k$.
- Assign k robots to these clusters: $k_{1}+k_{2}+\cdots+k_{t}=k$.
- For each cluster, we place robots evenly along $\operatorname{TSP}\left(P_{i}\right)$.

Issue 1: how to find the partition Π ?
Issue 2: how to assign robots to a partition Π ?

How to assign robots to a partition?

Assume a γ-approximate TSP algorithm tsp.

How to assign robots to a partition?

Assume a γ-approximate TSP algorithm tsp.

- Assign one robot to each cluster. $k_{i}=1, \forall i$.
- Max latency $\max _{i} \operatorname{tsp}\left(P_{i}\right) / k_{i}$.
- Iteratively assign the next robot to the cluster w. the largest latency.

How to assign robots to a partition?

Assume a γ-approximate TSP algorithm tsp.

- Assign one robot to each cluster. $k_{i}=1, \forall i$.
- Max latency $\max _{i} \operatorname{tsp}\left(P_{i}\right) / k_{i}$.
- Iteratively assign the next robot to the cluster w. the largest latency.

This gives a γ-approximation to optimal solution with partitioning Π.

- General metric space: $\gamma=1.5-\delta, \delta>10^{-36}$. [Karlin et.al. '21]
- Euclidean setting: $\gamma=1+\varepsilon$, [Arora'98, Mitchell'99]

How to assign robots to a partition?

Assume a γ-approximate TSP algorithm tsp.

- Assign one robot to each cluster. $k_{i}=1, \forall i$.
- Max latency $\max _{i} \operatorname{tsp}\left(P_{i}\right) / k_{i}$.
- Iteratively assign the next robot to the cluster w. the largest latency.
This gives a γ-approximation to optimal solution with partitioning Π.
- General metric space: $\gamma=1.5-\delta, \delta>10^{-36}$. [Karlin et.al. '21]
- Euclidean setting: $\gamma=1+\varepsilon$, [Arora'98, Mitchell'99]

Issue 1: how to find the partition Π ?
Issue 2: how to assign robots to a partition Π ? \checkmark

A 'well-separated' $(1+\varepsilon)$-approximate cyclic solution

OPT cyclic solution has latency L.

- There exists a $(1+\varepsilon)$-approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L / k$.

A 'well-separated' $(1+\varepsilon)$-approximate cyclic solution

OPT cyclic solution has latency L.

- There exists a $(1+\varepsilon)$-approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L / k$.

A 'well-separated' $(1+\varepsilon)$-approximate cyclic solution

OPT cyclic solution has latency L.

- There exists a $(1+\varepsilon)$-approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L / k$.

Add all short edges to an opt cyclic solution.

A 'well-separated' $(1+\varepsilon)$-approximate cyclic solution

OPT cyclic solution has latency L.

- There exists a $(1+\varepsilon)$-approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L / k$.

Add all short edges to an opt cyclic solution.
For each component keep the "minimum spanning" edges.

A 'well-separated' $(1+\varepsilon)$-approximate cyclic solution

OPT cyclic solution has latency L.

- There exists a $(1+\varepsilon)$-approximate cyclic solution with a partition Π s.t. the min distance between clusters is $\geq \varepsilon L / k$.

Add all short edges to an opt cyclic solution.
For each component keep the "minimum spanning" edges.
Turn each connected component to a new cycle.

Find a $(1+\varepsilon)$-approximate cyclic solution?

Start with the MST T.

- MST has $\leq k(1+k / \varepsilon)$ long edges $(\geq \varepsilon L / k)$.
- Enumerate a subset of at most k long edges to remove.

Find a $(1+\varepsilon)$-approximate cyclic solution?

Start with the MST T.

- MST has $\leq k(1+k / \varepsilon)$ long edges $(\geq \varepsilon L / k)$.
- Enumerate a subset of at most k long edges to remove.

Extra factor of $O\left((k / \varepsilon)^{k}\right)$ time to find the correct partition.

Open problems

- Improve approximation factor of $2(1-1 / k)$ by the optimal cyclic solution.

Open problems

- Improve approximation factor of $2(1-1 / k)$ by the optimal cyclic solution.
- Conjecture: the optimal cyclic solution is overall optimal.

More open problems

Weighted version: minimize $\max _{i} w_{i} L_{i}$.

- $k=1, O(\log n)$-approximation. [Alamdari et.al. '14]
- $k \geq 2, O\left(k^{2} \log \frac{w_{\max }}{w_{\text {min }}}\right)$-approximation. [Afshani et.al. '20].

Even in 1D, optimal solution do not use disjoint cycles. Solutions with disjoint cycles are arbitrarily worse.

Questions and comments

- On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem, SoCG'2022.
- Approximation Algorithms for Multi-Robot Patrol-Scheduling with Min-Max Latency, WAFR'2020.

