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Abstract. We consider range queries on a graph under the constraints of
differential privacy and query ranges are defined as the set of edges on the
shortest path of the graph. Edges in the graph carry sensitive attributes
and the goal is to report the sum of these attributes on the shortest path for
counting query or the minimum of the attributes in a bottleneck query. We
use differential privacy to ensure that answering these queries does not
violate the privacy of the sensitive edge attributes. Our goal is to design
mechanisms that minimize the additive error of the output with the given
privacy budget.

For this, we develop the first set of non-trivial results for private range
queries on shortest paths. For counting range queries we can achieve an
additive error of ˜O(n1/3) for ε-DP and ˜O(n1/4) for (ε, δ)-DP. We present
two algorithms where we control the final error by carefully balancing
perturbation added to the edge attributes directly versus perturbation
added to (a subset of) range query answers. Bottleneck range queries are
easier and can be answered with polylogarithmic additive errors.
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1 Introduction

Range counting has been extensively studied in the literature, particularly for
geometric ranges. In the typical setting, there is a set of points X in Rd. A range
query is often formulated by a geometric shape, and range counting reports the
number of points inside the range [34]. The points can be weighted, in which
case the goal is to return the weighted sum inside the query range. Compared
to the huge literature on geometric range queries [48], there has been much less
work on the study of range queries with non-geometric ranges.

In this paper, we study private range counting when the ranges are defined
as paths on a graph. This setting becomes interesting with the exploding
amount of graph data. Graphs are used as a natural mathematical structure
to model pairwise relations between objects. Often, the pairwise relations or
attributes can represent private and confidential information. As such, per-
forming statistics on such a graph without any robust privacy guarantee can
be problematic. We consider the scenario where both the graph topology and
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the query ranges (paths on the graph) are public information, but attributes on
the edges of the graph, that may come from private sources, are sensitive and
protected. Our goal is to return (approximate) range queries while protecting
data privacy.

The above model is applicable in many real-world scenarios. In financial
analysis, graph-based techniques have been adopted to combat fraud [39]. One
can consider a graph where edges represent transactions between two finan-
cial entities with attributes such as the total amount being transferred. Foren-
sic analysis researchers may want to issue queries along certain paths that
involve multiple financial entities to detect anomalies. In supply chain net-
works, vertices represent participants such as producers, transporters or retail-
ers, and edges represent their relationships. Resilience is a critical factor in sup-
ply chains and metrics on edges such as Time-to-Stockout (TTS) [29] have been
used for estimating end-to-end resilience of certain paths. Response time or
cost are also important edge attributes. In these settings, privacy and security
issues of the attributes are natural and crucial (e.g., as trade secrets) [38]. In road
networks, ranges can be naturally defined as paths that users take and queries
are about collective statistics of traffic along the path. Privacy is also crucial in
healthcare information systems [46].

1.1 Our Setting and Results

We consider the setting when query ranges are taken as shortest paths based on
public edge weights, and the query answer is a function of private attributes on
the edges involved in a query range/path. Using shortest paths between two
vertices is natural in many of the application settings discussed above. Further,
if the range query is applied on arbitrary paths in a graph, the additive query
error needed to ensure privacy can be as large as Ω(n), where n is the number
of vertices in the graph. We give a proof of this in Appendix A.

We consider two types of query function f on a path P:

– Counting query: return the sum of the attribute values on edges of P;
– Bottleneck query: return the minimum of the attribute values on edges of P.

Since the attribute values are private and sensitive, the reported range query
answers are perturbed to ensure differential privacy guarantees. Specifically,
we consider two neighboring attribute value sets w and w′ on the same graph
G, which differ by a �1 norm of 1. A mechanism A is called (ε, δ)-differentially
private if the probability of obtaining query outputs on input attributes w or w′

is relatively bounded by a multiplicative error of eε and an additive error of δ.
When δ = 0, we call A ε-DP or pure-DP. The objective is to achieve the specified
privacy requirement with noise perturbation as small as possible.

In this paper, we study the private range query (both counting and bottle-
neck) on the shortest paths. As standard in the literature of differential privacy,
our aim is to understand the trade-off between privacy and additive error in
the final query answer, i.e., for a given privacy budget, minimize the additive
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error. One can additionally consider the query time and space required for the
data structure. We leave designing a differentially private data structure with a
better query time-space trade-off as a direction of future research.

For counting queries, we present two algorithms with privacy guarantees
of pure-DP and approximate-DP respectively (in Sect. 3 and Sect. 4), returning
the counts with relatively small worst-case additive errors. Our main results are
captured by the following theorem:

Result 1 (ε-DP algorithm for counting query, informal version of Theorem 1).
There exists an ε-differentially private algorithm that outputs counting queries along
all pairs shortest paths with additive error at most ˜O( n

1/3

ε ) with high probability.

Result 2 ((ε, δ)-DP algorithm for counting query, informal version of
Theroem 2). There exists an (ε, δ)-differentially private algorithm that outputs count-
ing queries along all pairs shortest paths with additive error at most ˜O( n

1/4

ε log1/2 1
δ )

with high probability.

The above results are the first known upper bounds for this specific prob-
lem. Meanwhile, we establish a lower bound of Ω(n1/6) adapted from the con-
struction of the lower bound for private all pairs shortest distances [10] (with
details in Appendix D). The gap between the best-known upper and lower
bounds provokes an interesting perspective of private range queries: we do
not yet have optimal bounds for specific ranges, despite the results by [36] pre-
senting optimal bounds for generic range query problems. Closing the gap for
counting queries would also be an interesting open question. Our next result,
however, shows that the bottleneck query yields simple algorithms using exist-
ing techniques to achieve logarithm additive error:

Result 3 (DP algorithms for bottleneck query, informal version of Theroem
3). There exists an ε-differentially private algorithm and an (ε, δ)-differentially private
algorithm, such that with high probability, outputs bottleneck queries along all pairs

shortest paths with additive error at most ˜O( log n
ε ) and ˜O(

√

log n log 1
δ

ε ) respectively.

Collectively, our results give the first set of non-trivial bounds for privately
releasing queries for shortest paths on range query systems. We further show
that it is possible to use the VC-dimension of shortest paths queries to obtain a
bound similar to Result 2, albeit with a much more complicated algorithm for
generic range query applications from [36].

1.2 Main Techniques

In general, differentially private mechanisms add perturbation to data samples.
There are two standard primitives, namely output perturbation, where random
noises are added to the final data output, and input perturbation, where random
noises are added to each data element.



Differentially Private Range Query on Shortest Paths 343

We first explain the challenges in improving these two mechanisms. To
guarantee privacy, the noise in the output perturbation should take a magni-
tude of the sensitivity of the range query function. If the edge attribute changes
by 1 in the �1 norm, there can be up to Θ(n2) query pairs being impacted –
e.g., when Θ(n2) shortest paths share one edge. As such, if we apply a crude
output perturbation, the noise for each query should be ˜O(n2) for ε-differential
privacy and ˜O(n) for (ε, δ)-differential privacy. On the other hand, with input
perturbation, one can add a Laplace noise of magnitude proportional to 1/ε to
each edge attribute. This satisfies ε-privacy, but the shortest path may have up
to order n edges, and the noises on edges are accumulated with a total error of
˜O(n).

To improve the error bound, we actually need to combine input and output
perturbations. In general, the error due to output perturbation is defined by the
sensitivity of the function – how many entries will be changed when we have
neighboring attributes. The error for input perturbation depends on the graph
hop diameter, i.e., the maximum number of edge attributes that we need to sum
up as the output of counting queries. Therefore, one natural idea is to introduce
‘shortcuts’ (to replace a selective set of shortest paths) to the graph such that
the network diameter is reduced. We then apply output perturbation on the
shortcuts and use input perturbation on the graph with shortcuts. Of course,
when the shortcuts are introduced, we need to be mindful of their sensitivity.
The natural question is, can we reduce the network diameter with no or limited
increment to the edge sensitivity with the introduction of the shortcuts?

Pure-DP Algorithm. The main idea in our first solution is to choose short-
cuts with small sensitivity. By the assumption of unique shortest path, any
two shortest paths would either be completely disjoint or intersect at exactly
one common sub-path. For every intersecting shortest path between vertices
(u1, u2), we name u1, u2 as the cut vertices. Since there are (s2) shortest paths for
all pairs in S , there are at most O(s2) cut vertices on any shortest path P(u, v)
with (u, v) ∈ S × S . For every (u, v) ∈ S × S , we cut the path P(u, v) along
these cut vertices into O(s2) canonical segments and pre-compute their length
using output perturbation. The good thing is that the maximum sensitivity for
the length of a canonical segment is one – since no two canonical segments can
share any common edge. Reducing sensitivity by a multiplicative factor of s2 at
the cost of increasing the hop diameter by an additive value of s2 turns out to
be beneficial when we calculate the final additive error, which is ˜O(

√
n/s+ s2),

for our ε-DP algorithm. Plugging in s = n1/3, we can get an error of ˜O(n1/3)
and an ε-DP algorithm.

Approximate-DP Algorithm. Our solution for (ε, δ)-DP exploits properties of
strong composition [17], which allows us to massage k (ε, δ)-DP mechanisms
into an (ε′, δ′)-DP mechanism, where ε′ ≈ ε

√
k and δ′ ≈ kδ. Our strategy to

leverage strong decomposition is to build a shortest path tree rooted at each ver-
tex in the sampled set S . Tree graphs admit much better differentially private
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mechanisms – one can get polylogarithmic additive error for running queries
on a tree graph [18,45]. Now for any two vertices u, v in G, if the shortest path
P(u, v) has more than ˜O(n/s) vertices, P(u, v) has at least one vertex w in S
with high probability. Thus the length of P(u, v) is taken as the sum of length
P(u,w) and P(w, v), which, can be obtained by using pre-computed query val-
ues between (u,w) and (v,w) in the shortest path tree rooted at w. The sensi-
tivity of an edge in this case goes up – an edge can appear in possibly all the
s trees. Thus, on the trees we take (O(ε/

√
s), δ/2s)-differentially private mech-

anisms. The composition of s of them gives (ε, δ)-DP. The final error bound is
˜O
(√

n/s+
√
s
)

. Optimizing the error by setting s = ˜O(
√
n) gives an (ε, δ)-DP

mechanism with an additive error of ˜O(n1/4).

Remark 1. Our scheme for the approximate-DP algorithm can also be applied
to the pure-DP regime to obtain the same upper bound of ˜O(n1/3), using the
basic composition theorem (Proposition 4) and replacing Gaussian mechanism
with Laplace mechanism. However, there will be an extra log2 n on the additive
error over the pure-DP algorithm described above.

Remark 2. The algorithm using canonical segments works only for undirected
graphs, while the algorithm using shortest path trees can be extended for
directed graphs. In particular, we can build two shortest path trees at each sam-
pled vertex w, one Tin(w) with edges pointing towards w and one tree Tout(w)
with edges pointing away from w. Any shortest path P(u, v) that visits a ver-
tex w ∈ S is composed of the shortest path from u to w (captured in the tree
Tin(w)) and then a path from w to v (captured in tree Tout(w)). With this in
mind, throughout the paper we assume an undirected graph.

1.3 Related Work

Geometric Range Queries. Geometric range queries typically consider halfplane
ranges, axis-parallel rectangles (orthogonal range query), or simplices (simplex
range query). The majority of work on range counting considers upper and
lower bounds on the running time for answering a query, with different data
storage requirements [48]. Designing geometric data structures while preserv-
ing differential privacy has also gained attention in the recent past. For exam-
ple, Biemel et al. [3,30] looked at the problem of the center point of a con-
vex hull. They instantiated exponential mechanism with Tukey depth [49] as
the score function. Since then, several works have looked at various geometric
problems, like learning axis-aligned rectangles [4,44], where one can achieve
optimal error bound under pure differential privacy using exponential mecha-
nism; however, the case for approximate differential privacy is still open. There
has been some recent work that studied differentially private geometric range
queries (e.g., orthogonal range queries) under both the central model and local
model of privacy [11,12,21,36,40,51,53].
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Differentially Private Linear Queries. A fundamental class of queries studied in
the literature of differential privacy are linear queries on a dataset [2,5–8,15,23–
28,31,32,37,41,42,52]. Here, given a dataset from a data universe U of size d
(usually represented in a form of a histogram D ∈ Rd) and a query q ∈ Rd,
the goal is to estimate q�D. One can replace the query vector with a predicate
φ : Un → {0, 1}, where n is the size of the database, D = {d1, · · · , dn} ∈ Un.
The counting query is then simply ∑n

i=1 φ(di). Range queries can be seen as a
special case of linear queries with a properly defined set of predicates.

The most relevant work to this paper is the work by Muthukrishnan and
Nikolov [36], who proposed a differentially private mechanism for answering
(generic) range queries when the ranges have bounded VC-dimension [36]. We
can apply their techniques to get results for our setting of using shortest paths
as ranges. Our algorithm can be easily extended to guarantee ε-differentially
private with a slight change of parameters, while this substitution is non-trivial
for the algorithm of Muthukrishnan and Nikolov [36], and to the best of our
understanding, yields sub-optimal error bound. More discussion of this is in
Sect. 6.

Private Release of Graph Data. Private release of graph data has been stud-
ied in recent years on many graph properties; see the survey [33]. There has
been recent work on differentially private release of all pairs shortest path
length [10,18,19,45]. Here, the edge weights w is considered sensitive, and the
goal is to produce an approximate distance matrix for all pairs shortest paths
length with differential privacy guarantees. In other words, the edge weights
w are the sensitive attributes a. This is a harder problem than the problem con-
sidered in this paper. Specifically, the topology of the shortest paths are pub-
lic information in our setting, but the knowledge of which edges are on the
shortest path may reveal knowledge of the sensitive edge length w. It has been
shown in [45] that when one releases the set of edges on an approximate short-
est path in a differentially private manner, the additive error in the distance
report has to be as large as Ω(n). The best known results for private release
of all pairs shortest distance have an additive error of ˜O(n2/3) for pure-DP
and ˜O(

√
n) for approximate-DP [10,18,19] for general graphs. There is a lower

bound of Ω(n1/6) for approximate-DP [10]. For trees the two problems are the
same since for any two nodes the shortest path is unique regardless of edge
length.

Differentially private range query on shortest paths has been done on a pla-
nar graph in [22], where they provide mechanisms with polylogarithmic addi-
tive error. But this problem has not been studied for the general graph setting.

2 Preliminaries

Notation. We use G = (V , E) to denote a graph on vertex set V and edges E .
An edge e ∈ E is also denoted by the tuple (u, v) if u and v are its endpoints.
For a pair of vertices (u, v), we denote P(u, v) as their shortest path, and d(u, v)
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as the shortest distance. We can define the attribute function w : E → Rm

over all the edges independent of the shortest paths. On a path P(u, v), we let
γ(u, v) := mine{w(e)|e ∈ P(u, v)} as the minimum attribute value along the
shortest path P(u, v). We use R = (X, S) to denote a set system, where S is a
collection of sets with elements from X.

2.1 The Models for Range Query and Privacy

Shortest Paths as Ranges. Let R = (X, S) be a set system, where X is a set of
elements and S is a collection of subsets Si ⊆ X called ranges. In a graph G
when shortest paths are unique1, we can define shortest paths as ranges. We
take X to be the set of m edges in G, and each set of S corresponds to a set
of edges on a (u, v) shortest path. In particular, for an undirected graph G, its
corresponding S has (n2) order sets; and for a directed graph G, S may have up
to n2 ordered sets.

Based on the set system R = (X, S), we can define range queries on R
as (R, f ) with a query function f : S → R as { f (S)}S∈S for every set in S .
We can further extend this notion of range queries on shortest distances with
attribute functions w : X → R≥0, and the queries on each set S become f (w(S)),
where w(S) means to apply attribute function to each element in S. Note that
the attribute function should not be considered as edge weights as it does not
affect the shortest paths. Our goal is to release the statistics of all sets with small
additive errors and privacy guarantees following the definitions in Definition
2.

We now formally define the privacy model for range queries on shortest
paths.

Definition 1 (Range Queries with Neighboring Attributes). Let (R =
(X, S), f ) be a system of range queries, and let w,w′ : X → R≥0 be attribute func-
tions that map each element in X to a non-negative real number. We say the attributes
are neighboring

∑
x∈X

|w(x) − w′(x)| ≤ 1.

We emphasize that the attributes do not change the shortest paths, i.e., the graphs
operate on the same set system R = (X, S). When it is clear from context, we abuse
the notation and denote the above by ‖w − w′‖1 ≤ 1.

We shall define the pure- and approximate DP with the notions of the neigh-
boring attributes on range queries as follows.

Definition 2 (Differentially Private Range Queries). Let (R = (X, S), f ) be a
system of range queries and w,w′ : X → R≥0 be attribute functions as prescribed in
Definition 1. Furthermore, let A be an algorithm that takes (R, f ,w) as input. Then

1 One can use symbolic perturbation of edge distances to produce unique shortest
paths.
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A is (ε, δ)-differentially private on G if, for all pairs of neighboring attribute functions
w,w′ and all sets of possible outputs C, we have that

Pr[A(R, f ,w) ∈ C] ≤ eε · Pr[A(R, f ,w′) ∈ C] + δ.

If δ = 0, we say A is ε-differentially private on G.
We now define the notion that characterizes the utility of the algorithm. In

the range query model, we say an algorithm A provides (α, β)-approximation
to all sets range queries (ASRQ) if, given a range query system (R = (X, S), f )
and a attribute function w, with probability at least 1 − β, algorithm A outputs
an answer within an α additive error for the original query value on every set.

Definition 3 (Approximate-ASRQ). We say a randomized algorithm A is an
(α, β)-approximation for all sets range queries (ASRQ) on a range query system
(R = (X, S), f ) with attribute function w if for any S ∈ S ,

Pr [| f (w(S)) − A(w(S))| ≤ α] ≥ 1 − β.

Since S contains the ranges of all-pairs shortest paths, the approximation
in Definition 3 naturally corresponds to the additive approximation of shortest
distances when f is the counting query. Trivially, if we output the range queries
simply based on the elements and the attribute function w, we have α = β = 0.
However, such an output will not be private – and to guarantee both privacy
and approximation is the main focus of this paper.

Remark 3. Our model of Definition 1 is closely related to the all-pair shortest
distances release studied in [10,18,19,45]. In particular, in the model of private
all-pair shortest distances, the neighboring graphs are also defined as the norm
of attributes differing by at most 1. However, there is a subtle difference: in the
shortest distances model, the shortest paths are private and subject to protec-
tion; while in the range query model, the shortest paths are known, and we do
not have to protect their privacy. This allows us to bypass the Ω(n) additive
error lower bound in [45] for any algorithm that privately reveal the shortest
paths, and obtain much stronger results.

2.2 Standard Technical Tools

Tools from Probability Theory. We first introduce some well-known results from
probability theory. We refer interested readers to the standard textbooks on this
subject for more details [50].

Definition 4 (Laplace distribution) . We say a zero-mean random variable X fol-
lows the Laplace distribution with parameter b (denoted by X ∼ Lap(b)) if the proba-
bility density function of X follows

p(x) = Lap(b) (x) =
1
2b

· exp
(

−|x|
b

)

.
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Definition 5 (Gaussian distribution) .We say a zero-mean random variable X fol-
lows the Gaussian distribution with variance σ2 (denoted by X ∼ N (0, σ2)) if the
probability density function of X follows

p(x) =
1√

2πσ2
· exp

(

− x2

2σ2

)

.

Both Laplace and Gaussian random variables have nice concentration prop-
erties. Furthermore, we can get stronger concentration results by the summa-
tion of both random variables [50].

Lemma 1 (Sum of Laplace random variables, [9,50]). Let {Xi}mi=1 be a collection
of independent random variables such that Xi ∼ Lap(bi) for all 1 ≤ i ≤ m. Then, for

ν ≥
√

∑i b2
i and 0 < λ < 2

√
2ν2

b for b = maxi {bi},

Pr

[∣

∣

∣

∣

∣

∑
i
Xi

∣

∣

∣

∣

∣

≥ λ

]

≤ 2 · exp
(

− λ2

8ν2

)

.

Lemma 2 (Sum of Gaussian random variables, [50]). Let {Xi}mi=1 be a collection
of independent random variables such that Xi ∼ N (μ, δ2) for all 1 ≤ i ≤ m. Then,

Pr
[∣

∣

∣

∣

∑i Xi

m
− μ

∣

∣

∣

∣

≥ λ

]

≤ 2 · exp
(

−mλ2

2δ2

)

.

Tools in Differential Privacy. We proceed to existing tools used frequently in dif-
ferential privacy:

Definition 6 (Sensitivity) . Let p ≥ 1. For any function f : X → Rk defined over a
domain space X , the �p-sensitivity of the function f is defined as

Δ f ,p = max
w,w′∈X
w∼w′

‖ f (w)− f (w′)‖p,

Here, ‖x‖p :=
(

∑d
i=1 |x[i]|p

)1/p
is the �p-norm of the vector x ∈ Rd and x[i] denote

the i-th coordinate.

Based on Laplace distribution, we can now define Laplace mechanism –
a standard DP mechanism that adds noise sampled from Laplace distribution
with scale dependent on the �1-sensitivity of the function. The formal definition
is as follows.

Definition 7 (Laplace mechanism) . For any function f : X → Rk, the Laplace

mechanism on input w ∈ X samples Y1, . . . ,Yk independently from Lap(
Δ f ,1

ε ) and
outputs

Mε( f ) = f (w) + (Y1, . . . ,Yk).
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The following privacy property of Laplace mechanism is known.

Proposition 1 (Laplace mechanism [15]). The Laplace mechanism Mε( f ) is ε-
differentially private.

Similar to Laplace mechanism, we can define the Gaussian mechanism:

Definition 8 (Gaussianmechanism) . For any function f : X → Rk, the Gaussian
mechanism on input w ∈ X samples Y1, . . . ,Yk independently from the Gaussian

distribution N
(

0,
2Δ2

f ,2 log(1.25/δ)
ε2

)

and outputs

Mε( f ) = f (w) + (Y1, . . . ,Yk).

The following privacy property of Gaussian mechanism is known.

Proposition 2 (Gaussian mechanism [14]). For ε ∈ (0, 1), the Gaussian mecha-
nism Mε;δ( f ) is (ε, δ)-differentially private.

It is well-known that if a mechanism M provides (ε, δ)-DP output, any func-
tion g that takes the output of M as input is also (ε, δ)-DP. This is known as the
post-processing theorem, formalized as follows.

Proposition 3 (Post-processing theorem [16]). Let M : Rd1 → Rd2 be an (ε, δ)-
differentially private mechanism and let g : Rd2 → Rd3 be an arbitrary function. Then,
the function g ◦ M : Rd1 → Rd3 is also (ε, δ)-differentially private.

Finally, we introduce another useful property of differential privacy: pri-
vacy is preserved when combining multiple differentially private mechanisms
even against adaptive adversary.

Proposition 4 (Composition theorem [15]). For any ε > 0, the adaptive composi-
tion of k ε-differentially private algorithms is kε-differentially private.

Proposition 5 (Strong composition theorem [17]). For any ε, δ ≥ 0 and δ′ > 0,
the adaptive composition of k (ε, δ)-differentially private algorithms is (ε′, kδ + δ′)-
differentially private for

ε′ =
√

2k ln(1/δ′) · ε + kε(eε − 1).

Furthermore, if ε′ ∈ (0, 1) and δ′ > 0, the composition of k ε-differentially private
mechanism is (ε′, δ′)-differentially private for

ε′ = ε ·
√

8k log(
1
δ′ ).

The following proposition follows from strong composition theorem.

Proposition 6 (Corollary 3.21 in [16]). Let A1, · · · , Ak be k (ε′, δ′)-differentially
private algorithm for

ε′ =
ε

√

8k log(1/δ)
.

Then an algorithm A formed by adaptive composition of A1, · · · , Ak is (ε, kδ′ + δ)-
differentially private.
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3 An ε-DP Algorithm for Counting Queries

In the current and following section, we focus on private algorithms for the
counting query function. As clarified in Remark 1, the algorithms using single-
source shortest-path tree scheme can achieve ε and (ε, δ)-DP regime using
only different parameters. However, we propose a different algorithmic idea
for pure-DP algorithm, which shaves off a log2 n factor. We formally state the
results on ε-DP as follows.

Theorem 1. For any ε ≥ 0, there exists an ε-differentially private efficient algorithm
that given a graph G = (V , E ,w) as a range query system (R = (X, S), f ,w) such
that S is the set of the shortest paths and f is the counting query, with high probabil-

ity, outputs all pairs counting queries with additive error O( n
1/3 log5/6 n

ε ). That is, the
algorithm outputs an estimate ̂f (·, ·) such that

Pr

(

max
u,v∈V

| ̂f (u, v) − f (u, v)| = O

(

n1/3 log5/6 n
ε

))

≥ 1 − 1
n

.

We start with some high-level intuitions. Our algorithm leverages both
input-perturbation and output-perturbation, as mentioned in Sect. 1.2. A naive
solution would be applying output-perturbation to the pair-wise counting
queries for vertices in S . However, the change of a single edge attribute may
trigger the change of potentially all counting queries for vertices in S . As such,
by the composition theorem, we need to boost the privacy parameter by a factor
of |S|2 since each counting query can change by 1. On the other hand, note that
the ranges are shortest paths, which have special structures. With the standard
assumption that all shortest paths are unique, two shortest paths only overlap
by one common shortest path segment. Therefore instead of using output per-
turbation directly among vertices in S , we will be better off by decomposing the
shortest paths by how they overlap and privatize the decomposed segments. As
will become evident, the size of decomposed segments is less than |S|2, hence
the cumulative error is reduced.

To formalize the above intuition, we introduce the notion of cut vertices and
canonical segments. Both notions are defined w.r.t a subset of vertices S ⊆ V .
Informally, a vertex w becomes a cut vertex if it is a vertex of S , or if it witnesses
the branching – either ‘merging’ or ‘splitting’ – of two shortest paths between
different pairs of vertices in S . The formal definition is as follows.

Definition 9 (Cut Vertices). Let S ⊆ V be an arbitrary subset of vertices. For any
pair of vertices (u, v) ∈ S and their shortest path P(u, v), we say w ∈ P(u, v) is a cut
vertex for (u, v) if it satisfies one of the following two conditions:

1. w ∈ {u, v};
2. w �∈ {u, v} and

(a) w ∈ P(x, z) for some (x, z) ∈ S and (x, z) �= (u, v);
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(b) Without any loss of generality, suppose the path is from x. Let pred(w) be the
vertex before w on P(x, z) and succ(w) be the vertex after w on P(x, z). Then
either pred(w) �∈ P(u, v) or succ(w) �∈ P(u, v).

See Fig. 1 (i) for an illustration of cut vertices. Based on Definition 9, we
can now define the canonical segments as the path between two adjacent cut
vertices along shortest paths of vertices in S .

Fig. 1. (i) Two shortest paths P(u, v) and P(x, z), u, v, x, z ∈ S , intersect at a common
subpath as the shortest path between two cut vertices w,w′. (ii) The shortest path P(u, v)
is partitioned into canonical segments P(u,w1), P(w1,w2), · · · , P(w�,w�+1), P(w�+1, v),
where w1,w2, · · · ,w�+1 are (ordered) cut vertices along path P(u, v).

Definition 10 (Canonical Segments). Let S ⊆ V be an arbitrary subset of vertices.
For any pair of vertices (u, v) ∈ S and their shortest path P(u, v), a subpath P(w,w′)
of P(u, v) is a canonical segment if

1. w is a cut vertex for some (x, z) ∈ S ;
2. w′ is a cut vertex for some (x′, z′) ∈ S ;
3. None of the vertices between w and w′ on P(u, v) is a cut vertex for any (x′′, z′′) ∈

S .

Note that (u, v), (x, z), and (x′, z′) may or may not be the same in the above
definition. One can think of the cut vertices as all vertices that witnesses the
shortest path branching between all pairs of vertices in S , and the canonical
segments are exactly the collection of segments between adjacent cut vertices
along shortest paths. See Fig. 1 (ii) for an example: {u, v,w1,w2,w3,w4} are all
cut vertices, which define 5 canonical segments.

For a fixed vertex pair (u, v) ∈ S , we define Canon(S , u, v) as the set of
canonical segments on the shortest path of (u, v). Note that the canonical seg-
ments need not to be among the edges between the vertices in S : the shortest
path between (u, v) ∈ S may well be outside of S . We provide some observa-
tions about the basic properties of canonical segments.

Observation 3. Canonical segments defined as in Definition 10 satisfy the following
properties:

1. Any two canonical segments are disjoint.
2. The segments in Canon(S , u, v) covers all edges in P(u, v), i.e.

P(u, v) = ∪P(x,z)∈Canon(S ,u,v)P(x, z).
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3. For any pair of vertices (u, v) ∈ S , there are at most |S|2 canonical segments in
Canon(S , u, v) for |S| ≥ 2.

Proof. Observation 1 is by definition. Concretely, if two canonical segments
overlap, there must be one cut vertex inside another canonical segment, which
is not possible by definition. Observation 2 follows from the fact that u and
v themselves are cut vertices, and any other cut vertices on P(u, v) only fur-
ther divides the path. Finally, observation 3 holds since every pair of vertices
in S contributes to at most two cut vertices on P(u, v). Thus there are at most
2 · (|S|

2 ) ≤ |S|2 canonical segments.

With the definition and properties of canonical segments, we are now ready
to present our ε-DP algorithm as follows.

CANON-APSD: An ε-DP algorithm to release all pairs counting queries
Input: An n vertices graph, G = (V , E ,w) and privacy parameter ε > 0.

1. Sample a set S of s = 100ζ · log n vertices uniformly at random, where
ζ = O(n1/3 log−2/3 n)

2. Compute all-pair shortest path for every vertex pair (x, z) ∈ S in G, and
let PS be the set of the paths.

3. Compute Canon(S) based on the sampled vertices S and their shortest
paths PS .

4. S Perturbation: For each canonical segment P ∈ Canon(S , u, v), add an
independent Laplace noise Lap(2/ε) to its shortest path length. Com-
pute a function fS (·, ·) for counting queries between any vertices (u, v) ∈
S , by summing up the noisy attributes of the canonical segments in
Canon(S , u, v).

5. Non-S Perturbation: For each edge in G, add independent Laplace noise
Lap(2/ε) to the edge attribute. For any vertices u, v ∈ V , let P(u, v) be the
shortest path in G and f ′(u, v) be the sum of the noisy attributes of the
edges along P(u, v).

6. For each pair of vertices (u, v),
– If there are at least two vertices in P(u, v) that are in S , let vertex x

be the first one along P(u, v) and z be the last one such that x, z ∈ S ,
release ̂f (u, v) = f ′(u, x) + fS (x, z) + f ′(z, v).

– Otherwise, release ̂f (u, v) = f ′(u, v).

We now give the formal analysis of the privacy guarantee and bounds for
the additive error.
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3.1 Proof of Thorem 1

We start with an observation of the sensitivity of canonical segments. Since
canonical segments do not overlap, the weight change of a single edge can only
trigger changes of the shortest path distances of at most one canonical segment.

Claim. Fix any S ⊆ V , and let g : (2V , 2E ) → R|Canon(S)| be the function that
computes the distances for canonical segments. Then, the �1 sensitivities for g
is at most 1.

Proof. The claim follows from the fact that the canonical segments are disjoint
(statement 1 of Lemma 3). Concretely, recall that for two neighboring graphs
G ∼ G′ ∈ X , we have

∑
e∈E

|w(e) − w′(e)| ≤ 1.

As such,

Δg,1 = max
w,w′∈X
w∼w′

∥

∥g(w) − g(w′)
∥

∥

1 ≤ max
w,w′∈X
w∼w′

∥

∥w − w′∥
∥

1 ≤ 1,

where the first inequality follows from the disjointness of canonical segments
and the second inequality is by the neighboring graphs.

Notably, Sect. 3.1 is already sufficient for us to prove the privacy of the algo-
rithm.

Lemma 4. The CANON-APSD algorithm is ε-differentially private.

Proof. We can simply use the (basic) composition theorem (Proposition 4) to
obtained the desired privacy guarantee. Note that one can view S Perturbation
and Non-S perturbation as two Laplace mechanisms as defined in Definition
7. As such, we only need to prove that both perturbation mechanisms are O(ε)-
DP.

By Sect. 3.1, the functions in steps 4. is of �1 sensitivity at most 1. As such,
by Propostion 1, its output is ε

2 -DP. For the input perturbation, we are directly
operating on the edge attributes. As such, we have ‖w − w′‖1 ≤ 1. Therefore,
by Proposition 1, the Lap( 2

ε ) noise gives an ε/2-DP algorithm.

We now proceed to bounding the additive error, which follows a simple
idea: we decompose the noise into different parts, and use the concentration of
Laplace distribution to get the tight bound.

Lemma 5. With high probability, for any vertex pair (u, v) ∈ V, the difference

between f (u, v) and ̂f (u, v) by CANON-APSD is O
(

1
ε

√

(

n
ζ + ζ2 log2 n

)

log n
)

.

More precisely,

∣

∣

∣ f (u, v) − ̂f (u, v)
∣

∣

∣ ≤ 900
ε

·
√

(

n
ζ
+ ζ2 log2 n

)

· log n

for any n ≥ C · ζ log n where C is a sufficiently large absolute constant.
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Proof. We start with proving a structural lemma, which powers the algorithm to
decompose the error into different parts to apply the concentration inequality
of Laplace noise. The following lemma will be extensively used in the paper:

Lemma 6. For any pair of vertices (u, v), if the number of edges on the shortest path
P(u, v), denoted by |P(u, v)|, is at least n

ζ , then, with high probability, there exist at
least two vertices (x, z) ∈ P(u, v) such that

1. x ∈ S and z ∈ S.
2. Suppose without any loss of generality, |P(u, x)| ≤ |P(u, z)|, then the numbers of

edges from u to x and from z to v are at most n
ζ , i.e. |P(u, x)| ≤ n

ζ and |P(z, v)| ≤
n
ζ .

We defer the proof Lemma 6 to Appendix C. Now, coming back to the anal-
ysis on separate parts of additive error, fix a pair of vertices (u, v) ∈ V and their
shortest path P(u, v), the additive noises are:

1. At most 2n
ζ independent noises sampled from Lap( 2

ε ).
2. At most s2 = 1002 · ζ2 · log2 n independent noises sampled from Lap( 2

ε ) for
the canonical segments.

The second line is obtained from statements 2 and 3 of Lemma 3: to com-
pute the all-pairs shortest distances between pair in S , it suffices to estimate
the canonical segments, and there are at most s2 many of them. As such, in the
CANON-APSD algorithm, we let each Laplace noise be with variance bi = 2/ε

for all i, we again pick ν =
√

∑i b2
i and λ = 30ν

√

log n = 60
ε ·
√

n log n. Recall

that s = 100 log n · n1/3 (since ζ = n1/3), which implies 2
√

2ν
maxi bi

≥ 30
√

log n (this
only needs n ≥ C · ζ log n for some constant C). Therefore, we can apply the
concentration of Laplace tail in Lemma 1, which gives us

Pr
[∣

∣

∣ f (u, v) − ̂f (u, v)
∣

∣

∣ ≥ 30
√

log n ν
]

≤ 2 exp
(

−900 log n
8

)

≤ 1
n3 .

Therefore, with probability 1 − 1
n3 ,

∣

∣

∣ f (u, v) − ̂f (u, v)
∣

∣

∣ ≤ 30
√

log n · ν ≤ 90
ε

√

(

n
ζ
+ 1002 · ζ2 · log2 n

)

· log n.

A union bound over the above event and the high probability event in Lemma
6 gives us the desired statement.

In fact, Lemma 5 holds for any ζ = n1−Ω(1) for sufficiently large n (as long
as nΩ(1) > 900 log(n)). We can now finalize the analysis of the additive error of
the CANON-APSD algorithm.

Lemma 7. With high probability, the CANON-APSD algorithm has an additive error

of at most O
(

n1/3

ε · log5/6 n
)

.
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Proof. We use Lemma 5 by setting the parameter ζ = 1
C · n1/3 log−2/3 n with the

C in Lemma 5. As such, the total additive error becomes

O

⎛

⎝

1
ε

·

√

√

√

√

(

n

n1/3 log−2/3 n
+ (n1/3 log−2/3 n)2 · log2 n

)

· log n

⎞

⎠

=O

(

n1/3

ε
· log5/6 n

)

,

as claimed.

This concludes the proof of Theorem 1.

4 A Simple (ε, δ)-DP Algorithm for Counting Queries

Proceeding to the (ε, δ)-DP setting, we show that with the relaxation of
approximate-DP, the worst case additive error can be reduced from ˜O(n1/3)
to ˜O(n1/4), formally stated as follows.

Theorem 2. For privacy parameters, ε, δ ∈ (0, 1), there exists an (ε, δ)-differentially
private efficient algorithm that given a graph G = (V , E ,w) as a range query system
(R = (X, S), f ,w) such that S is the set of the shortest paths and f is the counting
query, with high probability, outputs all pairs counting queries with additive error

O
(

n1/4 log2/3 n log1/4 1
δ

ε

)

. That is, the algorithm outputs an estimate ̂f (·, ·) such that

Pr

(

max
u,v∈V

| ̂f (u, v) − f t(u, v)| = O

(

n1/4 log5/4 n log1/2 1
δ

ε

))

≥ 1 − 1
n

.

At the high level, our algorithm builds single-source shortest path trees
(see formal definition in Definition 11) for each vertex sampled uniformly
at random, then employs an (ε, δ)-DP algorithm for distances release in the
tree graph. Notice that the construction of single-source shortest-path trees
follows from folklore algorithms based on Dijkstra’s algorithm, which takes
O(m + n log(n)) time with the classical Fibonacci heap implementation. Fur-
ther, our algorithm can be easily extended to guarantee ε-differentially private
with slight change of parameters, while this substitution is non-trivial for the
algorithm of Muthukrishnan and Nikolov [36], and to the best of our under-
standing, yields suboptimal error bound.

Definition 11 (Single-source shortest-path tree). Given a graph G = (V , E) and
a vertex s ∈ V , the single-source shortest-path tree rooted at s is a spanning tree G′

such that the unique path from s to v in G′ is the shortest path from s to v in G.

We will use the following result of the (ε, δ)-DP algorithm for tree graphs
(see Appendix B).
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Lemma 8 ((ε, δ)-DP for tree graph). Given a tree graph G = (V , E ,w) and privacy
parameter ε, δ ∈ (0, 1), there exists an (ε, δ)-DP algorithm releasing shortest distances
from the root vertex to the rest such that, with high probability, induce additive error at

most O
( 1

ε log1.5 n
√

log( 1
δ )
)

.

We have three remarks for Lemma 8. First for tree graphs, our problem
and the private release of all pairs shortest distances are the same – since
there is a unique path between any two vertices in a tree graph. Therefore pri-
vate release of all pairs shortest distances in a tree graph can be used here.
Prior work for this problem ([18,45]) focused on ε-DP. Between [18,45], Fan
and Li’s algorithm [18] uses heavy-light decomposition of the tree, with a
better error bound only when the tree is shallow. Thus we present the ver-
sion of (ε, δ)-DP based on Sealfon’s algorithm [45]. Second, Seafon’s algorithm
exploits Laplace mechanism, which is replaced by Gaussian mechanism with
σ2 := 1/ε2 · ln(1.25/δ) log n in Lemma 8. Third, the additive error bound for
ε-DP on tree graph is O( 1

ε log2.5 n) with high probability for single-source dis-
tance. Lemma 8 implies that the (ε, δ)-DP algorithm can shave off a log n factor,
end up with a quadratic improvement on the logarithm term in the final algo-
rithm for private all pairs shortest distances.

For simplicity, call the algorithm in Lemma 8 as PrivateTree(G) with an input
tree graph G. Also we use SSSP(v) for the single-source shortest path tree algo-
rithm, which takes any v ∈ V as input and outputs a shortest path tree with v
as the root. The (ε, δ)-DP algorithm is presented above.

SSSP-ASRQ: An (ε, δ)-DP algorithm to release all pairs counting queries
Input: An n vertices graph, G = (V , E ,w) and privacy parameter ε, δ > 0.

1. Sample a set S of s = ζ · log n vertices uniformly at random, where ζ =
O(

√
n log−2.5 n).

2. For each vertex v ∈ S , compute T(v) = SSSP(v). Call the set of all trees T.
3. S Perturbation: For each tree T ∈ T , privatize it by run-

ning PrivateTree(T) with the Gaussian noise N
(

μ = 0, σ2 :=
1
ε2

0
ln(1.25/δ0) log n

)

, ε0, δ0 will be specified later, let the output of count

query be fT(u, v).
4. Non-S Perturbation: For each edge in G add independent Gaussian noise

N
(

μ = 0, σ2 := 4
ε2 ln(2.5/δ) log n

)

. For any vertices u, v ∈ V , let P(u, v) be
the shortest path in G and f ′(u, v) be the sum of the noisy attributes of the
edges along P(u, v).

5. For each pair of vertices (u, v)
– If at least one of u, v is in S , release ̂f (u, v) = fT(u, v).
– If u, v /∈ S and the path P(u, v) has one vertex x ∈ S , release ̂f (u, v) =

fT(u, x) + fT(x, v).
– Otherwise, release ̂f (u, v) = f ′(u, v).
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4.1 Proof of Theorem 2

Our analysis mainly hinges on the concentration of Laplace random variables
(Lemma 1), a corollary (Proposition 6) of strong composition theorem (Proposi-
tion 5) and the observation that any shortest path with length larger than n

ζ goes
through at least one vertex in the sampled set S with high probability (Lemma
6).

Lemma 9. The SSSP-ASRQ algorithm is (ε, δ)-differentially private.

Proof. First observe that any edge in G can only appear in at most s trees
(s = |S|), since we only build one single-source shortest path tree for each
vertex in S . Therefore, the PrivateTree algorithm (Lemma 8) is applied at most s
times to any edge. In S perturbation, the Gaussian mechanism achieves (ε0, δ0)-
DP for each tree. Pick ε0, δ0 such that ε0 = ε

4
√

2s ln(4/δ)
and δ0 = δ

4s , using a corol-

lary of strong composition theorem (Proposition 6) on s number of PrivateTree
algorithms, we have that the S perturbation is (ε/2, δ/2)-differentially private.

Combining with the Non-S perturbation, which is (ε/2, δ/2)-differentially
private, it is straightforward to see that the SSSP-ASRQ algorithm is (ε, δ)-
differentially private.

The analysis of the additive error is again, similar as in Theorem 1 and
Lemma 5. The only difference is that s takes various values to balance the con-
tribution from output perturbation and the input perturbation, leading to dif-
ferent additive errors.

Lemma 10. With high probability, the SSSP-ASRQ algorithm has additive error at

most O( n
1/4

ε · log1.25 n
√

log 1
δ )

Proof. We first show that with high probability, for any vertex pair (u, v) ∈ V,
∣

∣

∣ f (u, v) − ̂f (u, v)
∣

∣

∣ released by SSSP-ASRQ is at most

max

{

O(

√

(n/ζ) log
1
δ

/ε),O

(
√

s log
2s
δ

· log1.5 n log
1
δ

/ε

)}

.
Notice that the additive error is once again decomposed into noises from

‘output perturbation’ (S perturbation) and ‘input perturbation’ (Non-S pertur-
bation). Fix a pair of vertices (u, v) ∈ V and denote their shortest path as P(u, v).
By Lemma 6 and Lemma 9, the additive noises must be either of the following
two cases:

1. At most 2n
ζ independent noises sampled from N (μ, σ2), with μ = 0, σ2 :=

4
ε2 ln(2.5/δ) log n.

2. At most two independent noises induced by the PrivateTree algorithm,

which is upper bounded by O( 2
ε0

log1.5 n
√

log 1
δ0
).
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The first case considers the third bullet point in Step 5. of the SSSP-ASRQ
algorithm. From Lemma 6, we know that the additive error is the summation of
at most 2n

ζ independent Gaussian noises. The second case considers the first and

second points in Step 5. of the SSSP-ASRQ algorithm, where ̂f (u, v) is decom-
posed into two distances output by the PrivateTree algorithm. Notice that only
one of the two cases can happen, hence the additive error bound is the maxi-
mum of the two. This is different from the analysis in Lemma 5, where the two
cases are combined together to construct the shortest paths. In the following,
we give detailed upper bounds of the additive error of two terms.

We now apply the concentration of Gaussian tail (Lemma 2) for the first
case,

Pr
[∣

∣

∣ f (u, v) − ̂f (u, v)
∣

∣

∣ ≥ t
]

≤ 2 exp
(

− t2

2n/ζ · δ2

)

,

Let t = (n/ζ)1/4 log0.5 n · δ, the above probability is smaller than 1
n4 . Apply

union bound on all vertex pairs, then with high probability,
∣

∣

∣d(u, v) − ̂d(u, v)
∣

∣

∣

for the first case is at most

t =
(n/ζ)1/2 log0.5 n · δ

s
= O

(

1
ε
(n/ζ)1/2

√

log
1
δ

)

Next, we show the additive error in the second case. In the S perturbation
that we pick the privacy parameter (ε0, δ0) for the Gaussian mechanism where
ε0 = ε

4
√

2s ln(2δ)
and δ0 = δ

2s .

Recall Lemma 8, the additive error is at most

1
ε0

log1.5 n

√

log
1
δ0

= O

(

1
ε

√

s log(
1
δ
) · log1.5 n

√

log
2s
δ

)

It only remains to balance the two terms to obtain the maximum additive
error. Recall that s = O(ζ · log n), we pick ζ = C

√
n log−2.5 n, where C is a fixed

constant, leading to the following additive error:

O

(

1
ε

√

2n
ζ

· log
1
δ

)

= O

(

n1/4 log1.25 n ·
√

log
1
δ

)

5 Private Algorithms for the Bottleneck Edge Queries

We investigate the problem of private bottleneck edge queries under the range
query model in this section. The problem has natural motivations in a bulk of
applications where the resilience on the shortest path is quantified by a bottle-
neck attribute. For instance, in the Time-to-Stockout problem we discussed in
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Sect. 1, the quantity of interest is usually the edge with the minimum value of
the attribute among the shortest path. We show that we can release such infor-
mation privately by simply applying the input perturbation technique. More
formally, we have:

Theorem 3. For privacy parameters ε, δ ∈ (0, 1), there exist

– an ε-differentially private efficient algorithm that given a graph G = (V , E ,w) as a
range query system (R = (X, S), f ,w) such that S is the set of the shortest paths
and f is the bottleneck query, with high probability, outputs all pairs bottleneck
queries with additive error O( log n

ε ).
– an (ε, δ)-differentially private efficient algorithm that given a graph G = (V , E ,w)
as a range query system (R = (X, S), f ,w) such that S is the set of the shortest
paths and f is the bottleneck query, with high probability, outputs all pairs bottle-

neck queries with additive error O

(
√

log n log 1
δ

ε

)

.

Remark 4. We remark that the bottleneck edge task cannot be trivially solved by
the top-k selection problem in differential privacy (e.g. [13,35,43] and references
therein). Note that although it is possible to directly apply top-1 selection to
privately release the bottleneck edge on a single shortest path, the O(n2)-many
shortest paths may incur significant privacy loss if we simply use composition.

We now present the ε-DP and (ε, δ)-DP algorithms with the input pertur-
bation technique first developed by [45]. Recall that γ(u, v) = mine∈P(u,v) w(e)
is the minimum edge weight on the shortest path between u and v. Both algo-
rithms can be presented with only differences on a subroutine as follows.

Algorithms for minimum attribute edge on the shortest path

Input: A range system R = (X, S) and attribute function w, where X and w
specifies a graph G = (V , E ,w), and the ranges S specifies shortest paths; a
privacy budget ε, δ ∈ (0, 1).

1. Perform the input perturbation depending on the application:
– For ε-DP, use the Lap-perturb procedure: add Laplace noise Lap( 1

ε ) to
every output of w, and obtain w̃.

– For (ε, δ)-DP, use the Gaussian-perturb procedure: add Gaussian noise

with σ =
√

2 log(1.25/δ)
ε to every output of w, and obtain w̃.

2. For each shortest path S ∈ S , find e�S the edge with the minimum attribute
on each shortest path S ∈ S with the original attribute function w, i.e.
e�S = argmine{w(e) | e ∈ S}.

3. Report γ̃ = w̃(e�S) as the attribute of the bottleneck edge on each shortest
path S = P(u, v).
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In other words, the whole algorithm can be framed as adding input noise to
the attributes (Laplace noise for ε-DP and Gaussian noise for (ε, δ)-DP), iden-
tifying the bottleneck edge with the original attributes, and release the noisy
attribute of that bottleneck edge. We now show that the algorithms are differ-
entially private under their respective setting, and the additive error is small.

The Analysis of ε-DP Bottleneck Edge

The privacy guarantee follows from the input perturbation guarantee and the
post-processing theorem (Proposition 3). More formally, we can show the fol-
lowing lemma.

Lemma 11. The algorithm with Lap-perturb procedure is ε-differentially private.

Proof. Let f : E → Rm be the attribute function. By the properties of neigh-
boring attributes (Definition 1), it follows that the �1 sensitivity Δ f ,1 is at most
1 since the total change of bottleneck edges can be at most 1. As such, by
Propositio 1, the output of w̃ is ε-DP. Since we only release information as post-
processing of w̃, by Proposition 3, the algorithm is ε-DP.

We now show that the additive error is bounded by O( log n
ε ) with high prob-

ability. The argument follows by using the concentration of Laplace distribution
and union bound over poly(n) scenarios.

Lemma 12. If the Lap-perturb procedure is applied, with high probability, for each pair
of vertices (u, v), the difference between the output of γ̃(u, v) and the true bottleneck
edge attribute γ(u, v) is at most O( log n

ε ), i.e.

Pr
(

max
u,v∈V

|γ(u, v) − γ̃(u, v)| = O
(

log n
ε

))

≥ 1 − 1
n

.

Proof. For a fixed vertex pair (u, v), we need to take care of at most n − 1 edges
on a shortest path. Note that for each edge (x, y) on the path P(u, v), by the tail
bound of Laplace distribution, the error induced by a single Laplace noise is at
most 5 log n

ε with probability at least 1 − 1
n5 . As such, we have

Pr
(

max
e∈P(u,v)

|w(e) − w̃(e)| > 5 · log n
ε

)

≤ 1
n4 .

Therefore, the additive error on the bottleneck edge is also at most 5 · log n
ε with

probability at least 1 − 1
n4 . Applying a union bound over (n2) pairs gives us the

desired statement.
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The Analysis of (ε, δ)-DP Bottleneck Edge

We now turn to the algorithm for (ε, δ)-DP. Similar to the case in the ε-DP, we
show that the approximate-DP [property holds by the Gaussian noise property
and the post-processing theorem. The formal lemma can be shown as follows.

Lemma 13. The algorithm with Gaussian-perturb procedure is (ε, δ)-differentially
private.

Proof. Similar to the proof of Lemma 11, we let attribute function w : E → Rm

be the function of Definition 6. We can then bound the �2 sensitivity Δ f ,2 of
the attribute function by 1, again using the properties of neighboring attributes
(Defintion 1). As such, by Proposition 2 and Proposition 3 and the right choice
of σ, the algorithm is (ε, δ)-DP.

The benefit of allowing approximate-DP is a quadratic improvement on the
additive error – conceptually, this follows straightforwardly by considering the
lighter tail of the Gaussian distribution. We formalize the result as follows.

Lemma 14. If the Gaussian-perturb procedure is applied, with high probability, for
each pair of vertices (u, v), the difference between the output of γ̃(u, v) and the true

bottleneck edge attribute γ(u, v) is at most O(
√

log n log 1/δ

ε ), i.e.

Pr

⎛

⎝max
u,v∈V

|γ(u, v) − γ̃(u, v)| = O

⎛

⎝

√

log n log 1
δ

ε

⎞

⎠

⎞

⎠ ≥ 1 − 1
n

.

Proof. Again, for a fixed vertex pair (u, v), there are at most n − 1 edges among
a shortest path. Note that for each edge (x, y) on the path P(u, v), by the tail
bound of Gaussian distribution (Lemma 2), there is

Pr
(

|w̃((x, y)) − w((x, y))| > 5
√

log nσ
)

≤ exp (−10 log n) ≤ 1
n5 .

As such, with probability at least 1 − 1
n5 , the attribute of a single edge is only

different from the original with an additive error of 5
√

log nσ. Therefore, we
have

Pr
(

max
e∈P(u,v)

|w(e) − w̃(e)| > 5
√

log nσ

)

≤ 1
n4 .

By the choice of σ, we have 5
√

log nσ = O(
√

log n log 1/δ

ε ). Applying a union
bound over (n2) pairs gives us the desired statement.
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6 VC-Dimension of Shortest Paths Ranges and Generic
Algorithms

Under the range query context, it is possible to study the VC-dimension of
shortest paths in a graph using a range system. The benefit of such a perspective
is that one can apply generic algorithms for private range queries, most notably
by the work of Muthukrishnan and Nikolov [36]. We discuss the problem from
this perspective in this section.

Recall that we say a subset A ⊆ X to be shattered by S if each of the subsets
of A can be obtained as the intersection of some S ∈ S with A, i.e., if S|A = 2A.
The Vapnik-Chervonenkis (VC) d of a set system (X, S) is defined as the size
of the largest subset of X that can be shattered. Formally, the definition can be
described as follows.

Definition 12 (Vapnik-Chervonenkis (VC) dimension). Let R = (X, S) be a
set system and let A ⊆ X be a set. We say A is shattered by S if {S ∩ A | S ∈ S} =
2A, i.e. the union of intersections between sets in S and A covers all subsets of A. The
Vapnik-Chervonenkis (VC) dimension d of R is defined as the size of the largest A ⊆ X
that can be shattered by S .

In an undirected graph G, the VC-dimension of (unique) shortest paths2 is
2 [1,47]. In a directed graph, the VC-dimension of (unique) shortest paths3 is
3 [20].

A closely-related notion is the (primal) shatter function of a set system R =
(X, S) (with parameter s), which is defined as the maximum number of distinct
sets in {A ∩ S | S ∈ S} for some A ⊆ X such that |A| = S. More formally, the
notion can be defined as follows.

Definition 13 (Primal Shatter Function). Let R = (X, S) be a set system, and s
be a positive integer. The primal shatter function of R, denoted as πR(s), is defined as
maxA: |A|=s |{A ∩ S | S ∈ S}|

It is well known that if the VC-dimension of a range space is d, then πR(s) =
O(sd) [34]. This immediately gives a bound of O(s2) for shortest paths in undi-
rected graphs. We now show that shortest paths in directed graphs enjoys the
same bound as well despite having a higher VC-dimension.

Lemma 15. For a range query system R = (X, S) defined by shortest paths in (both
directed and undirected) graphs, the primal shatter function is πR(s) = O(s2) for any
positive integer s.

2 Any set of three vertices {u, v,w} cannot be shattered: if one vertex w stays on the
shortest path of the other two vertices u, v, then one cannot obtain the subset u, v; if
none of them stays on the shortest path of the other two, then one cannot obtain the
subset u, v,w .

3 In a directed graph, a directed cycle of u, v,w can be shattered.
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Proof. Take any set A of size s, any shortest path either does not contain any
vertex in A, or contains a first vertex x ∈ A and the last vertex y ∈ A along the
path. Notice that x, y might be the same vertex. Thus S|A contains the subset
of A as A ∪ S(x, y), ∀x, y ∈ A where S(x, y) is the set of vertices on the shortest
path from x to y. Therefore S|A has at most O(s2) elements.

The benefit of understanding the VC-dimension and the primal shatter
function for shortest system is that we can use generic algorithms for private
range queries. In particular, Muthukrishnan and Nikolov [36] have developed a
differentially private mechanism for answering range queries of bounded VC-
dimension. The guarantee of the algorithm is as follows.

Proposition 7 (Muthukrishnan-Nikolov algorithm [36], rephrased). Let
(R = (X, S), f ) be a range query system, where f is the counting query and the
primal shatter function of R is πR(s) = O(sd) for any s. There exists an algorithm
that outputs all queries with

– Expected average squared error of O
(

n1−1/d log 1
δ

ε2

)

;

– With probability at least 1 − β, worst case squared error of O
(

n1−1/d log 1
δ log n

β

ε2

)

.

The algorithm is (ε, δ)-differentially private.

Using the algorithm of Proposition 7, the bound on the primal shatter func-
tions of Lemma 15, and the fact that counting query sums up the attributes
on the shortest paths, we can obtain an (ε, δ)-DP result with additive error
O(n1/4 log1/2 (n) log1/2 (1/δ)/ε) with high constant probability. This matches
our (ε, δ)-DP result in Theorem 2 up to lower order terms.

Remark 5. Although it is possible to recover the bound of Theroem 2 using
Proposition 7 as a black-box, our constructions still enjoy multiple advantages.
In particular, the construction of Proposition 7 does not give any non-trivial
bound for ε-DP, and it is not trivial to adapt it to pure-DP within the framework.
Furthermore, the algorithm of Proposition 7 requires to find a maximal set of
ranges with the minimum symmetric differences on different levels, and by the
packing lemma bound in [36], it appears that a straightforward implementation
could take Θ(n4) time in the worst case. On the other hand, our constructions
for both Theroem 1 and Theroem 2 can be implemented in ˜O(n2) time. Finally,
the algorithm of Proposition 7 is much more complicated and counter-intuitive,
and our algorithm enjoys much better simplicity.

7 Conclusion and Future Work

We study the private release of shortest path queries under the range query con-
text in this paper, where the graph topology and the shortest paths are public,
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and the attributes on the graphs (which do not affect shortest paths) are sub-
ject to privacy protection. Our upper bounds cannot be applied to the (harder)
problem of private release of all pairs shortest distances [45]. Thus improving
the bounds of private range query problem (with upper bound ˜O(n1/3) for
ε-DP and ˜O(n1/4) for (ε, δ)-DP) and all pairs shortest distances release (with
upper bound ˜O(n2/3) for ε-DP and ˜O(n1/2) for (ε, δ)-DP), where both have a
lower bound of Ω(n1/6), remains an interesting open problem. Furthermore,
since our algorithms are simple to implement, the empirical performances of
our algorithms could be another future research direction.

Acknowledgements. We would like to thank Adam Sealfon, Shyam Narayanan, Justin
Chen, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Jelani Nelson and Yinzhan Xu for
useful discussion and suggestions. Deng and Gao have been partially supported by NSF
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A Range Query on All Paths

When we allow queries along any path in a graph and require differential pri-
vacy guarantees, the following result provides a lower bound of Ω(n) on the
additive error. To show the lower bound, we first consider a range query formu-
lated by the incidence matrix A, with m columns corresponding to the m edges
in the graph G and rows corresponding to all queries. A query along path P is
represented by a row in the matrix with an element of 1 corresponding to edge
e if e is on P and 0 otherwise. We will then talk about the discrepancy of matrix
A.

The classical notion of discrepancy of a matrix A is the minimum value of
||Ax||∞, where x is a vector with elements taking values +1 or −1. And the
hereditary discrepancy of A is the maximum discrepancy of A limited on any
subset of columns. As shown in [36], both discrepancy and hereditary discrep-
ancy of A provides a lower bound on the additive error of differentially private
range query using incidence matrix A.

Theorem 4. A (ε, δ)-differential privacy mechanism that answers range queries where
ranges are defined on any path of an input graph has to incur additive error of Ω(n).

Proof. Consider a graph of n+ 1 vertices v1, v2, · · · , vn+1 and 2n edges. Between
vertices vi and vi+1 there are two parallel edges ei and e′i . On this graph there
are 2n paths from v1 to vn+1. We consider only queries along these paths and the
incidence matrix is a tall matrix A of 2n rows and 2n columns, corresponding
to the 2n edges in the graph. Now we take a submatrix of A with only the
columns corresponding to edges ei. This gives a matrix A′ of 2n × n, with the
rows corresponding to all subsets of [n]. A′ has discrepancy of Ω(n). To see that,
consider the specific vector x that minimizes ||A′x||∞. Suppose x has k entries
of +1 and n − k entries of −1. Without loss of generality, we assume k ≥ n/2,
The row of A that has value 1 corresponding to the positive entries of x and
value 0 corresponding to the negative entries of x, gives a value of k ≥ n/2.
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Thus ||Ax||∞ is at least n/2. This means that the hereditary discrepancy of A is
at least Ω(n).

By the same argument and use Corollary 1 in [36], we conclude that any
(ε, δ)-differentially private mechanism has to have error of Ω(n).

B Proof of Lemma 8 – (ε, δ) Algorithm for Tree Graphs

Proof. We first claim that we can answer all pairs shortest distance on a tree
with (α, β)-accuracy for

α = O

(

1
ε

log n

√

log
(

n
β

)

log
(

1
δ

)

)

showing the utility guarantee of Lemma 8. Specifically, if we wish to have high
probability bounds for the shortest path distance errors, i.e., β = O(1/n), the

error is upper bounded by O
(

1
ε log1.5 n

√

log
(

1
δ

)

)

.

In Sealfon’s algorithm [45], a tree rooted at v0 is partitioned into subtrees
each of at most n/2 vertices. Specifically, define v∗ to be the vertex with at least
n/2 descendants but none of v∗’s children has more than n/2 descendants. The
tree is partitioned into the subtrees rooted at the children of v∗, and a subtree
of the remaining vertices rooted at v0. In Sealfon’s algorithm a Laplace noise
of Lap(log n/ε) is added to the shortest path distance from v0 to v∗ and the
edges from v∗ to each of its children. The algorithm then repeatedly privatizes
each of the subtrees recursively. Using Sealfon’s algorithm, we know that for a
given root node v0, computing the single source (with the root being the source)
shortest path distance requires adding at most O(log n) privatized edges. Fur-
ther, their algorithm ensures that any edge can be in at most log n levels of
recursion and hence can be used to compute O(log n) noisy answers. In other
words, the number of adaptive compositions we need is O(log n).

We use the Gaussian mechanism to privatize the edges. Since we are con-
cerned with approximate-DP guarantee, the variance of the noise required to

preserve (ε, δ)-differential privacy is σ2 := O
(

1
ε2 log(1/δ) log n

)

.

Fix a node u. Let ̂d(u, v0) be the distance estimated by using Sealfon’s algo-
rithm instantiated with the Gaussian mechanism instead of the Laplace mech-
anism. Now the noise added are zero mean. Therefore,

E[ ̂d(u, v0)] = d(u, v0).

Using the standard concentration of Gaussian distribution [50] implies that

Pr
(∣

∣

∣

̂d(u, v0) −E
[

̂d(u, v0)
]∣

∣

∣ > a
)

≤ 2e−a2/(2σ2 log n).
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Setting a = C
ε log n

√

log
(

2n
β

)

log
(

1
δ

)

for some constant C > 0, we have

Pr

(

∣

∣

∣

̂d(u, v0) −E
[

̂d(u, v0)
]∣

∣

∣ >
C
ε

log n

√

log
(

2n
β

)

log
(

1
δ

)

)

≤2e−C log(2n/β) ≤ β

n
.

Now union bound gives that

Pr

(

max
u∈V

∣

∣

∣

̂d(u, v0) − d(u, v0)
∣

∣

∣ ≤ C
ε

log n

√

log
(

n
β

)

log
(

1
δ

)

)

≥ 1 − β.

We can now use the above result to answer all pair shortest paths by fixing
a node v∗ to be the root note and compute a single source shortest distance
with the root node being the source node. Once we have all these estimates, to
compute all pair shortest distance, for any two vertices, (u, v) ∈ V × V , we first
compute the least common ancestor z of u and v. We then compute the distance
as follows:

̂d(u, v) = ̂d(u, v∗) + ̂d(v, v∗) − 2 ̂d(z, v∗).

Since each of these estimates can be computed with an absolute error:

O

(

1
ε

log n

√

log
(

n
β

)

log
(

1
δ

)

)

,

we get the final additive error bound. That is,

Pr

(

max
u,v∈V

|̂d(u, v) − d(u, v)| = O

(

1
ε

log n

√

log
(

n
β

)

log
(

1
δ

)

))

≥ 1 − β

completing the proof of the claim.

C Proof of Lemma 6

Proof. (Proof of Lemma 6). The lemma is proved by a simple application of the
Chernoff bound. For each path P(u, v) with more than n

ζ edges, let v′ be the
(

n
ζ + 1

)

-th vertices on the path P(u, v) from u. Similarly, let u′ be the
(

n
ζ + 1

)

-

th vertices on the path P(u, v) from v (traversing backward). We show that there
must be two vertices sampled in S on both P(u, v′) and P(u′, v), which is suffi-
cient to prove the lemma statement.

Define Xu,v′ as the random variable for the number of vertices on P(u, v′)
that are sampled in S, and define Xz for each z ∈ P(u, v′) as the indicator
random variable for z to be sampled in S. It is straightforward to see that
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Xu,v′ = ∑z∈P(u,v′) Xz. Since P(u, v′) has at least n
ζ vertices, and we are sam-

pling s = 100 log n · ζ vertices uniformly at random as S, the expected number
of vertices on P(u, v′) that are sampled is at least 100 log n. Formally, we have

E
[

Xu,v′
]

≥ 100 log n · ζ

n
· n

ζ
= 100 log n.

As such, by applying the multiplicative Chernoff bound, we have

Pr
[

Xu,v′ ≤ 2
]

≤ exp
(

−0.82 · 100 log n
3

)

≤ 1
n10 .

The same argument can be applied to P(u′, v) by defining Xu′,v as the total
number of vertices that are sampled in S. We omit the repetitive details for
simplicity. Finally, although the random variables for different (u, v) pairs are
dependent, we can still apply a union bound regardless the dependence, and
get the desired statement.

D A Remark on Range Query Shortest Path Lower Bound

For counting range queries with (ε, δ)-DP guarantee, there is a lower bound
of Ω(n1/6) on the additive error, adapted from the construction of the lower
bound for private all pairs shortest distances [10]. Specifically, the construction
uses a graph where vertices are points in the plane and edges map to line seg-
ments between two points that do not contain other vertices. The edge length
is the Euclidean length and therefore the shortest path between two vertices is
the path corresponding to a straight line. The range query problem can be now
formulated as a (special case) of linear queries, as in Sect. 6 and Sect. A, where
the matrix A corresponds to the incidence matrix of the shortest paths and the
edges in the graph. It is known that this matrix has a discrepancy lower bound
of Ω(n1/6) [34]. By the connection of the discrepancy and linear query lower
bounds [36], this is a lower bound for our problem.
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