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Classical Range Query Problems

Given points in Rd , report the number of points inside

■ Orthogonal ranges: rectilinear boxes in Rd .

■ Simplex ranges: d-dimensional simplex (e.g., a triangle in 2D).
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Range Query on Shortest Paths

Given a weighted graph G = (V ,E ),

■ Query ranges = shortest paths P(s, t) on G , ∀s, t ∈ V .

■ Edges also carry “sensor readings”.

Goal: report the sum of sensor readings along a query range P(s, t).

Assumptions

1. The shortest paths are ‘consistent’ – any two shortest paths
intersect at a contiguous subpath.

u v

x z

w w′

2. The sensor readings are sensitive and need to be protected with
privacy guarantee.
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Plan

■ Review of differential privacy

■ 1D range query: Input perturbation vs. output perturbation

■ Combining input perturbation vs. output perturbation

■ Range query on shortest paths

■ Connection to VC-dimension and discrepancy theory
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Differential Privacy

[Dwork 06] A randomized range query response mechanism M is
ε-differentially private if for any two adjacent datasets D and D ′ (i.e.,
differ by ℓ1 norm of one), for any range R ∈ R and any measurable
subset H ∈ Range(M),

Pr[MD(R) ∈ H] ≤ eε · Pr[MD′(R) ∈ H].

(ε, δ)-differential privacy:

Pr[MD(R) ∈ H] ≤ eε · Pr[MD′(R) ∈ H] + δ.

δ = 0: pure-DP; δ ̸= 0, approximate-DP.
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Why is Differential Privacy a Popular Model?

■ Post processing of perturbed data does not damage privacy.

■ Composition (simple): M1 with ε1-DP, and M2 with ε2-DP, then
(M1,M2) is (ε1 + ε2)-DP.
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Laplace Mechanism

Laplace mechanism: add noise with distribution Lap(b), and its

probability density is given as: Lap[x |b] = 1
2b exp(−

|x |
b ).
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Laplace Mechanism

The level of noise is usually determined in terms of sensitivity.

The sensitivity of a function f , written as ∆f , is the largest possible
difference in the output of f between any pair of adjacent databases:

max
(D,D′)

|f (D)− f (D ′)|.

Example: f as the average employee salary.
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Laplace Mechanism Satisfies DP

To achieve ε-differential privacy, adding noise z ∼ Lap(∆f /ε) suffices.

Pr[z + f (D) = x ]

Pr[z ′ + f (D ′) = x ]

=
exp(−|x − f (D)|/b)
exp(−|x − f (D ′)|/b)

≤eε · exp( |x − f (D ′)| − |x − f (D)|
∆f

)

≤eε
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1D Range Tree

Build a binary search tree. Run two queries for the boundary of
[25, 90]. Take points in between.
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Input Perturbation

Publish data with iid noise ∼ Lap(1/ε) on each element.

■ ε-DP.

■ Answer queries on perturbed data in the normal way. →
Post-processing.

What is the error magnitude of a query on n elements?
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Sum of Independent Laplace Variables

[CCS’11] Suppose γi ∼ Lap(bi ) and Y =
∑

i γi . Then, with

0 < δ < 1, Pr[|Y | = O(
√∑

i b
2
i log(1/δ))] ≥ 1− δ.

If a query range consists of n elements, where each is added an
independent noise from Lap(1/ε), then the total noise
∼ O(1ε

√
n log 1

δ ) with probability 1− δ.
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Output Perturbation

Answer a query with a fresh noise ∼ Lap(1/ε).

■ If an element is involved in m queries, then we have (mε)-DP.

■ Or we take ε′ = mε, query error ∼ O(m/ε).
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Combining Input and Output Perturbation

[CCS’11] Add independent noise ∼ Lap(log n/ε) on each node of the
range tree.

Query error? Sum up O(log n) independent noise, each
∼ Lap(log n/ε) ⇒ O(log1.5 n/ε).
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Plan

■ Review of differential privacy

■ 1D range query: Input perturbation vs. output perturbation

■ Combining input and output perturbation

■ Range query on shortest paths

■ Connection to VC-dimension and discrepancy theory
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Range Query on Shortest Paths

Input perturbation:

■ Add iid noise ∼ Lap(1/ε) to each edge value.

■ Query error?

O(n/ε).

Output perturbation:

■ Add iid ∼ Lap(Y /ε) to each query output.

■ What is Y ? – the number of queries that may contain one vertex,
Y = Θ(n2).

■ Query error O(n2/ε).
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Use Canonical Paths

■ Randomly sample s vertices S , build shortest paths between all
pairs in S .

■ Take intersection of all O(s2) paths.

u v
w1 w2 w3 w4

■ Such intersections partition a single path into O(s2) canonical
segments.

Claim: any two canonical segments are edge disjoint.
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Use Canonical Paths

DP mechanism:

■ Input pertuabtion on each edge value: Lap(2/ε)

■ Output perturbation on canonical segments: Lap(2/ε) ⇒ each
edge may appear in at most one canonical segment.

Adding up, we have ε/2 + ε/2 = ε-DP.
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Use Canonical Paths

Error analysis: fix a shortest path P(u, v). Along P(u, v)

■ # vertices before reaching the first vertex x in S : Õ(n/s).

■ Take perturbed values from O(s2) canonical segments until the
last vertex y on P.

■ From u to x and from y to v use input perturbation.

u v
x y

Total error:

Õ(
1

ε
·
√

n

s
+ s2)

Take s = n1/3 we get error of Õ(n1/3/ε).
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Approximate-DP; Better Error Bounds

Gaussian noise N(0, σ2) with σ2 ≈ (∆f )2

ε2
log 1

δ gives (ε, δ)-DP.

Strong composition: With k (ε, δ)-DP mechanisms ⇒ (ε′, δ′)-DP
with ε′ ≈ ε

√
k and δ′ ≈ kδ.

Algorithm: 1. Add Gaussian noise for each edge with (ε/2, δ/2)-DP.

2. Randomly sample s vertices S , ∀s ∈ S

■ Build shortest path tree.

■ On each tree, run heavy-light decomposition.

■ Add Gaussian noise for each heavy path. ⇒ each tree gives
(ε/

√
s, δ/s)-DP.

20 of 26



Approximate-DP; Better Error Bounds

Gaussian noise N(0, σ2) with σ2 ≈ (∆f )2

ε2
log 1

δ gives (ε, δ)-DP.

Strong composition: With k (ε, δ)-DP mechanisms ⇒ (ε′, δ′)-DP
with ε′ ≈ ε

√
k and δ′ ≈ kδ.

Algorithm: 1. Add Gaussian noise for each edge with (ε/2, δ/2)-DP.

2. Randomly sample s vertices S , ∀s ∈ S

■ Build shortest path tree.

■ On each tree, run heavy-light decomposition.

■ Add Gaussian noise for each heavy path. ⇒ each tree gives
(ε/

√
s, δ/s)-DP.

20 of 26



Approximate-DP; Better Error Bounds

Gaussian noise N(0, σ2) with σ2 ≈ (∆f )2

ε2
log 1

δ gives (ε, δ)-DP.

Strong composition: With k (ε, δ)-DP mechanisms ⇒ (ε′, δ′)-DP
with ε′ ≈ ε

√
k and δ′ ≈ kδ.

Algorithm: 1. Add Gaussian noise for each edge with (ε/2, δ/2)-DP.

2. Randomly sample s vertices S , ∀s ∈ S

■ Build shortest path tree.

■ On each tree, run heavy-light decomposition.

■ Add Gaussian noise for each heavy path. ⇒ each tree gives
(ε/

√
s, δ/s)-DP.

20 of 26



Approximate-DP; Better Error Bounds

Gaussian noise N(0, σ2) with σ2 ≈ (∆f )2

ε2
log 1

δ gives (ε, δ)-DP.

Strong composition: With k (ε, δ)-DP mechanisms ⇒ (ε′, δ′)-DP
with ε′ ≈ ε

√
k and δ′ ≈ kδ.

Algorithm: 1. Add Gaussian noise for each edge with (ε/2, δ/2)-DP.

2. Randomly sample s vertices S , ∀s ∈ S

■ Build shortest path tree.

■ On each tree, run heavy-light decomposition.

■ Add Gaussian noise for each heavy path. ⇒ each tree gives
(ε/

√
s, δ/s)-DP.

20 of 26



Approximate-DP; Better Error Bounds

Error analysis: summation of

■ O(n/s) Gaussian noises ≈ Oε,δ(1), and

■ O(log n) heavy paths each of noise ≈ Oε,δ(
√
s), and

■ O(log n) light edges of noises ≈ Oε,δ(1)

Total error:

Õ(
1

ε
· (
√

n

s
+
√
s))

Take s = n1/2 we get error of Õε,δ(n
1/4).

Q: Improve further? Lower bound?
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VC-dimension of Shortest Paths

Consistent shortest paths have low VC-dimension:

■ Undirected graph: VC-dimension =2 [ADFGW 11][TSP 11]

u w v
u v

w

■ Directed graph: VC-dimension = 3 [FNS 14]

u v

w
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Primal Shatter Function of Shortest Paths

Primal shatter function πR(s): maximum number of distinct sets in
{A ∩ S | S ∈ S} for some A ⊆ X such that |A| = s.

■ For both undirected graphs and directed graphs: πR(s) = O(s2)

[Muthukrishnan and Nikolov 12]: Range query with primal function
O(sd) admits (ε, δ)-DP algorithm with error Oε,δ(m

1/2−1/(2d)), where
m is the size of the ground set.

24 of 26



Primal Shatter Function of Shortest Paths

Primal shatter function πR(s): maximum number of distinct sets in
{A ∩ S | S ∈ S} for some A ⊆ X such that |A| = s.

■ For both undirected graphs and directed graphs: πR(s) = O(s2)

[Muthukrishnan and Nikolov 12]: Range query with primal function
O(sd) admits (ε, δ)-DP algorithm with error Oε,δ(m

1/2−1/(2d)), where
m is the size of the ground set.

24 of 26



Primal Shatter Function of Shortest Paths

Primal shatter function πR(s): maximum number of distinct sets in
{A ∩ S | S ∈ S} for some A ⊆ X such that |A| = s.

■ For both undirected graphs and directed graphs: πR(s) = O(s2)

[Muthukrishnan and Nikolov 12]: Range query with primal function
O(sd) admits (ε, δ)-DP algorithm with error Oε,δ(m

1/2−1/(2d)), where
m is the size of the ground set.

24 of 26



Discrepancy of Shortest Paths

If we assign colors {+1,−1} to vertices (or edges) of a graph, what is
the discrepancy of consistent shortest paths in a graph?

[Chen et al 23]: (hereditary) discrepancy is a lower bound of the
approx-DP error.

Erdös point-line system: n points on n lines with

■ each point staying on Θ(n1/3) lines;

■ each line through Θ(n1/3) points.

Hereditary discrepancy of the point-line incidence matrix is Ω(n1/6). –
Edge weights as L2 distances ⇒ shortest paths discrepancy.

New results: discrepancy lower bound Ω(n1/4) on shortest paths
discrepancy.
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