Differentially Private Range Query on Shortest Paths

Jie Gao
Rutgers University
http://sites.rutgers.edu/jie-gao

December 122023

Classical Range Query Problems

Given points in \mathbb{R}^{d}, report the number of points inside

- Orthogonal ranges: rectilinear boxes in \mathbb{R}^{d}.
- Simplex ranges: d-dimensional simplex (e.g., a triangle in 2D).

Range Query on Shortest Paths

Given a weighted graph $G=(V, E)$,

- Query ranges $=$ shortest paths $P(s, t)$ on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range $P(s, t)$.

Range Query on Shortest Paths

Given a weighted graph $G=(V, E)$,

- Query ranges $=$ shortest paths $P(s, t)$ on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range $P(s, t)$. Assumptions

1. The shortest paths are 'consistent' - any two shortest paths intersect at a contiguous subpath.

Range Query on Shortest Paths

Given a weighted graph $G=(V, E)$,

- Query ranges $=$ shortest paths $P(s, t)$ on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range $P(s, t)$. Assumptions

1. The shortest paths are 'consistent' - any two shortest paths intersect at a contiguous subpath.

2. The sensor readings are sensitive and need to be protected with privacy guarantee.

Plan

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Combining input perturbation vs. output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

Differential Privacy

[Dwork 06] A randomized range query response mechanism M is ε-differentially private if for any two adjacent datasets D and D^{\prime} (i.e., differ by ℓ_{1} norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \operatorname{Range}(M)$,

$$
\operatorname{Pr}\left[M_{D}(R) \in H\right] \leq e^{\varepsilon} \cdot \operatorname{Pr}\left[M_{D^{\prime}}(R) \in H\right] .
$$

Differential Privacy

[Dwork 06] A randomized range query response mechanism M is ε-differentially private if for any two adjacent datasets D and D^{\prime} (i.e., differ by ℓ_{1} norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \operatorname{Range}(M)$,

$$
\operatorname{Pr}\left[M_{D}(R) \in H\right] \leq e^{\varepsilon} \cdot \operatorname{Pr}\left[M_{D^{\prime}}(R) \in H\right] .
$$

(ε, δ)-differential privacy:

$$
\operatorname{Pr}\left[M_{D}(R) \in H\right] \leq e^{\varepsilon} \cdot \operatorname{Pr}\left[M_{D^{\prime}}(R) \in H\right]+\delta .
$$

$\delta=0$: pure-DP; $\delta \neq 0$, approximate-DP.

Why is Differential Privacy a Popular Model?

- Post processing of perturbed data does not damage privacy.

Why is Differential Privacy a Popular Model?

- Post processing of perturbed data does not damage privacy.
- Composition (simple): M_{1} with ε_{1}-DP, and M_{2} with ε_{2}-DP, then $\left(M_{1}, M_{2}\right)$ is $\left(\varepsilon_{1}+\varepsilon_{2}\right)$-DP.

Laplace Mechanism

Laplace mechanism: add noise with distribution $\operatorname{Lap}(b)$, and its probability density is given as: $\operatorname{Lap}[x \mid b]=\frac{1}{2 b} \exp \left(-\frac{|x|}{b}\right)$.

Laplace Mechanism

The level of noise is usually determined in terms of sensitivity.

Laplace Mechanism

The level of noise is usually determined in terms of sensitivity.
The sensitivity of a function f, written as Δf, is the largest possible difference in the output of f between any pair of adjacent databases:

$$
\max _{\left(D, D^{\prime}\right)}\left|f(D)-f\left(D^{\prime}\right)\right|
$$

Laplace Mechanism

The level of noise is usually determined in terms of sensitivity.
The sensitivity of a function f, written as Δf, is the largest possible difference in the output of f between any pair of adjacent databases:

$$
\max _{\left(D, D^{\prime}\right)}\left|f(D)-f\left(D^{\prime}\right)\right| .
$$

Example: f as the average employee salary.

Laplace Mechanism Satisfies DP

To achieve ε-differential privacy, adding noise $z \sim \operatorname{Lap}(\Delta f / \varepsilon)$ suffices.

Laplace Mechanism Satisfies DP

To achieve ε-differential privacy, adding noise $z \sim \operatorname{Lap}(\Delta f / \varepsilon)$ suffices.

$$
\begin{aligned}
& \frac{\operatorname{Pr}[z+f(D)=x]}{\operatorname{Pr}\left[z^{\prime}+f\left(D^{\prime}\right)=x\right]} \\
= & \frac{\exp (-|x-f(D)| / b)}{\exp \left(-\left|x-f\left(D^{\prime}\right)\right| / b\right)} \\
\leq & e^{\varepsilon} \cdot \exp \left(\frac{\left|x-f\left(D^{\prime}\right)\right|-|x-f(D)|}{\Delta f}\right) \\
\leq & e^{\varepsilon}
\end{aligned}
$$

1D Range Tree

Build a binary search tree. Run two queries for the boundary of [25, 90]. Take points in between.

Input Perturbation

Publish data with iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ on each element.

Input Perturbation

Publish data with iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ on each element.

- ε-DP.
- Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

Input Perturbation

Publish data with iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ on each element.

- ε-DP.
- Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

What is the error magnitude of a query on n elements?

Sum of Independent Laplace Variables

[CCS'11] Suppose $\gamma_{i} \sim \operatorname{Lap}\left(b_{i}\right)$ and $Y=\sum_{i} \gamma_{i}$. Then, with $0<\delta<1, \operatorname{Pr}\left[|Y|=O\left(\sqrt{\sum_{i} b_{i}^{2}} \log (1 / \delta)\right)\right] \geq 1-\delta$.

Sum of Independent Laplace Variables

[CCS'11] Suppose $\gamma_{i} \sim \operatorname{Lap}\left(b_{i}\right)$ and $Y=\sum_{i} \gamma_{i}$. Then, with $0<\delta<1, \operatorname{Pr}\left[|Y|=O\left(\sqrt{\sum_{i} b_{i}^{2}} \log (1 / \delta)\right)\right] \geq 1-\delta$.
If a query range consists of n elements, where each is added an independent noise from $\operatorname{Lap}(1 / \varepsilon)$, then the total noise $\sim O\left(\frac{1}{\varepsilon} \sqrt{n} \log \frac{1}{\delta}\right)$ with probability $1-\delta$.

Output Perturbation

Answer a query with a fresh noise $\sim \operatorname{Lap}(1 / \varepsilon)$.

- If an element is involved in m queries, then we have ($m \varepsilon$)-DP.
- Or we take $\varepsilon^{\prime}=m \varepsilon$, query error $\sim O(m / \varepsilon)$.

Combining Input and Output Perturbation

[CCS'11] Add independent noise $\sim \operatorname{Lap}(\log n / \varepsilon)$ on each node of the range tree.

Query error? Sum up $O(\log n)$ independent noise, each $\sim \operatorname{Lap}(\log n / \varepsilon) \Rightarrow O\left(\log ^{1.5} n / \varepsilon\right)$.

Plan

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Combining input and output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

Range Query on Shortest Paths

Input perturbation:

- Add iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ to each edge value.
- Query error?

Range Query on Shortest Paths

Input perturbation:

- Add iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ to each edge value.
- Query error? $O(n / \varepsilon)$.

Range Query on Shortest Paths

Input perturbation:

- Add iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ to each edge value.
- Query error? $O(n / \varepsilon)$.

Output perturbation:

- Add iid $\sim \operatorname{Lap}(Y / \varepsilon)$ to each query output.

Range Query on Shortest Paths

Input perturbation:

- Add iid noise $\sim \operatorname{Lap}(1 / \varepsilon)$ to each edge value.
- Query error? $O(n / \varepsilon)$.

Output perturbation:

- Add iid $\sim \operatorname{Lap}(Y / \varepsilon)$ to each query output.
- What is Y ? - the number of queries that may contain one vertex, $Y=\Theta\left(n^{2}\right)$.
- Query error $O\left(n^{2} / \varepsilon\right)$.

Use Canonical Paths

- Randomly sample s vertices S, build shortest paths between all pairs in S.

Use Canonical Paths

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O\left(s^{2}\right)$ paths.

Use Canonical Paths

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O\left(s^{2}\right)$ paths.

- Such intersections partition a single path into $O\left(s^{2}\right)$ canonical segments.

Use Canonical Paths

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O\left(s^{2}\right)$ paths.

- Such intersections partition a single path into $O\left(s^{2}\right)$ canonical segments.

Claim: any two canonical segments are edge disjoint.

Use Canonical Paths

DP mechanism:

- Input pertuabtion on each edge value: $\operatorname{Lap}(2 / \varepsilon)$

Use Canonical Paths

DP mechanism:

- Input pertuabtion on each edge value: $\operatorname{Lap}(2 / \varepsilon)$
- Output perturbation on canonical segments: $\operatorname{Lap}(2 / \varepsilon) \Rightarrow$ each edge may appear in at most one canonical segment.

Use Canonical Paths

DP mechanism:

- Input pertuabtion on each edge value: $\operatorname{Lap}(2 / \varepsilon)$
- Output perturbation on canonical segments: $\operatorname{Lap}(2 / \varepsilon) \Rightarrow$ each edge may appear in at most one canonical segment.

Adding up, we have $\varepsilon / 2+\varepsilon / 2=\varepsilon$-DP.

Use Canonical Paths

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \# vertices before reaching the first vertex x in $S: \tilde{O}(n / s)$.
- Take perturbed values from $O\left(s^{2}\right)$ canonical segments until the last vertex y on P.
- From u to x and from y to v use input perturbation.

Use Canonical Paths

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \# vertices before reaching the first vertex x in $S: \tilde{O}(n / s)$.
- Take perturbed values from $O\left(s^{2}\right)$ canonical segments until the last vertex y on P.
- From u to x and from y to v use input perturbation.

Total error:

$$
\tilde{O}\left(\frac{1}{\varepsilon} \cdot \sqrt{\frac{n}{s}+s^{2}}\right)
$$

Use Canonical Paths

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \# vertices before reaching the first vertex x in $S: \tilde{O}(n / s)$.
- Take perturbed values from $O\left(s^{2}\right)$ canonical segments until the last vertex y on P.
- From u to x and from y to v use input perturbation.

Total error:

$$
\tilde{O}\left(\frac{1}{\varepsilon} \cdot \sqrt{\frac{n}{s}+s^{2}}\right)
$$

Take $s=n^{1 / 3}$ we get error of $\tilde{O}\left(n^{1 / 3} / \varepsilon\right)$.

Approximate-DP; Better Error Bounds

Gaussian noise $N\left(0, \sigma^{2}\right)$ with $\sigma^{2} \approx \frac{(\Delta f)^{2}}{\varepsilon^{2}} \log \frac{1}{\delta}$ gives (ε, δ)-DP.

Approximate-DP; Better Error Bounds

Gaussian noise $N\left(0, \sigma^{2}\right)$ with $\sigma^{2} \approx \frac{(\Delta f)^{2}}{\varepsilon^{2}} \log \frac{1}{\delta}$ gives (ε, δ)-DP.
Strong composition: With $k(\varepsilon, \delta)$-DP mechanisms $\Rightarrow\left(\varepsilon^{\prime}, \delta^{\prime}\right)$-DP with $\varepsilon^{\prime} \approx \varepsilon \sqrt{k}$ and $\delta^{\prime} \approx k \delta$.

Approximate-DP; Better Error Bounds

Gaussian noise $N\left(0, \sigma^{2}\right)$ with $\sigma^{2} \approx \frac{(\Delta f)^{2}}{\varepsilon^{2}} \log \frac{1}{\delta}$ gives (ε, δ)-DP.
Strong composition: With $k(\varepsilon, \delta)$-DP mechanisms $\Rightarrow\left(\varepsilon^{\prime}, \delta^{\prime}\right)$-DP with $\varepsilon^{\prime} \approx \varepsilon \sqrt{k}$ and $\delta^{\prime} \approx k \delta$.

Algorithm: 1. Add Gaussian noise for each edge with $(\varepsilon / 2, \delta / 2)$-DP.

Approximate-DP; Better Error Bounds

Gaussian noise $N\left(0, \sigma^{2}\right)$ with $\sigma^{2} \approx \frac{(\Delta f)^{2}}{\varepsilon^{2}} \log \frac{1}{\delta}$ gives (ε, δ)-DP.
Strong composition: With $k(\varepsilon, \delta)$-DP mechanisms $\Rightarrow\left(\varepsilon^{\prime}, \delta^{\prime}\right)$-DP with $\varepsilon^{\prime} \approx \varepsilon \sqrt{k}$ and $\delta^{\prime} \approx k \delta$.

Algorithm: 1. Add Gaussian noise for each edge with ($\varepsilon / 2, \delta / 2$)-DP.
2. Randomly sample s vertices $S, \forall s \in S$

- Build shortest path tree.
- On each tree, run heavy-light decomposition.
- Add Gaussian noise for each heavy path. \Rightarrow each tree gives $(\varepsilon / \sqrt{s}, \delta / s)$-DP.

Approximate-DP; Better Error Bounds

Error analysis: summation of

- $O(n / s)$ Gaussian noises $\approx O_{\varepsilon, \delta}(1)$, and
- $O(\log n)$ heavy paths each of noise $\approx O_{\varepsilon, \delta}(\sqrt{s})$, and
- $O(\log n)$ light edges of noises $\approx O_{\varepsilon, \delta}(1)$

Total error:

$$
\tilde{O}\left(\frac{1}{\varepsilon} \cdot\left(\sqrt{\frac{n}{s}}+\sqrt{s}\right)\right)
$$

Take $s=n^{1 / 2}$ we get error of $\tilde{O}_{\varepsilon, \delta}\left(n^{1 / 4}\right)$.

Approximate-DP; Better Error Bounds

Error analysis: summation of

- $O(n / s)$ Gaussian noises $\approx O_{\varepsilon, \delta}(1)$, and
- $O(\log n)$ heavy paths each of noise $\approx O_{\varepsilon, \delta}(\sqrt{s})$, and
- $O(\log n)$ light edges of noises $\approx O_{\varepsilon, \delta}(1)$

Total error:

$$
\tilde{O}\left(\frac{1}{\varepsilon} \cdot\left(\sqrt{\frac{n}{s}}+\sqrt{s}\right)\right)
$$

Take $s=n^{1 / 2}$ we get error of $\tilde{O}_{\varepsilon, \delta}\left(n^{1 / 4}\right)$.
Q: Improve further? Lower bound?

Plan

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Combining input perturbation vs. output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

VC-dimension of Shortest Paths

Consistent shortest paths have low VC-dimension:

- Undirected graph: VC-dimension $=2$ [ADFGW 11][TSP 11]

VC-dimension of Shortest Paths

Consistent shortest paths have low VC-dimension:

- Undirected graph: VC-dimension $=2$ [ADFGW 11][TSP 11]

- Directed graph: VC-dimension $=3$ [FNS 14]

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in \mathcal{S}\}$ for some $A \subseteq X$ such that $|A|=s$.

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in \mathcal{S}\}$ for some $A \subseteq X$ such that $|A|=s$.

- For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s)=O\left(s^{2}\right)$

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in \mathcal{S}\}$ for some $A \subseteq X$ such that $|A|=s$.

- For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s)=O\left(s^{2}\right)$
[Muthukrishnan and Nikolov 12]: Range query with primal function $O\left(s^{d}\right)$ admits (ε, δ)-DP algorithm with error $O_{\varepsilon, \delta}\left(m^{1 / 2-1 /(2 d)}\right)$, where m is the size of the ground set.

Discrepancy of Shortest Paths

If we assign colors $\{+1,-1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?
[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Discrepancy of Shortest Paths

If we assign colors $\{+1,-1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?
[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Erdös point-line system: n points on n lines with

- each point staying on $\Theta\left(n^{1 / 3}\right)$ lines;
- each line through $\Theta\left(n^{1 / 3}\right)$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega\left(n^{1 / 6}\right)$. Edge weights as L_{2} distances \Rightarrow shortest paths discrepancy.

Discrepancy of Shortest Paths

If we assign colors $\{+1,-1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?
[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Erdös point-line system: n points on n lines with

- each point staying on $\Theta\left(n^{1 / 3}\right)$ lines;
- each line through $\Theta\left(n^{1 / 3}\right)$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega\left(n^{1 / 6}\right)$. Edge weights as L_{2} distances \Rightarrow shortest paths discrepancy.
New results: discrepancy lower bound $\Omega\left(n^{1 / 4}\right)$ on shortest paths discrepancy.

Acknowledgement

- Rutgers: Chengyuan Deng, Jalaj Upadhyay, Chen Wang
- Michigan: Greg Bodwin, Gary Hoppenworth

Questions and Comments?

