Differentially Private Range Query on Shortest Paths

Jie Gao

Rutgers University http://sites.rutgers.edu/jie-gao

December 12 2023

Classical Range Query Problems

Given points in \mathbb{R}^d , report the number of points inside

- Orthogonal ranges: rectilinear boxes in \mathbb{R}^d .
- Simplex ranges: *d*-dimensional simplex (e.g., a triangle in 2D).

Given a weighted graph G = (V, E),

- Query ranges = shortest paths P(s, t) on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range P(s, t).

Given a weighted graph G = (V, E),

- Query ranges = shortest paths P(s, t) on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range P(s, t). Assumptions

1. The shortest paths are 'consistent' – any two shortest paths intersect at a contiguous subpath.

Given a weighted graph G = (V, E),

- Query ranges = shortest paths P(s, t) on $G, \forall s, t \in V$.
- Edges also carry "sensor readings".

Goal: report the sum of sensor readings along a query range P(s, t). Assumptions

1. The shortest paths are 'consistent' – any two shortest paths intersect at a contiguous subpath.

2. The sensor readings are sensitive and need to be protected with privacy guarantee.

Plan

Review of differential privacy

- 1D range query: Input perturbation vs. output perturbation
- Combining input perturbation vs. output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

[Dwork 06] A randomized range query response mechanism M is ε -differentially private if for any two adjacent datasets D and D' (i.e., differ by ℓ_1 norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \text{Range}(M)$,

 $\Pr[M_D(R) \in H] \leq e^{\varepsilon} \cdot \Pr[M_{D'}(R) \in H].$

[Dwork 06] A randomized range query response mechanism M is ε -differentially private if for any two adjacent datasets D and D' (i.e., differ by ℓ_1 norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \text{Range}(M)$,

$$\Pr[M_D(R) \in H] \leq e^{\varepsilon} \cdot \Pr[M_{D'}(R) \in H].$$

(ε , δ)-differential privacy:

 $\Pr[M_D(R) \in H] \leq e^{\varepsilon} \cdot \Pr[M_{D'}(R) \in H] + \delta.$

 $\delta = 0$: pure-DP; $\delta \neq 0$, approximate-DP.

Why is Differential Privacy a Popular Model?

Post processing of perturbed data does not damage privacy.

Why is Differential Privacy a Popular Model?

- Post processing of perturbed data does not damage privacy.
- Composition (simple): M₁ with ε₁-DP, and M₂ with ε₂-DP, then (M₁, M₂) is (ε₁ + ε₂)-DP.

Laplace Mechanism

Laplace mechanism: add noise with distribution Lap(b), and its probability density is given as: Lap $[x|b] = \frac{1}{2b} \exp(-\frac{|x|}{b})$.

The level of noise is usually determined in terms of *sensitivity*.

The level of noise is usually determined in terms of sensitivity.

The sensitivity of a function f, written as Δf , is the largest possible difference in the output of f between any pair of adjacent databases:

 $\max_{(D,D')} |f(D) - f(D')|.$

The level of noise is usually determined in terms of sensitivity.

The sensitivity of a function f, written as Δf , is the largest possible difference in the output of f between any pair of adjacent databases:

$$\max_{(D,D')} |f(D) - f(D')|.$$

Example: f as the average employee salary.

To achieve ε -differential privacy, adding noise $z \sim \text{Lap}(\Delta f/\varepsilon)$ suffices.

To achieve ε -differential privacy, adding noise $z \sim \text{Lap}(\Delta f / \varepsilon)$ suffices.

$$\frac{\Pr[z + f(D) = x]}{\Pr[z' + f(D') = x]}$$

$$= \frac{\exp(-|x - f(D)|/b)}{\exp(-|x - f(D')|/b)}$$

$$\leq e^{\varepsilon} \cdot \exp(\frac{|x - f(D')| - |x - f(D)|}{\Delta f})$$

$$\leq e^{\varepsilon}$$

1D Range Tree

Build a binary search tree. Run two queries for the boundary of [25, 90]. Take points in between.

Input Perturbation

Publish data with iid noise $\sim {\sf Lap}(1/arepsilon)$ on each element.

Input Perturbation

Publish data with iid noise $\sim {\sf Lap}(1/arepsilon)$ on each element.

- *ε*-DP.
- \blacksquare Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

Input Perturbation

Publish data with iid noise $\sim Lap(1/\varepsilon)$ on each element.

- *ε*-DP.
- \blacksquare Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

What is the error magnitude of a query on n elements?

Sum of Independent Laplace Variables

[CCS'11] Suppose $\gamma_i \sim \text{Lap}(b_i)$ and $Y = \sum_i \gamma_i$. Then, with $0 < \delta < 1$, $\Pr[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta$.

Sum of Independent Laplace Variables

[CCS'11] Suppose
$$\gamma_i \sim \text{Lap}(b_i)$$
 and $Y = \sum_i \gamma_i$. Then, with $0 < \delta < 1$, $\Pr[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta$.

If a query range consists of *n* elements, where each is added an independent noise from Lap $(1/\varepsilon)$, then the total noise $\sim O(\frac{1}{\varepsilon}\sqrt{n}\log\frac{1}{\delta})$ with probability $1-\delta$.

Output Perturbation

Answer a query with a fresh noise $\sim Lap(1/\varepsilon)$.

- If an element is involved in *m* queries, then we have $(m\varepsilon)$ -DP.
- Or we take $\varepsilon' = m\varepsilon$, query error $\sim O(m/\varepsilon)$.

Combining Input and Output Perturbation

[CCS'11] Add independent noise $\sim Lap(\log n/\varepsilon)$ on each node of the range tree.

Query error? Sum up $O(\log n)$ independent noise, each $\sim \text{Lap}(\log n/\varepsilon) \Rightarrow O(\log^{1.5} n/\varepsilon).$

Plan

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Combining input and output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

Input perturbation:

- Add iid noise $\sim Lap(1/\varepsilon)$ to each edge value.
- Query error?

Input perturbation:

- Add iid noise $\sim Lap(1/\varepsilon)$ to each edge value.
- Query error? $O(n/\varepsilon)$.

Input perturbation:

- Add iid noise $\sim Lap(1/\varepsilon)$ to each edge value.
- Query error? $O(n/\varepsilon)$.

Output perturbation:

• Add iid ~ Lap (Y/ε) to each query output.

Input perturbation:

- Add iid noise $\sim Lap(1/\varepsilon)$ to each edge value.
- Query error? $O(n/\varepsilon)$.

Output perturbation:

- Add iid ~ Lap (Y/ε) to each query output.
- What is Y? the number of queries that may contain one vertex, $Y = \Theta(n^2)$.
- Query error $O(n^2/\varepsilon)$.

 Randomly sample s vertices S, build shortest paths between all pairs in S.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O(s^2)$ paths.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O(s^2)$ paths.

Such intersections partition a single path into O(s²) canonical segments.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all $O(s^2)$ paths.

Such intersections partition a single path into O(s²) canonical segments.

Claim: any two canonical segments are edge disjoint.

DP mechanism:

• Input pertuabtion on each edge value: Lap $(2/\varepsilon)$

DP mechanism:

- Input pertuabtion on each edge value: Lap $(2/\varepsilon)$
- Output perturbation on canonical segments: Lap(2/ε) ⇒ each edge may appear in at most one canonical segment.

DP mechanism:

- Input pertuabtion on each edge value: Lap(2/ε)
- Output perturbation on canonical segments: Lap(2/ε) ⇒ each edge may appear in at most one canonical segment.

Adding up, we have $\varepsilon/2 + \varepsilon/2 = \varepsilon$ -DP.

Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- Take perturbed values from O(s²) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.

Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- Take perturbed values from O(s²) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.

Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- Take perturbed values from O(s²) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.

Total error:

$$ilde{O}(rac{1}{arepsilon}\cdot\sqrt{rac{n}{s}+s^2})$$

Take $s = n^{1/3}$ we get error of $\tilde{O}(n^{1/3}/\varepsilon)$.

19 of 26

Gaussian noise $N(0, \sigma^2)$ with $\sigma^2 \approx \frac{(\Delta f)^2}{\varepsilon^2} \log \frac{1}{\delta}$ gives (ε, δ) -DP.

Gaussian noise $N(0, \sigma^2)$ with $\sigma^2 \approx \frac{(\Delta f)^2}{\varepsilon^2} \log \frac{1}{\delta}$ gives (ε, δ) -DP.

Strong composition: With k (ε , δ)-DP mechanisms \Rightarrow (ε' , δ')-DP with $\varepsilon' \approx \varepsilon \sqrt{k}$ and $\delta' \approx k\delta$.

Gaussian noise $N(0, \sigma^2)$ with $\sigma^2 \approx \frac{(\Delta f)^2}{\varepsilon^2} \log \frac{1}{\delta}$ gives (ε, δ) -DP.

Strong composition: With k (ε , δ)-DP mechanisms \Rightarrow (ε' , δ')-DP with $\varepsilon' \approx \varepsilon \sqrt{k}$ and $\delta' \approx k\delta$.

Algorithm: 1. Add Gaussian noise for each edge with $(\varepsilon/2, \delta/2)$ -DP.

Gaussian noise $N(0, \sigma^2)$ with $\sigma^2 \approx \frac{(\Delta f)^2}{\varepsilon^2} \log \frac{1}{\delta}$ gives (ε, δ) -DP.

Strong composition: With k (ε , δ)-DP mechanisms \Rightarrow (ε' , δ')-DP with $\varepsilon' \approx \varepsilon \sqrt{k}$ and $\delta' \approx k\delta$.

Algorithm: 1. Add Gaussian noise for each edge with $(\varepsilon/2, \delta/2)$ -DP.

- 2. Randomly sample *s* vertices *S*, $\forall s \in S$
- Build shortest path tree.
- On each tree, run heavy-light decomposition.
- Add Gaussian noise for each heavy path. \Rightarrow each tree gives $(\varepsilon/\sqrt{s}, \delta/s)$ -DP.

Error analysis: summation of

- O(n/s) Gaussian noises $pprox O_{arepsilon,\delta}(1)$, and
- $O(\log n)$ heavy paths each of noise $\approx O_{\varepsilon,\delta}(\sqrt{s})$, and
- $O(\log n)$ light edges of noises $\approx O_{\varepsilon,\delta}(1)$ Total error:

$$ilde{O}(rac{1}{arepsilon}\cdot(\sqrt{rac{n}{s}}+\sqrt{s}))$$

Take $s = n^{1/2}$ we get error of $ilde{O}_{arepsilon,\delta}(n^{1/4}).$

Error analysis: summation of

- O(n/s) Gaussian noises $pprox O_{arepsilon,\delta}(1)$, and
- $O(\log n)$ heavy paths each of noise $\approx O_{\varepsilon,\delta}(\sqrt{s})$, and
- $O(\log n)$ light edges of noises $\approx O_{\varepsilon,\delta}(1)$ Total error:

$$ilde{O}(rac{1}{arepsilon}\cdot(\sqrt{rac{n}{s}}+\sqrt{s}))$$

Take $s = n^{1/2}$ we get error of $ilde{O}_{arepsilon,\delta}(n^{1/4}).$

Q: Improve further? Lower bound?

Plan

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Combining input perturbation vs. output perturbation
- Range query on shortest paths
- Connection to VC-dimension and discrepancy theory

VC-dimension of Shortest Paths

Consistent shortest paths have low VC-dimension:

Undirected graph: VC-dimension =2 [ADFGW 11][TSP 11]

VC-dimension of Shortest Paths

Consistent shortest paths have low VC-dimension:

Undirected graph: VC-dimension =2 [ADFGW 11][TSP 11]

Directed graph: VC-dimension = 3 [FNS 14]

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that |A| = s.

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that |A| = s.

• For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s) = O(s^2)$

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that |A| = s.

• For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s) = O(s^2)$

[Muthukrishnan and Nikolov 12]: Range query with primal function $O(s^d)$ admits (ε, δ) -DP algorithm with error $O_{\varepsilon,\delta}(m^{1/2-1/(2d)})$, where m is the size of the ground set.

If we assign colors $\{+1, -1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?

[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Discrepancy of Shortest Paths

If we assign colors $\{+1, -1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?

[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Erdös point-line system: n points on n lines with

- each point staying on $\Theta(n^{1/3})$ lines;
- each line through $\Theta(n^{1/3})$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega(n^{1/6})$. – Edge weights as L_2 distances \Rightarrow shortest paths discrepancy. If we assign colors $\{+1, -1\}$ to vertices (or edges) of a graph, what is the discrepancy of consistent shortest paths in a graph?

[Chen et al 23]: (hereditary) discrepancy is a lower bound of the approx-DP error.

Erdös point-line system: n points on n lines with

- each point staying on $\Theta(n^{1/3})$ lines;
- each line through $\Theta(n^{1/3})$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega(n^{1/6})$. – Edge weights as L_2 distances \Rightarrow shortest paths discrepancy.

New results: discrepancy lower bound $\Omega(n^{1/4})$ on shortest paths discrepancy.

- Rutgers: Chengyuan Deng, Jalaj Upadhyay, Chen Wang
- Michigan: Greg Bodwin, Gary Hoppenworth

Questions and Comments?