Graph Ricci Flow and Applications in Network Analysis and Learning

Jie Gao

Computer Science, Rutgers University
http://sites.rutgers.edu/jie-gao

Jan 4th 2024

Graph Data and Complex Networks

Complex networks in nature: social networks, biological networks, the Internet, WWW, mobility data.

- Small world phenomena
- Power law degree distribution
- Community structures (clustered, closely knit groups).

Analyzing Graph Data and Complex Networks

Understand a single network:

- Community detection.
- Graph learning (label propagation \& prediction)

Analyzing Graph Data and Complex Networks

Understand a single network:

- Community detection.
- Graph learning (label propagation \& prediction)

Understand a family of networks:

- Network alignment.
- Graph generative model.

Analyzing Graph Data and Complex Networks

Understand a single network:

- Community detection.
- Graph learning (label propagation \& prediction)

Understand a family of networks:

- Network alignment.
- Graph generative model.

Our project: use geometric tools, Ollivier Ricci curvature flow, to analyze complex networks.

Curvature in Geometry

Sphere: positive curvature; Plane: zero curvature; Hyperbolic plane: negatie curvature.

Sectional Curvature in Geometry

Consider a tangent vector $v=x y$ and another tangent vector w_{x} at x. Transport w_{x} along v to be a tangent vector w_{y} at y. If $\left|x^{\prime} y^{\prime}\right|<|x y|$, then sectional curvature is positive.

Ollivier Ricci Curvature

Take the analog: for an edge $x y$, consider the "distances" from x 's neighbors to y 's neighbors and compare it with the length of $x y$.

How to compute the "distances" between two neighborhoods? Use the optimal transport distance.

Ollivier Ricci Curvature

Definition (Ollivier)

Let (X, d) be a metric space and let m_{1}, m_{2} be two probability measures on X. For any two distinct points $x, y \in X$, the (Ollivier-) Ricci curvature along $x y$ is defined as

$$
\kappa(x, y):=1-\frac{W_{1}\left(m_{x}, m_{y}\right)}{d(x, y)}
$$

where $m_{x}\left(m_{y}\right)$ is a probability distribution defined on $x(y)$ and its neighbors, $W_{1}\left(\mu_{1}, \mu_{2}\right)$ is the L_{1} optimal transportation distance between two probability measure μ_{1} and μ_{2} on X :

$$
W_{1}\left(\mu_{1}, \mu_{2}\right):=\inf _{\psi \in \Pi\left(\mu_{1}, \mu_{2}\right)} \int_{(u, v)} d(u, v) d \psi(u, v)
$$

Examples

Zero curvature: 2D grid.

Examples

Negative curvature: tree: $\kappa(x, y)=1 / d_{x}+1 / d_{y}-1, d_{x}$ is degree of x.

Examples

Positive curvature: complete graph.

Curvature Distribution

Negatively curved edges are like "backbones", maintaining the connectivity of clusters, in which edges are mostly positively curved.

Ricci Flow on Manifold vs. on Networks

Hamilton introduced Ricci flow, a curvature guided process.

Ricci Flow Metric

Intuition: flatten the network - shrink an edge if it is within a well connected community; stretch an edge if otherwise, s.t., the network curvature is uniform everywhere.

$$
d_{i+1}(x, y)=\left(d_{i}(x, y)-\varepsilon \cdot \kappa_{i}(x, y) \cdot d_{i}(x, y)\right) \cdot N
$$

Ricci Flow Metric

Intuition: flatten the network - shrink an edge if it is within a well connected community; stretch an edge if otherwise, s.t., the network curvature is uniform everywhere.

$$
d_{i+1}(x, y)=\left(d_{i}(x, y)-\varepsilon \cdot \kappa_{i}(x, y) \cdot d_{i}(x, y)\right) \cdot N
$$

Distribution on a node x :

- Uniform distribution.
- $\exp \left(-d\left(x, x_{i}\right)^{p}\right)$, for a constant p.

Theory on Discrete Ricci Flow

Q: Does Ricci flow converge? Does it generate a unique solution?

- Classical manifold setting: contributes to the proof of the Poincare conjecture.
- Discrete Gaussian curvature on a triangulation: established [Gu, Luo, Wu 2019; Gu, Luo, Sun, Wu 2018 I, II].

Theory on Discrete Ricci Flow

Q: Does Ricci flow converge? Does it generate a unique solution?

- Classical manifold setting: contributes to the proof of the Poincare conjecture.
- Discrete Gaussian curvature on a triangulation: established [Gu, Luo, Wu 2019; Gu, Luo, Sun, Wu 2018 I, II].
- Discrete curvature on graphs: largely unknown.

Ollivier Ricci flow:

- Analysis of a very special case. [Ni, Lin, Luo, Gao, 2019]
- Continuous flow, assumption that the edge $u v$ is the shortest path from u to v. [Bai, Lin, Lu, Wang, Yau, 2021]

Applications of Discrete Ricci Flow

- Community detection
- Network alignment
- Graph neural network

Community Detection: Karate Club Network

Community Detection: Facebook Ego Network

792 friends and 14025 edges. The colors represent 24 different friend circles (communities).

Community Detection: Brain Connectome Network

Brain network from resting-state (rs-fMRI) data, where edges with cross-correlation less than a threshold are removed.

Cutoff Threshold vs Modularity

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR) benchmark network (community size \sim power law).

Performance Comparison

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR) benchmark network (community size \sim power law).

LFR, 500 Nodes, Avg Degree $=20$

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

- On the Internet, measure the delay - Trouble: time-consuming, traffic dependent.

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

- On the Internet, measure the delay - Trouble: time-consuming, traffic dependent.
- On a social network, use tie strength - Trouble: not easy to measure.

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

- On the Internet, measure the delay - Trouble: time-consuming, traffic dependent.
- On a social network, use tie strength - Trouble: not easy to measure.
- Count \# hops on the shortest paths- Trouble: small world property;

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

- On the Internet, measure the delay - Trouble: time-consuming, traffic dependent.
- On a social network, use tie strength - Trouble: not easy to measure.
- Count \# hops on the shortest paths- Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding) - Trouble: sensitivity to noises.

Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

- On the Internet, measure the delay - Trouble: time-consuming, traffic dependent.
- On a social network, use tie strength - Trouble: not easy to measure.
- Count \# hops on the shortest paths- Trouble: small world property;
- Distances from some geometric embedding (spectral embedding, Tutte embedding) - Trouble: sensitivity to noises.

Robustness of Ricci Flow Metric: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.

Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Graph Isomorphism

Given a pair of graphs G_{1}, G_{2}, find a one-to-one correspondence of the vertices in G_{1} to vertices in G_{2} such that (u, v) is an edge in G_{1} if and only if their corresponding nodes $f(u), f(v)$ are connected in G_{2}.

Graph Isomorphism

Given a pair of graphs G_{1}, G_{2}, find a one-to-one correspondence of the vertices in G_{1} to vertices in G_{2} such that (u, v) is an edge in G_{1} if and only if their corresponding nodes $f(u), f(v)$ are connected in G_{2}.

Our Solution: A Geometric Approach

How to align two sets of points in the plane, assuming that some landmarks ℓ_{i} are already aligned?

Our Solution: A Geometric Approach

How to align two sets of points in the plane, assuming that some landmarks ℓ_{i} are already aligned?

- Any point p can be represented by the barycentric coordinates $\left(d_{1}, d_{2}, d_{3}\right), d_{i}$ is distance to ℓ_{i}.
- If the barycentric coordinates of p and p^{\prime} are similar, we match p and p^{\prime}.

Evaluation on Matching Performance

- Randomly remove one node in a random regular graph w/ degree 12.
- Right: remove randomly 10 edges in a protein protein network.

Graph Neural Network

Graph Neural Network for node classification: given labels of a subset of nodes, predict the labels of the rest.

- Graph topology $G=(V, E)$
- Vertex features H

Vulnerability: Removal/insertion of fake edges can dramatically hurt model performance.

Robust Graph Neural Network through Resampling

- Recover the underlying metric of G using Ricci flow.
- Re-sample an ensemble of graphs for training.

Robust Graph Neural Network through Resampling

Robustness to Graph Topology Attacks

Dataset	Ptb rate\%	GCN	GAT	RGCN	GCN-Jaccard	GCN-SVD	Pro-GNN	Ricci-GNN
Cora	0	83.50 ± 0.44	83.97 ± 0.65	83.09 ± 0.44	82.05 ± 0.51	80.63 ± 0.45	82.98 ± 0.23	83.03 ± 0.59
	5	76.55 ± 0.79	80.44 ± 0.74	77.42 ± 0.39	79.13 ± 0.59	78.39 ± 0.54	82.78 ± 0.45	82.80 ± 0.43
	10	70.39 ± 1.28	75.61 ± 0.59	72.22 ± 0.38	76.16 ± 0.76	71.47 ± 0.83	77.91 ± 0.86	79.70 ± 0.43
	15	65.10 ± 0.71	69.78 ± 1.28	66.82 ± 0.39	71.03 ± 0.64	66.69 ± 1.18	76.01 ± 1.12	77.28 ± 0.50
	20	59.56 ± 2.72	59.94 ± 0.92	59.27 ± 0.37	65.71 ± 0.89	58.94 ± 1.13	68.78 ± 5.84	74.10 ± 0.63
	25	47.53 ± 1.96	54.78 ± 0.74	50.51 ± 0.78	60.82 ± 1.08	52.06 ± 1.19	56.54 ± 2.58	71.73 ± 0.60
Citeseer	0	71.96 ± 0.55	73.26 ± 0.83	71.20 ± 0.83	72.10 ± 0.63	70.65 ± 0.32	73.26 ± 0.69	73.95 ± 0.53
	5	70.88 ± 0.62	72.89 ± 0.83	70.50 ± 0.43	70.51 ± 0.97	68.84 ± 0.72	73.09 ± 0.34	73.39 ± 0.52
	10	67.55 ± 0.89	70.63 ± 0.48	67.71 ± 0.30	69.64 ± 0.56	68.87 ± 0.62	72.43 ± 0.75	72.51 ± 0.62
	15	64.52 ± 0.62	69.02 ± 0.62	65.69 ± 0.62	65.95 ± 0.62	$63.26 \pm \pm 0.62$	70.82 ± 2.38	71.99 ± 0.71
	20	62.03 ± 3.49	61.04 ± 1.52	62.49 ± 1.22	59.30 ± 1.40	58.55 ± 1.09	66.19 ± 2.57	68.40 ± 0.51
	25	56.94 ± 2.09	61.85 ± 1.12	55.35 ± 0.66	59.89 ± 1.47	57.18 ± 1.87	66.40 ± 2.57	68.84 ± 0.51
Polblogs	0	95.69 ± 0.38	95.35 ± 0.20	95.22 ± 0.14	-	95.31 ± 0.18	93.20 ± 0.64	95.72 ± 0.24
	5	73.07 ± 0.80	83.69 ± 1.45	74.34 ± 0.19	-	89.09 ± 0.22	93.29 ± 0.18	90.54 ± 0.47
	10	70.72 ± 0.62	76.32 ± 0.62	71.04 ± 0.62	-	81.24 ± 0.62	89.42 ± 1.09	86.88 ± 0.85
	15	64.96 ± 1.91	68.80 ± 1.14	67.28 ± 0.38	-	68.10 ± 3.73	86.04 ± 2.21	86.10 ± 0.96
	20	51.27 ± 1.23	51.50 ± 1.63	59.89 ± 0.34	-	57.33 ± 3.15	79.56 ± 5.68	81.37 ± 1.24 79.95
	25	49.23 ± 1.36	51.19 ± 1.49	56.02 ± 0.56	-	48.66 ± 9.93	63.18 ± 4.40	79.95 ± 1.89

Robustness to Graph Topology Attacks

Is the gain coming from graph ensembling or from the choice of metrics?

Ptb rate \%	Cora			Citeseer			Polblogs		
	HC	Spectral	Ricci	HC	Spectral	Ricci	HC	Spectral	Ricci
5	81.4	76.1	82.8	73.0	71.3	73.4	85.6	88.2	90.5
10	77.5	73.1	79.7	71.0	69.3	72.5	85.6	88.0	86.9
15	75.5	65.1	77.3	70.7	67.6	72.0	70.6	80.3	86.1
20	72.8	60.2	74.1	67.9	67.8	68.4	65.8	79.4	81.4
25	65.4	54.7	71.7	65.4	65.6	68.8	62.0	74.6	80.0

Cora: sparse
Polblogs: dense, diameter $=4$.

Conclusion and Discussion

- Classical geometric notions for discrete graph analysis.
- Network embedding: Euclidean, hyperbolic, hybrid?
- Network evolution: why?
- More applications due to robustness of the metric?

Acknowledgement

- Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng Gu, Emil Saucan, INFOCOM'15.
- Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng Gu, Network Alignment by Discrete Ollivier-Ricci Flow, Symposium on Graph Drawing and Network Visualization (GD'18).
- Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Feng Luo, Community Detection on Networks with Ricci Flow, Scientific Reports 9, 9984, July 2019.
- Ye Ze, Kin Sum Liu, Tengfei Ma, Jie Gao and Chao Chen, Curvature Graph Network, ICLR, 2020.
- Ze Ye, Chien-Chun Ni, Tengfei Ma, Chao Chen, Jie Gao, Ricci-GNN: Defending Against Structural Attacks Through a Geometric Approach, under submission.

Github Code

- https://github.com/saibalmars/GraphRicciCurvature Questions and comments?

