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Graph Data and Complex Networks

Complex networks in nature: social networks, biological networks, the
Internet, WWW, mobility data.

■ Small world phenomena

■ Power law degree distribution

■ Community structures (clustered, closely knit groups).

Ricci Curvature

(a)

(a): Zoom in
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Analyzing Graph Data and Complex Networks

Understand a single network:

■ Community detection.

■ Graph learning (label propagation & prediction)

Understand a family of networks:

■ Network alignment.

■ Graph generative model.

Our project: use geometric tools, Ollivier Ricci curvature flow, to
analyze complex networks.
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Curvature in Geometry

Sphere: positive curvature; Plane: zero curvature; Hyperbolic plane:
negatie curvature.
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Sectional Curvature in Geometry

Consider a tangent vector v = xy and another tangent vector wx at
x . Transport wx along v to be a tangent vector wy at y .
If |x ′y ′| < |xy |, then sectional curvature is positive.
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Ollivier Ricci Curvature

Take the analog: for an edge xy , consider the “distances” from x ’s
neighbors to y ’s neighbors and compare it with the length of xy .
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How to compute the “distances” between two neighborhoods? Use
the optimal transport distance.
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Ollivier Ricci Curvature

Definition (Ollivier)

Let (X , d) be a metric space and let m1,m2 be two probability
measures on X . For any two distinct points x , y ∈ X , the (Ollivier-)
Ricci curvature along xy is defined as

κ(x , y) := 1− W1(mx ,my )

d(x , y)
,

where mx (my ) is a probability distribution defined on x (y) and its
neighbors, W1(µ1, µ2) is the L1 optimal transportation distance
between two probability measure µ1 and µ2 on X :

W1(µ1, µ2) := inf
ψ∈Π(µ1,µ2)

∫
(u,v)

d(u, v)dψ(u, v)
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Examples

Zero curvature: 2D grid.
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Examples

Negative curvature: tree: κ(x , y) = 1/dx + 1/dy − 1, dx is degree of
x .
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Examples

Positive curvature: complete graph.
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Curvature Distribution

Negatively curved edges are like “backbones”, maintaining the
connectivity of clusters, in which edges are mostly positively curved.

Ricci Curvature

(a)

(a): Zoom in
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Ricci Flow on Manifold vs. on Networks

Hamilton introduced Ricci flow, a curvature guided process.

(b') network after Ricci flow

(c') network after surgery

(a') initial network

(b) manifold after Ricci flow 

(a) initial manifold

(c) manifold after surgery
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Ricci Flow Metric

Intuition: flatten the network – shrink an edge if it is within a well
connected community; stretch an edge if otherwise, s.t., the network
curvature is uniform everywhere.

di+1(x , y) = (di (x , y)− ε · κi (x , y) · di (x , y)) · N

Distribution on a node x :

■ Uniform distribution.

■ exp(−d(x , xi )
p), for a constant p.
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Theory on Discrete Ricci Flow

Q: Does Ricci flow converge? Does it generate a unique solution?

■ Classical manifold setting: contributes to the proof of the Poincare
conjecture.

■ Discrete Gaussian curvature on a triangulation: established [Gu,
Luo, Wu 2019; Gu, Luo, Sun, Wu 2018 I, II].

■ Discrete curvature on graphs: largely unknown.

Ollivier Ricci flow:

■ Analysis of a very special case. [Ni, Lin, Luo, Gao, 2019]

■ Continuous flow, assumption that the edge uv is the shortest path
from u to v . [Bai, Lin, Lu, Wang, Yau, 2021]
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Applications of Discrete Ricci Flow

■ Community detection

■ Network alignment

■ Graph neural network
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Community Detection: Karate Club Network
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Community Detection: Facebook Ego Network

792 friends and 14025 edges. The colors represent 24 different friend
circles (communities).
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Community Detection: Brain Connectome Network

Brain network from resting-state (rs-fMRI) data, where edges with
cross-correlation less than a threshold are removed.
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Cutoff Threshold vs Modularity

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR)
benchmark network (community size ∼ power law).
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Performance Comparison

Adjusted Rand index (ARI) on Lancichinetti-Fortunato-Radicch (LFR)
benchmark network (community size ∼ power law).
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Ricci Flow Metric: Quantify the Network Distance

In a network, what is a proper distance between two nodes?

■ On the Internet, measure the delay – Trouble: time-consuming,
traffic dependent.

■ On a social network, use tie strength – Trouble: not easy to
measure.

■ Count # hops on the shortest paths– Trouble: small world
property;

■ Distances from some geometric embedding (spectral embedding,
Tutte embedding) – Trouble: sensitivity to noises.
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Robustness of Ricci Flow Metric: Remove Two Edges

Left: Spectral embedding; Right: Tutte/Spring embedding.
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Robustness: Remove Two Edges

Left: Hop count; Right: our metric.

+4.3%

+3.4%
+3.1%

+3.1%

-3.3%

23 of 35



Evaluation on Resilience

Randomly remove 10 edges in a random regular graph.

Histogram of RF Metric with ATD

Histogram of Hop Count

Histogram of Spring

Histogram of Spectral

Histogram of RF Metric with OTD
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Graph Isomorphism

Given a pair of graphs G1,G2, find a one-to-one correspondence of
the vertices in G1 to vertices in G2 such that (u, v) is an edge in G1 if
and only if their corresponding nodes f (u), f (v) are connected in G2.
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Our Solution: A Geometric Approach

How to align two sets of points in the plane, assuming that some
landmarks ℓi are already aligned?

`1

`2

`3

d1 d2

d3
p = (d1, d2, d3)

`1

`2

`3

d′1 d′2

d′3
p′ = (d′1, d

′
2, d

′
3)

■ Any point p can be represented by the barycentric coordinates
(d1, d2, d3), di is distance to ℓi .

■ If the barycentric coordinates of p and p′ are similar, we match p
and p′.
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Evaluation on Matching Performance

■ Randomly remove one node in a random regular graph w/ degree
12.

■ Right: remove randomly 10 edges in a protein protein network.
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Graph Neural Network

Graph Neural Network for node classification: given labels of a subset
of nodes, predict the labels of the rest.

■ Graph topology G = (V ,E )

■ Vertex features H

Vulnerability: Removal/insertion of fake edges can dramatically hurt
model performance.
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Robust Graph Neural Network through Resampling

■ Recover the underlying metric of G using Ricci flow.

■ Re-sample an ensemble of graphs for training.
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Robust Graph Neural Network through Resampling
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Robustness to Graph Topology Attacks
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Robustness to Graph Topology Attacks

Is the gain coming from graph ensembling or from the choice of
metrics?

Cora: sparse
Polblogs: dense, diameter =4.
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Conclusion and Discussion

■ Classical geometric notions for discrete graph analysis.

■ Network embedding: Euclidean, hyperbolic, hybrid?

■ Network evolution: why?

■ More applications due to robustness of the metric?
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Github Code

■ https://github.com/saibalmars/GraphRicciCurvature

Questions and comments?
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