Enabling Asymptotic Truth Learning in a Social Network

Jie Gao

Rutgers University http://sites.rutgers.edu/jie-gao

August 6th, 2024.

Asch conformity experiments [1950s]: One subject in a room with 6 actors

Asch conformity experiments [1950s]: One subject in a room with 6 actors

■ Experiment group: 37% responses conform to the incorrect answer. 75% participants gave at least one incorrect answer out of 12 trials.

- Black box: either • balls, or • balls.
- People line up: **in private** draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

■ If draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw •, report BLUE

Fourth person: in the same position as the third one.

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw •, report BLUE

Fourth person: in the same position as the third one. Everyone else reports BLUE.

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw •, report BLUE

Fourth person: in the same position as the third one. Everyone else reports BLUE.

Ground truth $\bullet \bullet \bullet : w/$ prob $\geq (1/3)^2$, everyone failed.

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0,1\}$.
- Rational agents take a sequential ordering σ
- **■** Agent v: **noisy private** signal s_v , with correct prob $1/2 < q < 1$.
- **Agent v: public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0,1\}$.
- Rational agents take a sequential ordering σ
- **■** Agent v: **noisy private** signal s_v , with correct prob $1/2 < q < 1$.
- **Agent v: public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Despite abundant independent signals, herding happens with probability $(1-q)^2$.

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0,1\}$.
- Rational agents take a sequential ordering σ
- **■** Agent v: **noisy private** signal s_v , with correct prob $1/2 < q < 1$.
- **Agent v: public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Despite abundant independent signals, herding happens with probability $(1-q)^2$.

Q: can we avoid herding and achieve truth learning?

- Unknown ground-truth signal $\theta \in \{0,1\}$.
- **E** Rational agents take a sequential ordering σ
- Agent v: **noisy private** signal s_v , with correct prob $1/2 < q < 1$.
- **Agent v: public** prediction a_v , using s_v and a_u with all neighbors u earlier.
- Bayesian inference model

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- **E** Rational agents take a sequential ordering σ
- **Agent v: noisy private** signal s_v , with correct prob $1/2 < q < 1$.
- **Agent v: public** prediction a_v , using s_v and a_u with all neighbors u earlier.
- Bayesian inference model

Goal: network-wide asymptotic truth learning.

$$
\frac{1}{n}\cdot \sum_{v} \mathsf{Prob}\{a_v = \theta\} \to 1
$$

- Agents stay on a social network G .
- We decide an ordering of agents taking actions.

5 of 17

Empty graph $+$ any ordering:

Empty graph $+$ any ordering: \times

- Each node make decision with only private signals.
- **Agent success probability = q.**
- Complete graph $+$ any ordering:

Empty graph $+$ any ordering: \times

- Each node make decision with only private signals.
- **Agent success probability = q.**

Complete graph $+$ any ordering: \times

- Each node can see all predictions of other nodes earlier in the ordering.
- Herding happens w. prob $\geq (1-q)^2.$

Empty graph $+$ any ordering: \times

- Each node make decision with only private signals.
- **Agent success probability = q.**

Complete graph $+$ any ordering: \times

- Each node can see all predictions of other nodes earlier in the ordering.
- Herding happens w. prob $\geq (1-q)^2.$

What type of graph topology $G +$ node ordering σ enables truth learning?

Our Results

Sparse graphs: average $O(1)$ degree

- Random ordering: \times
- Exists a graph + carefully designed ordering: \checkmark

Our Results

Sparse graphs: average $O(1)$ degree

- Random ordering: ×
- Exists a graph + carefully designed ordering: \checkmark
- A sufficient condition for truth learning
- Erdös Rényi graph
- Preferential attachment model

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

In a random ordering, a constant fraction of nodes are independent and thus make decision with own signal.

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

In a random ordering, a constant fraction of nodes are independent and thus make decision with own signal.

Network-wide asymptotic learning cannot happen.

Butterfly network

 2^k nodes per layer with k layers, $k = \log n.$

Truth learning is enabled with bottom up ordering

Truth learning occurs with ordering σ if

■ Find a node v with a subset of neighbors $S \subseteq N(v)$ that are independent. $|S| = \omega(1)$.

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors $S \subseteq N(v)$ that are independent. $|S| = \omega(1)$.
- S goes first, each making independent decisions.

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors $S \subseteq N(v)$ that are independent. $|S| = \omega(1)$.
- S goes first, each making independent decisions.
- \bullet v goes next, aggregating decisions from S, achieving high probability of success.

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors $S \subseteq N(v)$ that are independent. $|S| = \omega(1)$.
- S goes first, each making independent decisions.
- \blacksquare v goes next, aggregating decisions from S, achieving high probability of success.
- Complete the ordering to $n o(n)$ nodes by finding a path where each node has at least one high quality neighbor.

 $G(n, p)$: *n* nodes and each edge appears w/ prob $p \in [0, 1]$.

 $p = O(1/n)$: too sparse, x with any ordering.

- $p = O(1/n)$: too sparse, x with any ordering.
- $p = o(n)/n$, $p = \omega(1)/n$: \checkmark with a good ordering

- $p = O(1/n)$: too sparse, x with any ordering.
- $p = o(n)/n$, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: \times with a random ordering herding happens

- $p = O(1/n)$: too sparse, x with any ordering.
- $p = o(n)/n$, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: **x** with a random ordering herding happens
- $p = 1 \omega(n^{\varepsilon})/n$: \checkmark with a good ordering

- $p = O(1/n)$: too sparse, x with any ordering.
- $p = o(n)/n$, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: **x** with a random ordering herding happens
- $p = 1 \omega(n^{\varepsilon})/n$: \checkmark with a good ordering
- $p = 1 O(n^{\varepsilon})/n$: \times with any ordering herding happens.

A preferential attachment (PA) graph, with positive integer $k = O(1)$:

■ Start with a complete graph of $k + 1$ vertices.

A preferential attachment (PA) graph, with positive integer $k = O(1)$:

- Start with a complete graph of $k + 1$ vertices.
- \blacksquare The next vertex $v_t,~t\geq k+1,$ connects with k vertices in $\{v_1, \dots, v_{t-1}\}\$ withhh prob \sim current node degree.

A preferential attachment (PA) graph, with positive integer $k = O(1)$:

- Start with a complete graph of $k + 1$ vertices.
- \blacksquare The next vertex $v_t,~t\geq k+1,$ connects with k vertices in $\{v_1, \dots, v_{t-1}\}\$ withhh prob \sim current node degree.
- Models a time-evolving network with power law degree distribution.

A preferential attachment (PA) graph, with positive integer $k = O(1)$:

 \blacksquare x with a random ordering and the natural arrival order – herding happens.

A preferential attachment (PA) graph, with positive integer $k = O(1)$:

- \blacksquare x with a random ordering and the natural arrival order herding happens.
- \blacksquare \checkmark with a good ordering.

Simulations: Erdös Rényi Graph

Majority vote model. $q = 0.7$. $n = 1000$. 300 iterations.

14 of 17

Simulations: Real World Graphs

Majority vote model. $q = 0.7$. $n = 1133$. 300 iterations.

15 of 17

Summary

Interdisciplinary topic that is still largely under developed.

- Modeling: social media platforms.
- Algorithmic perspective: promote truth learning.

Acknowledgement

NSF Funding: AI Institute ACTION IIS-2229876, DMS-2220271, CCF-2208663, DMS-2311064.

- Kevin Lu (Math dept, Rutgers)
- REU: Matt Lu (Wash U St. Louis), Jordan Chong (NYU). Supported by Rutgers DIMACS through NSF HDR TRIPODS award CCF-1934924.