Enabling Asymptotic Truth Learning in a Social Network

Jie Gao

Rutgers University http://sites.rutgers.edu/jie-gao

August 6th, 2024.

Asch conformity experiments [1950s]: One subject in a room with 6 actors

Asch conformity experiments [1950s]: One subject in a room with 6 actors

• Experiment group: 37% responses conform to the incorrect answer. 75% participants gave at least one incorrect answer out of 12 trials.

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE

Second person: draw •, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

■ If draw ●, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw ●, report BLUE

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw ●, report BLUE
- If draw ●, report BLUE

Fourth person: in the same position as the third one.

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw ●, report BLUE
- If draw ●, report BLUE

Fourth person: in the same position as the third one. Everyone else reports BLUE.

- Black box: either • balls, or • balls.
- People line up: in private draw a ball, look at its color, put it back
- Make a **public** prediction whether the box is red majority or blue majority

First person: draw •, report BLUE Second person: draw •, report BLUE Third person:

- If draw •, report BLUE
- If draw ●, report BLUE

Fourth person: in the same position as the third one. Everyone else reports BLUE.

Ground truth • • • : w/ prob $\geq (1/3)^2$, everyone failed.

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- \blacksquare Rational agents take a sequential ordering σ
- Agent v: noisy private signal s_v , with correct prob 1/2 < q < 1.
- Agent v: **public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- \blacksquare Rational agents take a sequential ordering σ
- Agent v: noisy private signal s_v , with correct prob 1/2 < q < 1.
- Agent v: **public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Despite abundant independent signals, herding happens with probability $(1 - q)^2$.

Information Cascade or Herding

Sequential Learning [Banerjee'92, BHW'92, Welch'92]

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- \blacksquare Rational agents take a sequential ordering σ
- Agent v: noisy private signal s_v , with correct prob 1/2 < q < 1.
- Agent v: **public** prediction a_v , using s_v and a_u with all u earlier.
- Bayesian inference model

Despite abundant independent signals, herding happens with probability $(1 - q)^2$.

Q: can we avoid herding and achieve truth learning?

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- \blacksquare Rational agents take a sequential ordering σ
- Agent v: noisy private signal s_v , with correct prob 1/2 < q < 1.
- Agent v: public prediction a_v, using s_v and a_u with all neighbors u earlier.
- Bayesian inference model

- Unknown ground-truth signal $\theta \in \{0, 1\}$.
- \blacksquare Rational agents take a sequential ordering σ
- Agent v: noisy private signal s_v , with correct prob 1/2 < q < 1.
- Agent v: public prediction a_v, using s_v and a_u with all neighbors u earlier.
- Bayesian inference model

Goal: network-wide asymptotic truth learning.

$$\frac{1}{n} \cdot \sum_{v} \mathsf{Prob}\{\mathsf{a}_v = \theta\} \to 1$$

- Agents stay on a social network G.
- We decide an ordering of agents taking actions.

5 of 17

Empty graph + any ordering:

Empty graph + any ordering: \times

- Each node make decision with only private signals.
- Agent success probability = q.
- Complete graph + any ordering:

Empty graph + any ordering: \times

- Each node make decision with only private signals.
- Agent success probability = q.

Complete graph + any ordering: \times

- Each node can see all predictions of other nodes earlier in the ordering.
- Herding happens w. prob $\geq (1-q)^2$.

Empty graph + any ordering: \times

- Each node make decision with only private signals.
- Agent success probability = q.

Complete graph + any ordering: \times

- Each node can see all predictions of other nodes earlier in the ordering.
- Herding happens w. prob $\geq (1-q)^2$.

What type of graph topology G + node ordering σ enables truth learning?

Our Results

Sparse graphs: average O(1) degree

- Random ordering: ×
- Exists a graph + carefully designed ordering:

Our Results

Sparse graphs: average O(1) degree

- Random ordering: X
- Exists a graph + carefully designed ordering: \checkmark
- A sufficient condition for truth learning
- Erdös Rényi graph
- Preferential attachment model

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

In a random ordering, a constant fraction of nodes are independent and thus make decision with own signal.

Theorem

Any family of graphs of constant average degree $\Delta = O(1)$ does not achieve asymptotic truth learning, under both Bayesian model and majority vote model.

In a random ordering, a constant fraction of nodes are independent and thus make decision with own signal.

Network-wide asymptotic learning cannot happen.

Butterfly network

 2^k nodes per layer with k layers, $k = \log n$.

Truth learning is enabled with bottom up ordering

Truth learning occurs with ordering σ if

■ Find a node v with a subset of neighbors S ⊆ N(v) that are independent. |S| = ω(1).

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors S ⊆ N(v) that are independent. |S| = ω(1).
- *S* goes first, each making independent decisions.

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors S ⊆ N(v) that are independent. |S| = ω(1).
- *S* goes first, each making independent decisions.
- v goes next, aggregating decisions from S, achieving high probability of success.

Truth learning occurs with ordering σ if

- Find a node v with a subset of neighbors S ⊆ N(v) that are independent. |S| = ω(1).
- *S* goes first, each making independent decisions.
- v goes next, aggregating decisions from S, achieving high probability of success.
- Complete the ordering to n o(n) nodes by finding a path where each node has at least one high quality neighbor.

G(n, p): *n* nodes and each edge appears w/ prob $p \in [0, 1]$. p = O(1/n): too sparse, × with any ordering.

- p = O(1/n): too sparse, \times with any ordering.
- p = o(n)/n, $p = \omega(1)/n$: \checkmark with a good ordering

- p = O(1/n): too sparse, \times with any ordering.
- p = o(n)/n, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: × with a random ordering herding happens

- p = O(1/n): too sparse, \times with any ordering.
- p = o(n)/n, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: × with a random ordering herding happens
- $p = 1 \omega(n^{\varepsilon})/n$: \checkmark with a good ordering

- p = O(1/n): too sparse, \times with any ordering.
- p = o(n)/n, $p = \omega(1)/n$: \checkmark with a good ordering
- $p = \Theta(1)$: × with a random ordering herding happens
- $p = 1 \omega(n^{\varepsilon})/n$: \checkmark with a good ordering
- $p = 1 O(n^{\varepsilon})/n$: × with any ordering herding happens.

A preferential attachment (PA) graph, with positive integer k = O(1):

• Start with a complete graph of k + 1 vertices.

A preferential attachment (PA) graph, with positive integer k = O(1):

- Start with a complete graph of k + 1 vertices.
- The next vertex v_t , $t \ge k + 1$, connects with k vertices in $\{v_1, \dots, v_{t-1}\}$ withh prob \sim current node degree.

A preferential attachment (PA) graph, with positive integer k = O(1):

- Start with a complete graph of k + 1 vertices.
- The next vertex v_t , $t \ge k + 1$, connects with k vertices in $\{v_1, \dots, v_{t-1}\}$ withhh prob ~ current node degree.
- Models a time-evolving network with power law degree distribution.

A preferential attachment (PA) graph, with positive integer k = O(1):

 × with a random ordering and the natural arrival order – herding happens.

A preferential attachment (PA) graph, with positive integer k = O(1):

- × with a random ordering and the natural arrival order herding happens.
- vith a good ordering.

Simulations: Erdös Rényi Graph

Majority vote model. q = 0.7. n = 1000. 300 iterations.

14 of 17

Simulations: Real World Graphs

Majority vote model. q = 0.7. n = 1133. 300 iterations.

15 of 17

Summary

Interdisciplinary topic that is still largely under developed.

- Modeling: social media platforms.
- Algorithmic perspective: promote truth learning.

Acknowledgement

NSF Funding: AI Institute ACTION IIS-2229876, DMS-2220271, CCF-2208663, DMS-2311064.

- Kevin Lu (Math dept, Rutgers)
- REU: Matt Lu (Wash U St. Louis), Jordan Chong (NYU).
 Supported by Rutgers DIMACS through NSF HDR TRIPODS award CCF-1934924.