Differential Privacy and Discrepancy on Shortest Paths

Jie Gao

Rutgers University http://sites.rutgers.edu/jie-gao

September 25th 2024

Classical Range Query Problems

Given points in \mathbb{R}^d , report the number of points inside

- \blacksquare Orthogonal ranges: rectilinear boxes in \mathbb{R}^d .
- Simplex ranges: d-dimensional simplex (e.g., a triangle in 2D).

Given a weighted graph $G = (V, E)$,

- Query ranges = shortest paths $P(s, t)$ on $G, \forall s, t \in V$.
- Edges also carry "sensor readings" that are sensitive and need to be protected with differential privacy guarantee.

Goal: report the sum of sensor readings along a query range $P(s,t)$.

Outline

■ Review of differential privacy

- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

[Dwork 06] A randomized range query response mechanism M is ε -differentially private if for any two adjacent datasets D and D' (i.e., differ by ℓ_1 norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \text{Range}(M)$,

 $Pr[M_D(R) \in H] \leq e^{\varepsilon}$ cdot $Pr[M_{D'}(R) \in H]$.

[Dwork 06] A randomized range query response mechanism M is ε -differentially private if for any two adjacent datasets D and D' (i.e., differ by ℓ_1 norm of one), for any range $R \in \mathcal{R}$ and any measurable subset $H \in \text{Range}(M)$,

$$
Pr[M_D(R) \in H] \leq e^{\varepsilon} \text{cdot } Pr[M_{D'}(R) \in H].
$$

 (ε, δ) -differential privacy:

 $Pr[M_D(R) \in H] \leq e^{\varepsilon} \cdot Pr[M_{D'}(R) \in H] + \delta.$

 $\delta = 0$: pure-DP; $\delta \neq 0$, approximate-DP.

Why is Differential Privacy a Popular Model?

■ Post processing of perturbed data does not damage privacy.

Why is Differential Privacy a Popular Model?

- Post processing of perturbed data does not damage privacy.
- Composition (simple): M_1 with ε_1 -DP, and M_2 with ε_2 -DP, then (M_1, M_2) is $(\varepsilon_1 + \varepsilon_2)$ -DP.

Laplace Mechanism

Laplace mechanism: add noise with distribution $Lap(b)$, and its probability density is given as: $\textsf{Lap}[x|b] = \frac{1}{2b} \exp(-\frac{|x|}{b})$ $\frac{x_1}{b}$).

Laplace Mechanism

The level of noise is usually determined by sensitivity.

The level of noise is usually determined by sensitivity.

The sensitivity of a function f, written as Δf , is the largest possible difference in the output of f between any pair of adjacent databases:

 $\max_{(D, D')} |f(D) - f(D')|.$

The level of noise is usually determined by sensitivity.

The sensitivity of a function f, written as Δf , is the largest possible difference in the output of f between any pair of adjacent databases:

$$
\max_{(D,D')} |f(D) - f(D')|.
$$

Example: f as the average employee salary.

To achieve ε -differential privacy, adding noise $z \sim \text{Lap}(\Delta f/\varepsilon)$ suffices.

To achieve ε -differential privacy, adding noise $z \sim \text{Lap}(\Delta f/\varepsilon)$ suffices.

$$
\Pr[z + f(D) = x]
$$
\n
$$
\Pr[z' + f(D') = x]
$$
\n
$$
= \frac{\exp(-|x - f(D)|/b)}{\exp(-|x - f(D')|/b)}, b = \frac{\Delta f}{\varepsilon}
$$
\n
$$
\leq \exp(\varepsilon \cdot \frac{|x - f(D')| - |x - f(D)|}{\Delta f})
$$
\n
$$
\leq e^{\varepsilon}
$$

1D Range Tree

Two types of DP mechanisms:

- Input perturbation: add noise to each input element.
- Output perturbation: add noise to the query results.

Input Perturbation

Publish data with iid noise \sim Lap($1/\varepsilon$) on each element.

Input Perturbation

Publish data with iid noise \sim Lap(1/ ε) on each element.

- \blacksquare ε-DP.
- Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

Input Perturbation

Publish data with iid noise \sim Lap($1/\varepsilon$) on each element.

- \blacksquare ε-DP.
- Answer queries on perturbed data in the normal way. \rightarrow Post-processing.

What is the error magnitude of a query on n elements?

Sum of Independent Laplace Variables

 $[\mathsf{CCS'11}]$ Suppose $\gamma_i \sim \mathsf{Lap}({b_i})$ and $Y = \sum_i \gamma_i$. Then, with $0 < \delta < 1$, $\Pr[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta.$

Sum of Independent Laplace Variables

[CCS'11] Suppose
$$
\gamma_i \sim \text{Lap}(b_i)
$$
 and $Y = \sum_i \gamma_i$. Then, with $0 < \delta < 1$, $\text{Pr}[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta$.

If a query range consists of n elements, where each is added an independent noise from $\text{Lap}(1/\varepsilon)$, then the total error $\sim O(\frac{1}{\varepsilon})$ ε Noting 1 be not the Lap(1/ ε), then
 $\sqrt{n} \log \frac{1}{\delta}$ with probability $1 - \delta$.

Output Perturbation

Answer a query with a fresh noise \sim Lap($1/\varepsilon$).

- If an element is involved in m queries, then we have $(m\varepsilon)$ -DP.
- Or we enforce ε -DP, query error $\sim O(m/\varepsilon)$.
- *m* could be $\sim n^2$.

Combining Input and Output Perturbation

[CCS'11] Add iid noise \sim Lap(log n/ε) on each node of the range tree.

Error: sum up $O(\log n)$ iid noise, each \sim Lap(log n/ε) \Rightarrow $O(\log^{1.5} n/\varepsilon).$

Outline

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

Input perturbation:

- Add iid noise \sim Lap $(1/\varepsilon)$ to each edge value.
- Query error?

Input perturbation:

- Add iid noise \sim Lap $(1/\varepsilon)$ to each edge value.
- **Query error?** $O(n/\varepsilon)$.

Input perturbation:

- Add iid noise \sim Lap($1/\varepsilon$) to each edge value.
- **Query error?** $O(n/\varepsilon)$.

Output perturbation:

■ Add iid \sim Lap(Y/ε) to each query output.

Input perturbation:

- Add iid noise \sim Lap($1/\varepsilon$) to each edge value.
- **Query error?** $O(n/\varepsilon)$.

Output perturbation:

- Add iid \sim Lap(Y/ε) to each query output.
- What is Y ? the number of queries that may contain one vertex, $Y = \Theta(n^2)$.
- **Q**uery error $O(n^2/\varepsilon)$.

■ Randomly sample s vertices S , build shortest paths between all pairs in S.

- Randomly sample s vertices S , build shortest paths between all pairs in S.
- \blacksquare Take intersection of all $O(s^2)$ paths. wlog assume these paths are unique shortest paths.

- Randomly sample s vertices S , build shortest paths between all pairs in S.
- \blacksquare Take intersection of all $O(s^2)$ paths. wlog assume these paths are unique shortest paths.

■ Such intersections partition a single path into $O(s^2)$ canonical segments.

- Randomly sample s vertices S , build shortest paths between all pairs in S.
- \blacksquare Take intersection of all $O(s^2)$ paths. wlog assume these paths are unique shortest paths.

■ Such intersections partition a single path into $O(s^2)$ canonical segments.

Claim: any two canonical segments are edge disjoint.

DP mechanism:

■ Input perturbation on each edge: $\textsf{Lap}(2/\varepsilon)$

DP mechanism:

- Input perturbation on each edge: Lap($2/\varepsilon$)
- Output perturbation on each canonical segment: $\text{Lap}(2/\varepsilon) \Rightarrow \text{each}$ edge may appear in at most one canonical segment.

DP mechanism:

- Input perturbation on each edge: Lap(2/ ε)
- Output perturbation on each canonical segment: $\text{Lap}(2/\varepsilon) \Rightarrow \text{each}$ edge may appear in at most one canonical segment.

Adding up, we have $\varepsilon/2 + \varepsilon/2 = \varepsilon$ -DP.

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \blacksquare # vertices/edges before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- \blacksquare Take perturbed values from $O(s^2)$ canonical segments until the last vertex y on P .
- From u to x and from y to v use input perturbation.

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \blacksquare # vertices/edges before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- \blacksquare Take perturbed values from $O(s^2)$ canonical segments until the last vertex y on P .
- From u to x and from y to v use input perturbation.

Error analysis: fix a shortest path $P(u, v)$. Along $P(u, v)$

- \blacksquare # vertices/edges before reaching the first vertex x in S: $\tilde{O}(n/s)$.
- \blacksquare Take perturbed values from $O(s^2)$ canonical segments until the last vertex y on P .
- From u to x and from y to v use input perturbation.

Total error:

$$
\tilde{O}\left(\frac{1}{\varepsilon}\cdot\sqrt{\frac{n}{s}+s^2}\right)
$$

Take $s=n^{1/3}$ we get error of $\tilde{O}(n^{1/3}/\varepsilon)$.

Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max $#$ unfrozen vertices.
- **Apply DP** as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation $\text{Lap}(2/\varepsilon)$

Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max $#$ unfrozen vertices.
- **Apply DP** as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation Lap($2/\varepsilon$)

Claim: along any shortest path, we have

- at most \sqrt{n} 'frozen' segments.
- at most \sqrt{n} edges between frozen segments.

Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max $#$ unfrozen vertices.
- **Apply DP** as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation Lap($2/\varepsilon$)

Claim: along any shortest path, we have

- at most \sqrt{n} 'frozen' segments.
- at most \sqrt{n} edges between frozen segments.

Total error:

$$
\tilde{O}(\frac{1}{\varepsilon} \cdot n^{1/4})
$$

Outline

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

Lower Bound by Discrepancy Theory

Incidence matrix M with $\binom{n}{2}$ $n \choose 2$ rows (paths) and *n* columns (vertices). Multiply M with a vector x of $\{+1, -1\}^n$.

$$
\begin{pmatrix}\n1 & 0 & \cdots & & \\
\cdots & & & & \\
\cdots & & & & \\
\cdots & & & & \n\end{pmatrix}\n\cdot\n\begin{bmatrix}\n+1 \\
-1 \\
\vdots \\
+1\n\end{bmatrix}
$$

The minimum L_{∞} norm over all vector x, vertex discrepancy, is a lower bound on DP-error. [Muthukrishnan, Nikolov'12]

If edges carry sensitive values: take m edges as columns – edge discrepancy. We consider vertex discrepancy first.

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_{\mathcal{R}}(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that $|A| = s$.

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_R(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that $|A| = s$.

 \blacksquare For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s) = O(s^2)$

Primal Shatter Function of Shortest Paths

Primal shatter function $\pi_R(s)$: maximum number of distinct sets in $\{A \cap S \mid S \in S\}$ for some $A \subseteq X$ such that $|A| = s$.

 \blacksquare For both undirected graphs and directed graphs: $\pi_{\mathcal{R}}(s) = O(s^2)$

[Matousek'95] vertex discrepancy is $O(n^{1/2-1/(2d)}) = O(n^{1/4})$.

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] For a general set of $O(n)$ paths, the discrepancy can be $\Omega(\sqrt{n})$.

Discrepancy of Path Systems

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] For a general set of $O(n)$ paths, the discrepancy can be $\Omega(\sqrt{n})$. The Hadamard matrix H_n .

H⁸ = 1 1 1 1 1 1 1 1 1 −1 1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 −1 1 1 −1

The discrepancy of $\frac{1}{2}(H+J)$ is $\Omega(\sqrt{n})$, J is a all-1 matrix.

Discrepancy of Path Systems

'Embed' the Hadamard matrix on a $2 \times n$ grid: for a row: $X_i = (1, 1, 0, 1, 1, 1, 0, 0)$

In addition, add P and P' to be the top/bottom path.

Discrepancy of Point-Line System: Lower Bound $\Omega(n^{1/6})$

Erdös point-line system: n points, n lines with

- each point staying on $\Theta(n^{1/3})$ lines;
- \blacksquare each line through $\Theta(n^{1/3})$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega(n^{1/6})$ (Apply the trace bouund).

Discrepancy of Point-Line System: Lower Bound $\Omega(n^{1/6})$

Erdös point-line system: n points, n lines with

- each point staying on $\Theta(n^{1/3})$ lines;
- \blacksquare each line through $\Theta(n^{1/3})$ points.

Hereditary discrepancy of the point-line incidence matrix is $\Omega(n^{1/6})$ (Apply the trace bouund).

Take edge weights as L_2 distances \Rightarrow Every line is a shortest path.

Discrepancy of Shortest Paths: Lower Bound $\Omega(n^{1/4})$

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] Adapt the construction [Bodwin, Hoppenworth'23] for hopset lower bound here:

- Start from point-line incidence system.
- Shift the points to allow shortest paths to have longer 'overlap'.
- Planarize it by adding crossing vertices & adjusting edge weights.
- Sparse graph: $O(n\log^6 n)$ nodes

Discrepancy of Shortest Paths: Lower Bound $\Omega(n^{1/4})$

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] Adapt the construction [Bodwin, Hoppenworth'23] for hopset lower bound here:

- Start from point-line incidence system.
- Shift the points to allow shortest paths to have longer 'overlap'.
- Planarize it by adding crossing vertices & adjusting edge weights.
- Sparse graph: $O(n\log^6 n)$ nodes

Apply trace bound to get $\Omega(n^{1/4})$.

Open Problem #1

What is the edge discrepancy for shortest paths in a directed graph?

- $O(m^{1/4})$: primal shatter function $O(s^2)$.
- $O(D^{1/2}) = O(n^{1/2})$ with diameter D: by random coloring.
- DAG: $O(n^{1/4})$ shortest paths are consistent $\&$ constructive upper bound.
- Lower bound $\Omega(n^{1/4})$.

Open Problem $#1$

What is the edge discrepancy for shortest paths in a directed graph?

- $O(m^{1/4})$: primal shatter function $O(s^2)$.
- $O(D^{1/2}) = O(n^{1/2})$ with diameter D: by random coloring.
- DAG: $O(n^{1/4})$ shortest paths are consistent $\&$ constructive upper bound.
- Lower bound $\Omega(n^{1/4})$.

A stronger lower bound shall be non-DAG, non-sparse with large diameter.

Open Problem #2

Publish differentially private all-pairs shortest distances: graph topology is public, edge weight is sensitive.

- \blacksquare Upper bound on error $O($ √ $\overline{\mathit{n}}$). [Chen, Ghazi, Kumar, Manurangsi, Narayanan, Nelson, Xu'23, Fan, Li, Li'23]
- Our discrepancy lower bound $\Omega(n^{1/4})$ applies.
- One cannot use the shortest paths to design the DP mechanism.