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Classical Range Query Problems

Given points in Rd , report the number of points inside

■ Orthogonal ranges: rectilinear boxes in Rd .

■ Simplex ranges: d-dimensional simplex (e.g., a triangle in 2D).
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Range Query along Shortest Paths

Given a weighted graph G = (V ,E ),

■ Query ranges = shortest paths P(s, t) on G , ∀s, t ∈ V .

■ Edges also carry “sensor readings” that are sensitive and need to
be protected with differential privacy guarantee.

Goal: report the sum of sensor readings along a query range P(s, t).
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Outline

■ Review of differential privacy

■ 1D range query: Input perturbation vs. output perturbation

■ Range query along shortest paths: upper bound

■ Lower bound: discrepancy theory

■ Open problems
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Differential Privacy

[Dwork 06] A randomized range query response mechanism M is
ε-differentially private if for any two adjacent datasets D and D ′ (i.e.,
differ by ℓ1 norm of one), for any range R ∈ R and any measurable
subset H ∈ Range(M),

Pr[MD(R) ∈ H] ≤ eεcdot Pr[MD′(R) ∈ H].

(ε, δ)-differential privacy:

Pr[MD(R) ∈ H] ≤ eε · Pr[MD′(R) ∈ H] + δ.

δ = 0: pure-DP; δ ̸= 0, approximate-DP.
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Why is Differential Privacy a Popular Model?

■ Post processing of perturbed data does not damage privacy.

■ Composition (simple): M1 with ε1-DP, and M2 with ε2-DP, then
(M1,M2) is (ε1 + ε2)-DP.
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Laplace Mechanism

Laplace mechanism: add noise with distribution Lap(b), and its

probability density is given as: Lap[x |b] = 1
2b exp(−

|x |
b ).
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Laplace Mechanism

The level of noise is usually determined by sensitivity.

The sensitivity of a function f , written as ∆f , is the largest possible
difference in the output of f between any pair of adjacent databases:

max
(D,D′)

|f (D)− f (D ′)|.

Example: f as the average employee salary.
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Laplace Mechanism satisfies DP

To achieve ε-differential privacy, adding noise z ∼ Lap(∆f /ε) suffices.

Pr[z + f (D) = x ]

Pr[z ′ + f (D ′) = x ]

=
exp(−|x − f (D)|/b)
exp(−|x − f (D ′)|/b)

, b =
∆f

ε

≤ exp(ε · |x − f (D ′)| − |x − f (D)|
∆f

)

≤eε

9 of 29



Laplace Mechanism satisfies DP

To achieve ε-differential privacy, adding noise z ∼ Lap(∆f /ε) suffices.

Pr[z + f (D) = x ]

Pr[z ′ + f (D ′) = x ]

=
exp(−|x − f (D)|/b)
exp(−|x − f (D ′)|/b)

, b =
∆f

ε

≤ exp(ε · |x − f (D ′)| − |x − f (D)|
∆f

)

≤eε

9 of 29



1D Range Tree

Two types of DP mechanisms:

■ Input perturbation: add noise to each input element.

■ Output perturbation: add noise to the query results.
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Input Perturbation

Publish data with iid noise ∼ Lap(1/ε) on each element.

■ ε-DP.

■ Answer queries on perturbed data in the normal way. →
Post-processing.

What is the error magnitude of a query on n elements?
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Sum of Independent Laplace Variables

[CCS’11] Suppose γi ∼ Lap(bi ) and Y =
∑

i γi . Then, with

0 < δ < 1, Pr[|Y | = O(
√∑

i b
2
i log(1/δ))] ≥ 1− δ.

If a query range consists of n elements, where each is added an
independent noise from Lap(1/ε), then the total error
∼ O(1ε

√
n log 1

δ ) with probability 1− δ.
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Output Perturbation

Answer a query with a fresh noise ∼ Lap(1/ε).

■ If an element is involved in m queries, then we have (mε)-DP.

■ Or we enforce ε-DP, query error ∼ O(m/ε).

■ m could be ∼ n2.
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Combining Input and Output Perturbation

[CCS’11] Add iid noise ∼ Lap(log n/ε) on each node of the range tree.

Error: sum up O(log n) iid noise, each ∼ Lap(log n/ε) ⇒
O(log1.5 n/ε).
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Outline

■ Review of differential privacy

■ 1D range query: Input perturbation vs. output perturbation

■ Range query along shortest paths: upper bound

■ Lower bound: discrepancy theory

■ Open problems
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Range Query along Shortest Paths

Input perturbation:

■ Add iid noise ∼ Lap(1/ε) to each edge value.

■ Query error?

O(n/ε).

Output perturbation:

■ Add iid ∼ Lap(Y /ε) to each query output.

■ What is Y ? – the number of queries that may contain one vertex,
Y = Θ(n2).

■ Query error O(n2/ε).
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Use Canonical Paths [Deng, G, Upadhyay, Wang’23]

■ Randomly sample s vertices S , build shortest paths between all
pairs in S .

■ Take intersection of all O(s2) paths. wlog assume these paths are
unique shortest paths.

u v
w1 w2 w3 w4

■ Such intersections partition a single path into O(s2) canonical
segments.

Claim: any two canonical segments are edge disjoint.
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Use Canonical Paths

DP mechanism:

■ Input perturbation on each edge: Lap(2/ε)

■ Output perturbation on each canonical segment: Lap(2/ε) ⇒ each
edge may appear in at most one canonical segment.

Adding up, we have ε/2 + ε/2 = ε-DP.
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Use Canonical Paths

Error analysis: fix a shortest path P(u, v). Along P(u, v)

■ # vertices/edges before reaching the first vertex x in S : Õ(n/s).

■ Take perturbed values from O(s2) canonical segments until the
last vertex y on P.

■ From u to x and from y to v use input perturbation.

u v
x y

Total error:

Õ(
1

ε
·
√

n

s
+ s2)

Take s = n1/3 we get error of Õ(n1/3/ε).
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Õ(
1

ε
·
√

n

s
+ s2)

Take s = n1/3 we get error of Õ(n1/3/ε).
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■ Take perturbed values from O(s2) canonical segments until the
last vertex y on P.

■ From u to x and from y to v use input perturbation.

u v
x y

Total error:

Õ(
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Improve the upper bound to Õ(n1/4)

[Ashvinkumar, Bernstein, Deng, G, Wein’24] Process shortest paths in
an order. Vertices on processed paths are ‘frozen’.

■ Take P with max # unfrozen vertices.

■ Apply DP as in the 1D range query along P, only on new vertices,
with Lap(2 log n/ε).

■ All remaining edges w/ input perturbation Lap(2/ε)

Claim: along any shortest path, we have

■ at most
√
n ‘frozen’ segments.

■ at most
√
n edges between frozen segments.

Total error:

Õ(
1

ε
· n1/4)
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Outline

■ Review of differential privacy

■ 1D range query: Input perturbation vs. output perturbation

■ Range query along shortest paths: upper bound

■ Lower bound: discrepancy theory

■ Open problems
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Lower Bound by Discrepancy Theory

Incidence matrix M with
(n
2

)
rows (paths) and n columns (vertices).

Multiply M with a vector x of {+1,−1}n.
1 0 · · ·
· · ·
· · ·
· · ·

 ·


+1
−1
...

+1


The minimum L∞ norm over all vector x , vertex discrepancy, is a
lower bound on DP-error. [Muthukrishnan, Nikolov’12]

If edges carry sensitive values: take m edges as columns – edge
discrepancy. We consider vertex discrepancy first.
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Primal Shatter Function of Shortest Paths

Primal shatter function πR(s): maximum number of distinct sets in
{A ∩ S | S ∈ S} for some A ⊆ X such that |A| = s.

■ For both undirected graphs and directed graphs: πR(s) = O(s2)

[Matousek’95] vertex discrepancy is O(n1/2−1/(2d)) = O(n1/4).
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Discrepancy of Path Systems

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang’24]
For a general set of O(n) paths, the discrepancy can be Ω(

√
n).

The Hadamard matrix Hn.

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


The discrepancy of 1

2(H + J) is Ω(
√
n), J is a all-1 matrix.
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Discrepancy of Path Systems

‘Embed’ the Hadamard matrix on a 2× n grid: for a row:
Xi = (1, 1, 0, 1, 1, 1, 0, 0)

P (Xi)

P ′(Xi)

In addition, add P and P ′ to be the top/bottom path.
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Discrepancy of Point-Line System: Lower Bound

Ω(n1/6)

Erdös point-line system: n points, n lines with

■ each point staying on Θ(n1/3) lines;

■ each line through Θ(n1/3) points.

Hereditary discrepancy of the point-line incidence matrix is Ω(n1/6)
(Apply the trace bouund).

Take edge weights as L2 distances ⇒ Every line is a shortest path.
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Discrepancy of Shortest Paths: Lower Bound Ω(n1/4)

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang’24] Adapt the
construction [Bodwin, Hoppenworth’23] for hopset lower bound here:

■ Start from point-line incidence system.

■ Shift the points to allow shortest paths to have longer ‘overlap’.

■ Planarize it by adding crossing vertices & adjusting edge weights.

■ Sparse graph: O(n log6 n) nodes

Apply trace bound to get Ω(n1/4).
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Open Problem #1

What is the edge discrepancy for shortest paths in a directed graph?

■ O(m1/4): primal shatter function O(s2).

■ O(D1/2) = O(n1/2) with diameter D: by random coloring.

■ DAG: O(n1/4) – shortest paths are consistent & constructive upper
bound.

■ Lower bound Ω(n1/4).

A stronger lower bound shall be non-DAG, non-sparse with large
diameter.
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Open Problem #2

Publish differentially private all-pairs shortest distances: graph
topology is public, edge weight is sensitive.

■ Upper bound on error O(
√
n). [Chen, Ghazi, Kumar, Manurangsi,

Narayanan, Nelson, Xu’23, Fan, Li, Li’23]

■ Our discrepancy lower bound Ω(n1/4) applies.

One cannot use the shortest paths to design the DP mechanism.
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