# Differential Privacy and Discrepancy on Shortest Paths

Jie Gao

Rutgers University http://sites.rutgers.edu/jie-gao

September 25th 2024

# Classical Range Query Problems

Given points in  $\mathbb{R}^d$ , report the number of points inside

- Orthogonal ranges: rectilinear boxes in  $\mathbb{R}^d$ .
- Simplex ranges: *d*-dimensional simplex (e.g., a triangle in 2D).



Given a weighted graph G = (V, E),

- Query ranges = shortest paths P(s, t) on  $G, \forall s, t \in V$ .
- Edges also carry "sensor readings" that are sensitive and need to be protected with differential privacy guarantee.

Goal: report the sum of sensor readings along a query range P(s, t).



# Outline

#### Review of differential privacy

- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

[Dwork 06] A randomized range query response mechanism M is  $\varepsilon$ -differentially private if for any two adjacent datasets D and D' (i.e., differ by  $\ell_1$  norm of one), for any range  $R \in \mathcal{R}$  and any measurable subset  $H \in \text{Range}(M)$ ,

 $\Pr[M_D(R) \in H] \leq e^{\varepsilon} cdot \Pr[M_{D'}(R) \in H].$ 

[Dwork 06] A randomized range query response mechanism M is  $\varepsilon$ -differentially private if for any two adjacent datasets D and D' (i.e., differ by  $\ell_1$  norm of one), for any range  $R \in \mathcal{R}$  and any measurable subset  $H \in \text{Range}(M)$ ,

$$\Pr[M_D(R) \in H] \leq e^{\varepsilon} cdot \Pr[M_{D'}(R) \in H].$$

( $\varepsilon$ ,  $\delta$ )-differential privacy:

 $\Pr[M_D(R) \in H] \leq e^{\varepsilon} \cdot \Pr[M_{D'}(R) \in H] + \delta.$ 

 $\delta = 0$ : pure-DP;  $\delta \neq 0$ , approximate-DP.

# Why is Differential Privacy a Popular Model?

Post processing of perturbed data does not damage privacy.

# Why is Differential Privacy a Popular Model?

- Post processing of perturbed data does not damage privacy.
- Composition (simple): M<sub>1</sub> with ε<sub>1</sub>-DP, and M<sub>2</sub> with ε<sub>2</sub>-DP, then (M<sub>1</sub>, M<sub>2</sub>) is (ε<sub>1</sub> + ε<sub>2</sub>)-DP.

## Laplace Mechanism

Laplace mechanism: add noise with distribution Lap(b), and its probability density is given as: Lap $[x|b] = \frac{1}{2b} \exp(-\frac{|x|}{b})$ .



## Laplace Mechanism

The level of noise is usually determined by sensitivity.

The level of noise is usually determined by sensitivity.

The sensitivity of a function f, written as  $\Delta f$ , is the largest possible difference in the output of f between any pair of adjacent databases:

 $\max_{(D,D')} |f(D) - f(D')|.$ 

The level of noise is usually determined by sensitivity.

The sensitivity of a function f, written as  $\Delta f$ , is the largest possible difference in the output of f between any pair of adjacent databases:

$$\max_{(D,D')} |f(D) - f(D')|.$$

Example: f as the average employee salary.

To achieve  $\varepsilon$ -differential privacy, adding noise  $z \sim \text{Lap}(\Delta f/\varepsilon)$  suffices.

To achieve  $\varepsilon$ -differential privacy, adding noise  $z \sim \text{Lap}(\Delta f / \varepsilon)$  suffices.

$$\frac{\Pr[z + f(D) = x]}{\Pr[z' + f(D') = x]}$$

$$= \frac{\exp(-|x - f(D)|/b)}{\exp(-|x - f(D')|/b)}, b = \frac{\Delta f}{\varepsilon}$$

$$\leq \exp(\varepsilon \cdot \frac{|x - f(D')| - |x - f(D)|}{\Delta f})$$

# 1D Range Tree



Two types of DP mechanisms:

- Input perturbation: add noise to each input element.
- Output perturbation: add noise to the query results.

#### Input Perturbation

Publish data with iid noise  $\sim {\sf Lap}(1/arepsilon)$  on each element.

#### Input Perturbation

Publish data with iid noise  $\sim {\sf Lap}(1/arepsilon)$  on each element.

- *ε*-DP.
- $\blacksquare$  Answer queries on perturbed data in the normal way.  $\rightarrow$  Post-processing.

#### Input Perturbation

Publish data with iid noise  $\sim Lap(1/\varepsilon)$  on each element.

- *ε*-DP.
- $\blacksquare$  Answer queries on perturbed data in the normal way.  $\rightarrow$  Post-processing.

What is the error magnitude of a query on n elements?

#### Sum of Independent Laplace Variables

[CCS'11] Suppose  $\gamma_i \sim \text{Lap}(b_i)$  and  $Y = \sum_i \gamma_i$ . Then, with  $0 < \delta < 1$ ,  $\Pr[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta$ .

#### Sum of Independent Laplace Variables

[CCS'11] Suppose 
$$\gamma_i \sim \text{Lap}(b_i)$$
 and  $Y = \sum_i \gamma_i$ . Then, with  $0 < \delta < 1$ ,  $\Pr[|Y| = O(\sqrt{\sum_i b_i^2} \log(1/\delta))] \ge 1 - \delta$ .

If a query range consists of *n* elements, where each is added an independent noise from Lap $(1/\varepsilon)$ , then the total error  $\sim O(\frac{1}{\varepsilon}\sqrt{n}\log\frac{1}{\delta})$  with probability  $1-\delta$ .

#### **Output Perturbation**

Answer a query with a fresh noise  $\sim Lap(1/\varepsilon)$ .

- If an element is involved in *m* queries, then we have  $(m\varepsilon)$ -DP.
- Or we enforce  $\varepsilon$ -DP, query error  $\sim O(m/\varepsilon)$ .
- *m* could be  $\sim n^2$ .

## Combining Input and Output Perturbation

[CCS'11] Add iid noise  $\sim \text{Lap}(\log n/\varepsilon)$  on each node of the range tree.



Error: sum up  $O(\log n)$  iid noise, each  $\sim \text{Lap}(\log n/\varepsilon) \Rightarrow O(\log^{1.5} n/\varepsilon)$ .

# Outline

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

Input perturbation:

- Add iid noise  $\sim Lap(1/\varepsilon)$  to each edge value.
- Query error?

Input perturbation:

- Add iid noise  $\sim Lap(1/\varepsilon)$  to each edge value.
- Query error?  $O(n/\varepsilon)$ .

Input perturbation:

- Add iid noise  $\sim Lap(1/\varepsilon)$  to each edge value.
- Query error?  $O(n/\varepsilon)$ .

Output perturbation:

• Add iid ~ Lap $(Y/\varepsilon)$  to each query output.

Input perturbation:

- Add iid noise  $\sim Lap(1/\varepsilon)$  to each edge value.
- Query error?  $O(n/\varepsilon)$ .

Output perturbation:

- Add iid ~ Lap $(Y/\varepsilon)$  to each query output.
- What is Y? the number of queries that may contain one vertex,  $Y = \Theta(n^2)$ .
- Query error  $O(n^2/\varepsilon)$ .

 Randomly sample s vertices S, build shortest paths between all pairs in S.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all O(s<sup>2</sup>) paths. wlog assume these paths are unique shortest paths.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all O(s<sup>2</sup>) paths. wlog assume these paths are unique shortest paths.



Such intersections partition a single path into O(s<sup>2</sup>) canonical segments.

- Randomly sample s vertices S, build shortest paths between all pairs in S.
- Take intersection of all O(s<sup>2</sup>) paths. wlog assume these paths are unique shortest paths.



Such intersections partition a single path into O(s<sup>2</sup>) canonical segments.

Claim: any two canonical segments are edge disjoint.

DP mechanism:

• Input perturbation on each edge: Lap $(2/\varepsilon)$ 

DP mechanism:

- Input perturbation on each edge: Lap(2/ε)
- Output perturbation on each canonical segment: Lap(2/ε) ⇒ each edge may appear in at most one canonical segment.

DP mechanism:

- Input perturbation on each edge: Lap $(2/\varepsilon)$
- Output perturbation on each canonical segment: Lap(2/ε) ⇒ each edge may appear in at most one canonical segment.

Adding up, we have  $\varepsilon/2 + \varepsilon/2 = \varepsilon$ -DP.

Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices/edges before reaching the first vertex x in S:  $\tilde{O}(n/s)$ .
- Take perturbed values from O(s<sup>2</sup>) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.



Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices/edges before reaching the first vertex x in S:  $\tilde{O}(n/s)$ .
- Take perturbed values from O(s<sup>2</sup>) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.



Error analysis: fix a shortest path P(u, v). Along P(u, v)

- # vertices/edges before reaching the first vertex x in S:  $\tilde{O}(n/s)$ .
- Take perturbed values from O(s<sup>2</sup>) canonical segments until the last vertex y on P.
- From *u* to *x* and from *y* to *v* use input perturbation.



Total error:

$$ilde{O}(rac{1}{arepsilon}\cdot\sqrt{rac{n}{s}+s^2})$$

Take  $s = n^{1/3}$  we get error of  $\tilde{O}(n^{1/3}/\varepsilon)$ .

19 of 29

# Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max # unfrozen vertices.
- Apply DP as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation  $Lap(2/\varepsilon)$

# Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max # unfrozen vertices.
- Apply DP as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation  $Lap(2/\varepsilon)$

Claim: along any shortest path, we have

- at most  $\sqrt{n}$  'frozen' segments.
- at most  $\sqrt{n}$  edges between frozen segments.

# Improve the upper bound to $\tilde{O}(n^{1/4})$

[Ashvinkumar, Bernstein, Deng, G, Wein'24] Process shortest paths in an order. Vertices on processed paths are 'frozen'.

- Take P with max # unfrozen vertices.
- Apply DP as in the 1D range query along P, only on new vertices, with Lap(2 log n/ε).
- All remaining edges w/ input perturbation  $Lap(2/\varepsilon)$

Claim: along any shortest path, we have

- at most  $\sqrt{n}$  'frozen' segments.
- at most  $\sqrt{n}$  edges between frozen segments.

Total error:

$$\tilde{O}(rac{1}{arepsilon}\cdot n^{1/4})$$

# Outline

- Review of differential privacy
- 1D range query: Input perturbation vs. output perturbation
- Range query along shortest paths: upper bound
- Lower bound: discrepancy theory
- Open problems

#### Lower Bound by Discrepancy Theory

Incidence matrix M with  $\binom{n}{2}$  rows (paths) and n columns (vertices). Multiply M with a vector x of  $\{+1, -1\}^n$ .

$$\begin{pmatrix} 1 & 0 & \cdots & \\ \cdots & & & \\ \cdots & & & \\ \cdots & & & \end{pmatrix} \cdot \begin{bmatrix} +1 \\ -1 \\ \vdots \\ +1 \end{bmatrix}$$

The minimum  $L_{\infty}$  norm over all vector x, vertex discrepancy, is a lower bound on DP-error. [Muthukrishnan, Nikolov'12]

If edges carry sensitive values: take m edges as columns – edge discrepancy. We consider vertex discrepancy first.

## Primal Shatter Function of Shortest Paths

Primal shatter function  $\pi_{\mathcal{R}}(s)$ : maximum number of distinct sets in  $\{A \cap S \mid S \in S\}$  for some  $A \subseteq X$  such that |A| = s.

## Primal Shatter Function of Shortest Paths

Primal shatter function  $\pi_{\mathcal{R}}(s)$ : maximum number of distinct sets in  $\{A \cap S \mid S \in S\}$  for some  $A \subseteq X$  such that |A| = s.

• For both undirected graphs and directed graphs:  $\pi_{\mathcal{R}}(s) = O(s^2)$ 

#### Primal Shatter Function of Shortest Paths

Primal shatter function  $\pi_{\mathcal{R}}(s)$ : maximum number of distinct sets in  $\{A \cap S \mid S \in S\}$  for some  $A \subseteq X$  such that |A| = s.

• For both undirected graphs and directed graphs:  $\pi_{\mathcal{R}}(s) = O(s^2)$ 

[Matousek'95] vertex discrepancy is  $O(n^{1/2-1/(2d)}) = O(n^{1/4})$ .

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] For a general set of O(n) paths, the discrepancy can be  $\Omega(\sqrt{n})$ .

## Discrepancy of Path Systems

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] For a general set of O(n) paths, the discrepancy can be  $\Omega(\sqrt{n})$ . The Hadamard matrix  $H_n$ .

The discrepancy of  $\frac{1}{2}(H+J)$  is  $\Omega(\sqrt{n})$ , J is a all-1 matrix.

## Discrepancy of Path Systems

'Embed' the Hadamard matrix on a  $2 \times n$  grid: for a row:  $X_i = (1, 1, 0, 1, 1, 1, 0, 0)$ 



In addition, add P and P' to be the top/bottom path.

# Discrepancy of Point-Line System: Lower Bound $\Omega(n^{1/6})$

Erdös point-line system: n points, n lines with

- each point staying on  $\Theta(n^{1/3})$  lines;
- each line through  $\Theta(n^{1/3})$  points.

Hereditary discrepancy of the point-line incidence matrix is  $\Omega(n^{1/6})$  (Apply the trace bound).

# Discrepancy of Point-Line System: Lower Bound $\Omega(n^{1/6})$

Erdös point-line system: n points, n lines with

- each point staying on  $\Theta(n^{1/3})$  lines;
- each line through  $\Theta(n^{1/3})$  points.

Hereditary discrepancy of the point-line incidence matrix is  $\Omega(n^{1/6})$  (Apply the trace bound).

Take edge weights as  $L_2$  distances  $\Rightarrow$  Every line is a shortest path.

# Discrepancy of Shortest Paths: Lower Bound $\Omega(n^{1/4})$

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] Adapt the construction [Bodwin, Hoppenworth'23] for hopset lower bound here:

- Start from point-line incidence system.
- Shift the points to allow shortest paths to have longer 'overlap'.
- Planarize it by adding crossing vertices & adjusting edge weights.
- Sparse graph:  $O(n \log^6 n)$  nodes

# Discrepancy of Shortest Paths: Lower Bound $\Omega(n^{1/4})$

[Bodwin, Deng, G, Hoppenworth, Upadhyay, Wang'24] Adapt the construction [Bodwin, Hoppenworth'23] for hopset lower bound here:

- Start from point-line incidence system.
- Shift the points to allow shortest paths to have longer 'overlap'.
- Planarize it by adding crossing vertices & adjusting edge weights.
- Sparse graph:  $O(n \log^6 n)$  nodes

Apply trace bound to get  $\Omega(n^{1/4})$ .

## Open Problem #1

What is the edge discrepancy for shortest paths in a directed graph?

- $O(m^{1/4})$ : primal shatter function  $O(s^2)$ .
- $O(D^{1/2}) = O(n^{1/2})$  with diameter D: by random coloring.
- DAG: O(n<sup>1/4</sup>) shortest paths are consistent & constructive upper bound.
- Lower bound  $\Omega(n^{1/4})$ .

## Open Problem #1

What is the edge discrepancy for shortest paths in a directed graph?

- $O(m^{1/4})$ : primal shatter function  $O(s^2)$ .
- $O(D^{1/2}) = O(n^{1/2})$  with diameter D: by random coloring.
- DAG: O(n<sup>1/4</sup>) shortest paths are consistent & constructive upper bound.
- Lower bound  $\Omega(n^{1/4})$ .

A stronger lower bound shall be non-DAG, non-sparse with large diameter.

# Open Problem #2

Publish differentially private all-pairs shortest distances: graph topology is public, edge weight is sensitive.

- Upper bound on error O(√n). [Chen, Ghazi, Kumar, Manurangsi, Narayanan, Nelson, Xu'23, Fan, Li, Li'23]
- Our discrepancy lower bound  $\Omega(n^{1/4})$  applies.
- One cannot use the shortest paths to design the DP mechanism.