Computing Diameter+2 in Truly Subquadratic Time for Unit-Disk Graphs

Hsien-Chih Chang (Dartmouth) Jie Gao (Rutgers) Hung Le (U Mass Amherst)

SoCG 2024

Diameter in Unit Disk Graphs

Unit disk graph (UDG): points in \mathbb{R}^2 , connect an edge pq iff $|pq|\leq 1.$ A geometric intersection graph of disks of radius 1/2.

Diameter in Unit Disk Graphs

Unit disk graph (UDG): points in \mathbb{R}^2 , connect an edge pq iff $|pq|\leq 1.$ A geometric intersection graph of disks of radius 1/2.

Q: Compute the diameter of an (unweighted) UDG in $O(n^{2-\varepsilon})$ time?

Assuming SETH, there is **no** $O(n^{2-\varepsilon})$ time algorithm for Diameter of a general graph.

■ Even to distinguish between 2 and 3 in sparse graphs.

Assuming SETH, there is **no** $O(n^{2-\varepsilon})$ time algorithm for Diameter of a general graph.

■ Even to distinguish between 2 and 3 in sparse graphs.

Planar graphs:

- $\bullet \ \tilde{O}(n^{11/6})$ [Cabello'17]
- $\tilde{O}(n^{5/3})$ [GKMSW'18].

Assuming SETH, there is **no** $O(n^{2-\varepsilon})$ time algorithm for Diameter of a general graph.

■ Even to distinguish between 2 and 3 in sparse graphs.

Planar graphs:

- $\bullet \ \tilde{O}(n^{11/6})$ [Cabello'17]
- $\tilde{O}(n^{5/3})$ [GKMSW'18].

What about Diameter for geometric intersection graphs?

- \blacksquare unit segments in \mathbb{R}^2 .
- \blacksquare congruent equilateral triangles (with rotation) in \mathbb{R}^2 .

- \blacksquare unit segments in \mathbb{R}^2 .
- \blacksquare congruent equilateral triangles (with rotation) in \mathbb{R}^2 .
- or, decide if Diameter $\leq k$ for

- \blacksquare unit segments in \mathbb{R}^2 .
- \blacksquare congruent equilateral triangles (with rotation) in \mathbb{R}^2 .
- or, decide if Diameter $\leq k$ for
- \blacksquare axis-parallel line segments in \mathbb{R}^2 .
- unit balls in \mathbb{R}^3 .
- \blacksquare axis-parallel unit cubes in \mathbb{R}^3 .

[BKKNP'22] Assuming SETH, there is **no** $O(n^{2-\varepsilon})$ time algorithm in a **geometric intersection** graph to decide if Diameter ≤ 3 for

- \blacksquare unit segments in \mathbb{R}^2 .
- \blacksquare congruent equilateral triangles (with rotation) in \mathbb{R}^2 .
- or, decide if Diameter $\leq k$ for
- \blacksquare axis-parallel line segments in \mathbb{R}^2 .
- unit balls in \mathbb{R}^3 .
- \blacksquare axis-parallel unit cubes in \mathbb{R}^3 .

Unit (axis-parallel) square graph in \mathbb{R}^2 :

 \Box O(n log n) time to decide if Diameter \leq 2.

A unit disk graph can be a dense graph, i.e., $\Theta(n^2)$ edges.

A unit disk graph can be a dense graph, i.e., $\Theta(n^2)$ edges. Exact diameter $\tilde{O}(n^2)$

- Run *n* single-source shortest path, each in $O(n \log n)$ time.
- $O(n^2\sqrt{\log\log n/\log n})$ time. [CK'16]

A unit disk graph can be a dense graph, i.e., $\Theta(n^2)$ edges. Exact diameter $\tilde{O}(n^2)$

- Run *n* single-source shortest path, each in $O(n \log n)$ time.
- $O(n^2\sqrt{\log\log n/\log n})$ time. [CK'16]

Approximate diameter D in time $\tilde{O}(n)$ [CS'18]

- Weighted graph (edge weight = Euclidean distance): $(1 + \varepsilon)D$
- Unweighted graph: $(1 + \varepsilon)D + (4 + 2\varepsilon)$.

A unit disk graph can be a dense graph, i.e., $\Theta(n^2)$ edges. Exact diameter $\tilde{O}(n^2)$

- Run *n* single-source shortest path, each in $O(n \log n)$ time.
- $O(n^2\sqrt{\log\log n/\log n})$ time. [CK'16]

Approximate diameter D in time $\tilde{O}(n)$ [CS'18]

- Weighted graph (edge weight = Euclidean distance): $(1 + \varepsilon)D$
- Unweighted graph: $(1 + \varepsilon)D + (4 + 2\varepsilon)$.

Our results: $D+2$ approximation in time $\tilde{O}(n^{2-1/18})$ time.

Inspired by [LP19, DHV22, LW23]: Planar/Minor-free graphs \Rightarrow Unit disk graphs

1. bounded VC-dimension for encoding distances.

Inspired by [LP19, DHV22, LW23]: Planar/Minor-free graphs \Rightarrow Unit disk graphs

1. bounded VC-dimension for encoding distances.

Inspired by [LP19, DHV22, LW23]: Planar/Minor-free graphs \Rightarrow Unit disk graphs

- 1. bounded VC-dimension for encoding distances.
- 2. "r-division" for UDG?

Compute **eccentricity** of $v \in V$: $ecc(v) = max_u d(u, v)$.

Compute **eccentricity** of $v \in V$: $ecc(v) = max_u d(u, v)$. Use an *r*-division: decomposition into $\Theta(n/r)$ pieces each is connected with $O(r)$ vertices and $O($ √ \overline{r}) boundary vertices.

Compute distance $d(u, v)$ with u outside the current piece H.

Compute distance $d(u, v)$ with u outside the current piece H with k boundary vertices $\{s_0, s_1, \dots, s_{k-1}\}, k = O(\sqrt{k})$ $\overline{r}).$

Compute distance $d(u, v)$ with u outside the current piece H with k boundary vertices $\{s_0, s_1, \dots, s_{k-1}\}, k = O(\sqrt{k})$ $\overline{r}).$

$$
d(u, v) = d(u, s_j) + d(s_j, v) = \min_{0 \le i \le k-1} \{d(u, s_i) + d(s_i, v)\}
$$

=
$$
\min_{0 \le i \le k-1} \{d(u, s_0) + d(u, s_i) - d(u, s_0) + d(s_i, v)\}
$$

=
$$
d(u, s_0) + \min_{0 \le i \le k-1} \{P_u[i] + d(s_i, v)\}
$$

Compute distance $d(u, v)$ with u outside the current piece H with k boundary vertices $\{s_0, s_1, \dots, s_{k-1}\}, k = O(\sqrt{k})$ $\overline{r}).$

$$
d(u, v) = d(u, s_j) + d(s_j, v) = \min_{0 \le i \le k-1} \{d(u, s_i) + d(s_i, v)\}
$$

=
$$
\min_{0 \le i \le k-1} \{d(u, s_0) + d(u, s_i) - d(u, s_0) + d(s_i, v)\}
$$

=
$$
d(u, s_0) + \min_{0 \le i \le k-1} \{P_u[i] + d(s_i, v)\}
$$

Pattern P_u , a k-dim vector, $P_u[i] \leq d(s_i,s_0) = O(r)$.

Compute distance $d(u, v)$ with u outside the current piece H with k boundary vertices $\{s_0, s_1, \dots, s_{k-1}\}, k = O(\sqrt{k})$ $\overline{r}).$

$$
d(u, v) = d(u, s_j) + d(s_j, v) = \min_{0 \le i \le k-1} \{d(u, s_i) + d(s_i, v)\}
$$

=
$$
\min_{0 \le i \le k-1} \{d(u, s_0) + d(u, s_i) - d(u, s_0) + d(s_i, v)\}
$$

=
$$
d(u, s_0) + \min_{0 \le i \le k-1} \{P_u[i] + d(s_i, v)\}
$$

Pattern P_u , a k-dim vector, $P_u[i] \leq d(s_i,s_0) = O(r)$. The set of all patterns is $O(kr)^d = O(r^{3d/2})$, $d = \text{VC-dim of patterns}$.

8 of 18

Compute distance $d(u, v)$ with u outside the current piece H with k boundary vertices $\{s_0, s_1, \cdots, s_{k-1}\}.$

$$
d(u, v) = d(u, s_0) + \min_{0 \le i \le k-1} \{P_u[i] + d(s_i, v)\}
$$

= $d(u, s_0) + d(\mathbf{p}, v)$

Now, calculate the distance of v to every possible pattern p (sublinealy many).

9 of 18

Inspired by [LP19, DHV22, LW23]: Planar/Minor-free graphs \Rightarrow Unit disk graphs

- 1. bounded VC-dimension for encoding distances.
- 2. "r-division" for UDG?

VC-dimension

Maximum $#$ points shattered by a geometric shape. VC-dimension of disks: 3

VC-dimension

Maximum $#$ points shattered by a geometric shape. VC-dimension of disks: 3

VC-dimension of two set systems in a UDG:

- Distance VC-dimension: the set of k-neighborhood in $G, \forall k \geq 1$.
- Distance encoding vector wrt k vertices, $\forall k \geq 1$.

VC-dimension

Maximum $#$ points shattered by a geometric shape. VC-dimension of disks: 3

VC-dimension of two set systems in a UDG:

- Distance VC-dimension: the set of k-neighborhood in $G, \forall k \geq 1$.
- Distance encoding vector wrt k vertices, $\forall k \geq 1$.

In both cases the VC-dimension is 4.

VC-dimension of a Pseudo Disk Graph

Our proof works for the intersection graph of pseudo disks as well.

■ Two pseudo disks have at most 2 intersections at the boundary.

Pseudo disks Not pseudo disks

VC-dimension of a Pseudo Disk Graph

Our proof works for the intersection graph of pseudo disks as well.

■ Two pseudo disks have at most 2 intersections at the boundary.

Pseudo disks Not pseudo disks

Literature: distance VC-dimension $=$ 4

- Proof using geometry for unit disk graphs. [AACMMSS'21]
- For closed, bounded, convex, center-symmetric objects. [DKP'23]

VC-dimension in a UDG

4 vertices can be shattered.

VC-dimension in a UDG

Assume 5 vertices a, b, c, d, e that can be shattered.

Build a K_5 graph – connect a, b through v_{ab} where a ball at v_{ab} 'scoops out' only vertices a, b.

VC-dimension in a UDG

Assume 5 vertices a, b, c, d, e that can be shattered.

Build a K_5 graph – connect a, b through v_{ab} where a ball at v_{ab} 'scoops out' only vertices a, b.

By planarity (Hanani–Tutte theorem), there is a crossing pair. \Rightarrow argue a contradiction that the ball at v_{ab} includes one more vertex.

r-division for a planar graph:

■ Recursively apply a $O($ √ \overline{n}) size balanced separator.

r-division for a planar graph:

■ Recursively apply a $O($ √ \overline{n}) size balanced separator.

No classical separator for a unit disk graph: e.g., a dense clique.

r-division for a planar graph:

■ Recursively apply a $O($ √ \overline{n}) size balanced separator.

No classical separator for a unit disk graph: e.g., a dense clique.

■ Clique-based balanced separator [BBKMZ'20, BKMT'23, Ber23]: O(yu
′ $\overline{\mathit{n}})$ cliques

r-division for a planar graph:

■ Recursively apply a $O($ √ \overline{n}) size balanced separator.

No classical separator for a unit disk graph: e.g., a dense clique.

■ Clique-based balanced separator [BBKMZ'20, BKMT'23, Ber23]: √ $O(\sqrt{n})$ cliques

- \blacksquare 1st issue: $\#$ vertices in the boundary cliques can be a lot.
- 2nd issue: reduce $#$ boundary cliques of a piece through recursion

Clique-based r-clustering

 $(\mathcal{R}, \mathcal{C})$: \mathcal{R} clusters, \mathcal{C} cliques.

- \blacksquare $\#$ clusters: $O(n/$ √ $\overline{r}).$
- Each cluster has $\leq r$ interior vertices; and $\leq r$ boundary cliques.
- \blacksquare Total boundary vertices $O(n/2)$ √ $\overline{r}).$

Clique-based r-clustering

- $(\mathcal{R}, \mathcal{C})$: \mathcal{R} clusters, \mathcal{C} cliques.
- \blacksquare $\#$ clusters: $O(n/$ √ $\overline{r}).$
- Each cluster has $\leq r$ interior vertices; and $\leq r$ boundary cliques.
- \blacksquare Total boundary vertices $O(n/2)$ √ $\overline{r}).$

We cannot afford to enumerate over all vertices in the boundary – there can be $\Omega(n)$ many. \Rightarrow We choose one representative vertex from each boundary clique.

Clique-based r-clustering

 $(\mathcal{R}, \mathcal{C})$: \mathcal{R} clusters, \mathcal{C} cliques.

- \blacksquare $\#$ clusters: $O(n/$ √ $\overline{r}).$
- Each cluster has $\leq r$ interior vertices; and $\leq r$ boundary cliques.
- \blacksquare Total boundary vertices $O(n/2)$ √ $\overline{r}).$

We cannot afford to enumerate over all vertices in the boundary – there can be $\Omega(n)$ many. \Rightarrow We choose one representative vertex from each boundary clique.

This gives length $\leq D+2$.

Intersection graph of pseudo disks of 'similar size' with $O(1)$ complexity: $D+2$ in time $\tilde{O}(n^{2-1/18}).$

Intersection graph of pseudo disks of 'similar size' with $O(1)$ complexity: $D+2$ in time $\tilde{O}(n^{2-1/18}).$

If in addition the pseudo disks have k -ply, then we can find exact diameter in time $\tilde O(k^{11/9}n^{2-1/18}).$

Intersection graph of pseudo disks of 'similar size' with $O(1)$ complexity: $D+2$ in time $\tilde{O}(n^{2-1/18}).$

If in addition the pseudo disks have k -ply, then we can find exact diameter in time $\tilde O(k^{11/9}n^{2-1/18}).$

Distance oracle: (+2)-approximation with space $O(n^{2-1/18})$, $O(1)$ query time.

Open Questions

- Find Diameter of a UDG in truly subquadratic time? Or a conditional lower bound?
- Algorithms for pseudo disk graphs, e.g., disks of different radii?

Questions and Comments?