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Diameter in Unit Disk Graphs

Unit disk graph (UDG): points in R2, connect an edge pq iff |pq| ≤ 1.
A geometric intersection graph of disks of radius 1/2.

Q: Compute the diameter of an (unweighted) UDG in O(n2−ε) time?
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Fine-Grained Complexity for Diameter Problem

Assuming SETH, there is no O(n2−ε) time algorithm for Diameter of
a general graph.

■ Even to distinguish between 2 and 3 in sparse graphs.

Planar graphs:

■ Õ(n11/6) [Cabello’17]

■ Õ(n5/3) [GKMSW’18].

What about Diameter for geometric intersection graphs?
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Fine-Grained Complexity for Diameter Problem

[BKKNP’22] Assuming SETH, there is no O(n2−ε) time algorithm in
a geometric intersection graph to decide if Diameter ≤ 3 for

■ unit segments in R2.

■ congruent equilateral triangles (with rotation) in R2.

or, decide if Diameter ≤ k for

■ axis-parallel line segments in R2.

■ unit balls in R3.

■ axis-parallel unit cubes in R3.

Unit (axis-parallel) square graph in R2:

■ O(n log n) time to decide if Diameter ≤ 2.
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How fast can we find Diameter in UDG?

A unit disk graph can be a dense graph, i.e., Θ(n2) edges.

Exact diameter Õ(n2)

■ Run n single-source shortest path, each in O(n log n) time.

■ O(n2
√

log log n/ log n) time. [CK’16]

Approximate diameter D in time Õ(n) [CS’18]

■ Weighted graph (edge weight = Euclidean distance): (1 + ε)D

■ Unweighted graph: (1 + ε)D + (4 + 2ε).

Our results: D + 2 approximation in time Õ(n2−1/18) time.
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■ Weighted graph (edge weight = Euclidean distance): (1 + ε)D

■ Unweighted graph: (1 + ε)D + (4 + 2ε).

Our results: D + 2 approximation in time Õ(n2−1/18) time.
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■ Weighted graph (edge weight = Euclidean distance): (1 + ε)D

■ Unweighted graph: (1 + ε)D + (4 + 2ε).

Our results: D + 2 approximation in time Õ(n2−1/18) time.
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Address Two Technical Elements for UDG

Inspired by [LP19, DHV22, LW23]:
Planar/Minor-free graphs ⇒ Unit disk graphs

1. bounded VC-dimension for encoding distances.

2. “r -division” for UDG?
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Computer Diameter in Planar/Minor-free Graphs

Compute eccentricity of v ∈ V : ecc(v) = maxud(u, v).

Use an r -division: decomposition into Θ(n/r) pieces each is
connected with O(r) vertices and O(

√
r) boundary vertices.

O(r)

Θ(n/r)
O(

√
r)

v

u

r = nδ

Compute distance d(u, v) with u outside the current piece H.
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Computer Diameter in Planar/Minor-free Graphs

Compute distance d(u, v) with u outside the current piece H with k
boundary vertices {s0, s1, · · · , sk−1}, k = O(

√
r).

s0 s1sk−1

sjv

u

d(u, v) =d(u, sj) + d(sj , v) = min
0≤i≤k−1

{d(u, si ) + d(si , v)}

= min
0≤i≤k−1

{d(u, s0) + d(u, si )− d(u, s0) + d(si , v)}

=d(u, s0) + min
0≤i≤k−1

{Pu[i ] + d(si , v)}

Pattern Pu, a k-dim vector, Pu[i ] ≤ d(si , s0) = O(r).
The set of all patterns is O(kr)d = O(r3d/2), d=VC-dim of patterns.
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Computer Diameter in Planar/Minor-free Graphs

Compute distance d(u, v) with u outside the current piece H with k
boundary vertices {s0, s1, · · · , sk−1}.

s0 s1sk−1

sjv

u

d(u, v) =d(u, s0) + min
0≤i≤k−1

{Pu[i ] + d(si , v)}

=d(u, s0) + d(p, v)

Now, calculate the distance of v to every possible pattern p
(sublinealy many).
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Address Two Technical Elements for UDG

Inspired by [LP19, DHV22, LW23]:
Planar/Minor-free graphs ⇒ Unit disk graphs

1. bounded VC-dimension for encoding distances.

2. “r -division” for UDG?
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VC-dimension

Maximum # points shattered by a geometric shape.
VC-dimension of disks: 3

VC-dimension of two set systems in a UDG:

■ Distance VC-dimension: the set of k-neighborhood in G , ∀k ≥ 1.

■ Distance encoding vector wrt k vertices, ∀k ≥ 1.

In both cases the VC-dimension is 4.
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VC-dimension of a Pseudo Disk Graph

Our proof works for the intersection graph of pseudo disks as well.

■ Two pseudo disks have at most 2 intersections at the boundary.

Pseudo disks Not pseudo disks

Literature: distance VC-dimension = 4

■ Proof using geometry for unit disk graphs. [AACMMSS’21]

■ For closed, bounded, convex, center-symmetric objects. [DKP’23]
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VC-dimension in a UDG

4 vertices can be shattered.

(0, 0)
( 32 , 0)

( 78 ,
3
4 )

(0, 1)

(0, 9
8 )

( 94 ,−
1
2 )

( 94 ,−
3
2 )

( 74 ,−2)

(1,− 5
2 )(0,− 5

2 )

a

b

c d

B((0, 9
8 ), 2) = {a, c, d}

B(( 78 ,
3
4 ), 1) = {a, d}

B(( 32 , 0), 2) = {a, b, d}

B((0, 0), 1) = {a, b}
B((0,− 5

2 ), 5) = {a, d}

B((0, 0), 3) = {a, b, c, d}
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VC-dimension in a UDG

Assume 5 vertices a, b, c , d , e that can be shattered.
Build a K5 graph – connect a, b through vab where a ball at vab
‘scoops out’ only vertices a, b.

a

bc

d
vcdvab

vae

vac

vbd
vbc

e

vde
vad

vce

vbe

By planarity (Hanani–Tutte theorem), there is a crossing pair. ⇒
argue a contradiction that the ball at vab includes one more vertex.
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r -clustering for UDG

r -division for a planar graph:

■ Recursively apply a O(
√
n) size balanced separator.

No classical separator for a unit disk graph: e.g., a dense clique.

■ Clique-based balanced separator [BBKMZ’20, BKMT’23, Ber23]:
O(

√
n) cliques

■ 1st issue: # vertices in the boundary cliques can be a lot.

■ 2nd issue: reduce # boundary cliques of a piece through recursion
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Clique-based r -clustering

(R, C): R clusters, C cliques.

■ # clusters: O(n/
√
r).

■ Each cluster has ≤ r interior vertices; and ≤ r boundary cliques.

■ Total boundary vertices O(n/
√
r).

We cannot afford to enumerate over all vertices in the boundary –
there can be Ω(n) many. ⇒ We choose one representative vertex
from each boundary clique.

u
v

w

x

This gives length ≤ D + 2.
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Additional Results

Intersection graph of pseudo disks of ‘similar size’ with O(1)
complexity: D + 2 in time Õ(n2−1/18).

If in addition the pseudo disks have k-ply, then we can find exact
diameter in time Õ(k11/9n2−1/18).

Distance oracle: (+2)-approximation with space O(n2−1/18), O(1)
query time.
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Open Questions

■ Find Diameter of a UDG in truly subquadratic time? Or a
conditional lower bound?

■ Algorithms for pseudo disk graphs, e.g., disks of different radii?

Questions and Comments?
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