Hsien-Chih Chang (Dartmouth)
Jie Gao (Rutgers)
Hung Le (U Mass Amherst)

SoCG 2024



Diameter in Unit Disk Graphs

Unit disk graph (UDG): points in R?, connect an edge pq iff |pg| < 1.
A geometric intersection graph of disks of radius 1/2.



Diameter in Unit Disk Graphs

Unit disk graph (UDG): points in R?, connect an edge pq iff |pg| < 1.
A geometric intersection graph of disks of radius 1/2.

Q: Compute the diameter of an (unweighted) UDG in O(n?~¢) time?
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Fine-Grained Complexity for Diameter Problem

Assuming SETH, there is no O(n®>~¢) time algorithm for Diameter of
a general graph.

® Even to distinguish between 2 and 3 in sparse graphs.
Planar graphs:

m O(n'1/®) [Cabello’'17]

» O(n°/3) [GKMSW'18].

What about Diameter for geometric intersection graphs?
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Fine-Grained Complexity for Diameter Problem

[BKKNP'22] Assuming SETH, there is no O(n~¢) time algorithm in
a geometric intersection graph to decide if Diameter < 3 for

® unit segments in R

® congruent equilateral triangles (with rotation) in R?.
or, decide if Diameter < k for

® axis-parallel line segments in R2.

® unit balls in R3.

® axis-parallel unit cubes in R3.

Unit (axis-parallel) square graph in R?:

m O(nlogn) time to decide if Diameter < 2.
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How fast can we find Diameter in UDG?

A unit disk graph can be a dense graph, i.e., ©(n?) edges.

Exact diameter O(n?)

® Run n single-source shortest path, each in O(nlog n) time.

m O(n?y/loglog n/log n) time. [CK'16]

Approximate diameter D in time O(n) [CS'18]

m Weighted graph (edge weight = Euclidean distance): (1 +¢)D
® Unweighted graph: (1+¢)D + (4 + 2¢).

Our results: D + 2 approximation in time O(n?~1/18) time.
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2. “r-division” for UDG?



Computer Diameter in Planar/Minor-free Graphs

Compute eccentricity of v € V: ecc(v) = max,d(u, v).



Computer Diameter in Planar/Minor-free Graphs

Compute eccentricity of v € V: ecc(v) = max,d(u, v).
Use an r-division: decomposition into ©(n/r) pieces each is
connected with O(r) vertices and O(+/r) boundary vertices.

' O(n/r)

Compute distance d(u, v) with u outside the current piece H.
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Compute distance d(u, v) with u outside the current piece H with k
boundary vertices {so,s1, "+ ,Sk—1}, k = O(\/r).

S s
Sk1 0 1

d(u,v) =d(u,5) +d(s.v) = | min_ {d(u.5)+ d(s,v)}

:OSrlnSilrg_l{d(u, so) + d(u,s;) — d(u,s0) + d(si, v)}

=d(u, so) + <mln {Puli] +d(si,v)}

Pattern P,, a k-dim vector, P, [] < d(sj,s0) = O(r).
The set of all patterns is O(kr)? = O(r39/2), d=VC-dim of patterns.

e ————————————



Computer Diameter in Planar/Minor-free Graphs

Compute distance d(u, v) with u outside the current piece H with k
boundary vertices {sp,s1, " ,Sk—1}-

S0 S1

Sk—1

d(u,v) =d(u,s0) + min {P,[i]+d(si,v)}

0<i<k—-1

—d(u, 50) + d(p, v)

Now, calculate the distance of v to every possible pattern p
(sublinealy many).

e ———————————
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Inspired by [LP19, DHV22, LW23]:
Planar/Minor-free graphs = Unit disk graphs

1. bounded VC-dimension for encoding distances.

2. “r-division” for UDG?
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VC-dimension

Maximum # points shattered by a geometric shape.
VC-dimension of disks: 3

VC-dimension of two set systems in a UDG:
m Distance VC-dimension: the set of k-neighborhood in G, Vk > 1.
® Distance encoding vector wrt k vertices, Vk > 1.

In both cases the VC-dimension is 4.
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VC-dimension of a Pseudo Disk Graph

Our proof works for the intersection graph of pseudo disks as well.

® Two pseudo disks have at most 2 intersections at the boundary.

D O

Pseudo disks Not pseudo disks

Literature: distance VC-dimension = 4

® Proof using geometry for unit disk graphs. [AACMMSS'21]
® For closed, bounded, convex, center-symmetric objects. [DKP'23]
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VC-dimension in a UDG

Assume 5 vertices a, b, ¢, d, e that can be shattered.
Build a K5 graph — connect a, b through v,, where a ball at v,
‘scoops out’ only vertices a, b.

By planarity (Hanani—Tutte theorem), there is a crossing pair. =
argue a contradiction that the ball at v, includes one more vertex.
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r-clustering for UDG

r-division for a planar graph:
m Recursively apply a O(+/n) size balanced separator.
No classical separator for a unit disk graph: e.g., a dense clique.

m Clique-based balanced separator [BBKMZ'20, BKMT'23, Ber23|:
O(+/n) cliques
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® Ist issue: # vertices in the boundary cliques can be a lot.

® 2nd issue: reduce # boundary cliques of a piece through recursion
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Clique-based r-clustering

(R,C): R clusters, C cliques.

m # clusters: O(n/+\/r).

® Each cluster has < r interior vertices; and < r boundary cliques.
® Total boundary vertices O(n/+/r).

We cannot afford to enumerate over all vertices in the boundary —
there can be Q(n) many. = We choose one representative vertex
from each boundary clique.

This gives length < D + 2.

e ————————————
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Additional Results

Intersection graph of pseudo disks of ‘similar size’ with O(1)
complexity: D + 2 in time O(n?~1/18),

If in addition the Eseudo disks have k-ply, then we can find exact
diameter in time O(k!1/9n?~1/18),

Distance oracle: (+2)-approximation with space O(n?>~1/18), O(1)
query time.



Open Questions

m Find Diameter of a UDG in truly subquadratic time? Or a
conditional lower bound?

® Algorithms for pseudo disk graphs, e.g., disks of different radii?

Questions and Comments?



