Non-Euclidean Multi-Dimensional Scaling

Jie Gao

Computer Science Department Rutgers University

December 5th 2024

d-dim vectors:

■ Euclidean metric:
$$
\ell_2
$$
, $||p - q|| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

d-dim vectors:

■ Euclidean metric: $\ell_2, \, \lVert p - q \rVert = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}.$

In applications, many distances/dissimilarities are not Euclidean:

■ Minkowski distance (ℓ_p) , cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.

d-dim vectors:

■ Euclidean metric: $\ell_2, \, \lVert p - q \rVert = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}.$

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (ℓ_p) , cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]

d-dim vectors:

■ Euclidean metric: $\ell_2, \, \lVert p - q \rVert = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}.$

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (ℓ_p) , cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]
- Negative entries (e.g.: cosine similarity, correlation, signed distance).

d-dim vectors:

■ Euclidean metric: $\ell_2, \, \lVert p - q \rVert = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}.$

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (ℓ_p) , cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]
- Negative entries (e.g.: cosine similarity, correlation, signed distance).

Dimension reduction for non-Euclidean distances/dissimilarities?

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}$ of a dataset P of n elements, find *k*-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij}=\Phi(\hat{\rho_i},\hat{\rho_j})$ approximates $D_{ij}.$

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}\$ of a dataset P of n elements, find *k*-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij}=\Phi(\hat{\rho_i},\hat{\rho_j})$ approximates $D_{ij}.$

 \blacksquare Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}\$ of a dataset P of n elements, find *k*-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij}=\Phi(\hat{\rho_i},\hat{\rho_j})$ approximates $D_{ij}.$

- \blacksquare Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- \blacksquare Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}\$ of a dataset P of n elements, find *k*-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij}=\Phi(\hat{\rho_i},\hat{\rho_j})$ approximates $D_{ij}.$

- \blacksquare Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- \blacksquare Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.
- \blacksquare Euclidean setting: $A = I$ and $\Phi(u, v) = u^T v$ is dot product.
- \blacksquare When A is positive semi-definite: isometric to the Euclidean space.

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}\$ of a dataset P of n elements, find k-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij}=\Phi(\hat{\rho_i},\hat{\rho_j})$ approximates $D_{ij}.$

- \blacksquare Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- \blacksquare Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.
- \blacksquare Euclidean setting: $A = I$ and $\Phi(u, v) = u^T v$ is dot product.
- When A is positive semi-definite: isometric to the Euclidean space.
- Minimize STRESS error $\|\hat{D} D\|_F^2$.

Outline

- Brief review of classical dimension reduction via multi-dimensional scaling (cMDS).
- Problems with cMDS on non-Euclidean data.
- How to fix it with non-Euclidean MDS.

Classical Multi-Dimensional Scaling (cMDS)

Given an input matrix of Euclidean distances between n points in \mathbb{R}^d , recover the coordinates of the points. [Torgerson 1958]

- Euclidean distance matrix (EDM) $D = \{d_{ij}^2\}$
- Centering: $B=-\frac{1}{2}$ $\frac{1}{2}$ CDC, where $C = I - \frac{1}{n}$ $\frac{1}{n}$ **1**_n $\overline{1}$ _n $\overline{1}$ _n $\overline{1}$
- \blacksquare B is the Gram matrix of D. We find its orthogonal diagonalization $U^{\mathsf{T}}\Lambda U$, $\Lambda = \text{diag}(\lambda_1, \ldots \lambda_n)$
- Since D is Euclidean, B is positive semi-definite.
- \blacksquare $X = \sqrt{Diag(\Lambda)}U$ is a $n \times n$ dimensional matrix of rank d (or less), specifying the coordinates of *n* points in \mathbb{R}^n .

cMDS for Dimension Reduction

If we want to find an embedding in \mathbb{R}^k with $k < d$, we keep the dimensions corresponding to the k largest eigenvalues.

Wiki: voting patterns in the United States House of Representatives.

6 of 22

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \hat{D} , the embedding distance matrix.

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \hat{D} , the embedding distance matrix.

■ cMDS **does not** minimize STRESS error $\|D - \hat{D}\|_F^2$ — In Euclidean setting, cMDS minimizes STRAIN error (for Gram matrix).

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \ddot{D} , the embedding distance matrix.

- cMDS **does not** minimize STRESS error $\|D \hat{D}\|_F^2$ In Euclidean setting, cMDS minimizes STRAIN error (for Gram matrix).
- Increasing k can give worse STRESS error. [SBRG'23, TP'16] dimensionality paradox.

- How can classical multidimensional scaling go wrong?, NeurIPS'23. [SBRG'23]
- Taking all positive eigenvectors is suboptimal in classical multidimensional scaling. SIAM J. Optim, 2016. [TP'16]

Genomics data from the Curated Microarray Database (CuMiDa)

Eigenvalues of Gram matrix B are no longer non-negative

9 of 22

■ If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.

- If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.
- cMDS drops all negative eigenvalues which contain important information.
- If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.
- cMDS drops all negative eigenvalues which contain important information.
- Goal: dimension reduction to k -dim vectors with general bilinear form $f(u, v) = u^T A v$ to minimize STRESS error.

Non-Euclidean MDS

- \blacksquare We still start from the Gram Matrix $B = U^T \Lambda U.$
- \blacksquare Let $X = \sqrt{Diag(|\Lambda|)}U.$

Non-Euclidean MDS

- \blacksquare We still start from the Gram Matrix $B = U^T \Lambda U.$
- \blacksquare Let $X = \sqrt{Diag(|\Lambda|)}U.$
- Redefine Gram Matrix to be $B = X^T A X$ where $A = diag(sgn(\lambda_1), ...sgn(\lambda_n)).$

Non-Euclidean MDS

- \blacksquare We still start from the Gram Matrix $B = U^T \Lambda U.$
- \blacksquare Let $X = \sqrt{Diag(|\Lambda|)}U.$
- Redefine Gram Matrix to be $B = X^T A X$ where $A = diag(sgn(\lambda_1), ...sgn(\lambda_n)).$
- In doing this, we have changed the inner product to :

$$
\Phi(u, v) = \sum_{i=1}^p u_i v_i - \sum_{i=p+1}^{p+q} u_i v_i.
$$

with the addition and subtraction corresponding to the positive and negative eigenvalues. This is called pseudo-Euclidean space with (p, q) signature.

Non-Euclidean Dimension Reduction

If we use only k non-zero eigenvalues, how to choose?

If we use only k non-zero eigenvalues, how to choose?

■ Analysis of STRESS error.

If we use only k non-zero eigenvalues, how to choose?

- Analysis of STRESS error.
- Which k eigenvalues from the input Gram matrix should we take?
- What if we are not limited to eignvalues from the input Gram matrix?

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, STRESS= $C_1 + C_2 + C_3$.

 $C_1 = 4 \sum_{i \notin S} \lambda_i^2$.

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, STRESS= $C_1 + C_2 + C_3$.

\n- $$
C_1 = 4 \sum_{i \notin S} \lambda_i^2
$$
\n- $C_2 = 4[\sum_{i \notin S} \lambda_i]^2$
\n

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, STRESS= $C_1 + C_2 + C_3$.

- $C_1 = 4 \sum_{i \notin S} \lambda_i^2$.
- $C_2 = 4[\sum_{i \notin S} \lambda_i]^2$.
- $C_3 > 0$

Classical MDS: when all $\lambda_i \geq 0$, choosing largest k eigenvalues minimizes $C_1 + C_2$. – No longer true with negative eigenvalues.

We developed an optimal algorithm to minimize $C_1 + C_2$: throw away eigenvalues of small magnitude & keep sum to be close to 0.

We developed an optimal algorithm to minimize $C_1 + C_2$: throw away eigenvalues of small magnitude & keep sum to be close to 0.

- iteratively add an eigenvalue to S :
- If Σ remaining eigenvalues is < 0 , select the most negative one.
- **If** \sum remaining eigenvalues is > 0 , select the most positive one.

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

■ Equivalently, we allow scaling of the chosen eigenvalues.

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

- Equivalently, we allow scaling of the chosen eigenvalues.
- In order to minimize $C_1 + C_2$, we minimize:

$$
\min_{|W|=k}\left[\sum_{i\notin W}\lambda_i^2+\frac{1}{1+k}(\sum_{i\notin W}\lambda_i)^2\right]
$$

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

- Equivalently, we allow scaling of the chosen eigenvalues.
- In order to minimize $C_1 + C_2$, we minimize:

$$
\min_{|W|=k}\left[\sum_{i\notin W}\lambda_i^2+\frac{1}{1+k}(\sum_{i\notin W}\lambda_i)^2\right]
$$

■ The optimal algorithm now needs to look at marginal gain of adding the most positive or negative eigenvalue instead.

Experiments

Sources of non-Euclidean distances in generated data:

- Random noise: a simplex with random weights.
- Distance between sets: min distance between balls in space.

Experiments: Significantly lower STRESS

Lower-MDS [Sonthalia et.al'21]: symmetric, low-rank, trace-zero PSD SMACOF [Scikit-learn]: non-linear optimization using majorization

Experiments: STRESS error drops when k goes up

No dimensionality paradox: STRESS drops monotonically when dimension k is higher.

18 of 22

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $\mathcal{C}_1+\mathcal{C}_2$ error for cMDS and e_N for Non-Euclidean MDS,

1. when
$$
k = o(n)
$$
, $e_C \approx n^2 \sigma^2 (1 + \frac{4k^2}{n} - \frac{4k}{n})$, $e_N \approx n^2 \sigma^2 (1 - \frac{4k}{n})$

2. when
$$
k = cn
$$
, with $c \rightarrow 1$, $e_N \approx 0$. When $c \ge 1/2$, $e_C \approx 0.1801 \cdot n^3 \sigma^2$.

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $\mathcal{C}_1+\mathcal{C}_2$ error for cMDS and e_N for Non-Euclidean MDS,

1. when
$$
k = o(n)
$$
, $e_C \approx n^2 \sigma^2 (1 + \frac{4k^2}{n} - \frac{4k}{n})$, $e_N \approx n^2 \sigma^2 (1 - \frac{4k}{n})$

2. when
$$
k = cn
$$
, with $c \rightarrow 1$, $e_N \approx 0$. When $c \ge 1/2$, $e_C \approx 0.1801 \cdot n^3 \sigma^2$.

■ No agressive dimension reduction with $k = o(n)$ — In contrast, ℓ_2 distances in \mathbb{R}^n enjoy dimension reduction to dimension $O(\log n)$.

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $\mathcal{C}_1+\mathcal{C}_2$ error for cMDS and e_N for Non-Euclidean MDS,

- 1. when $k = o(n)$, $e_C \approx n^2 \sigma^2 (1 + \frac{4k^2}{n} \frac{4k}{n})$ $\frac{4k}{n}$), e $_N \approx n^2 \sigma^2 (1 - \frac{4k}{n})$ $\frac{4k}{n}$
- 2. when $k = cn$, with $c \rightarrow 1$, $e_N \approx 0$. When $c \geq 1/2$, $e_C \approx 0.1801 \cdot n^3 \sigma^2$.
- No agressive dimension reduction with $k = o(n)$ In contrast, ℓ_2 distances in \mathbb{R}^n enjoy dimension reduction to dimension $O(\log n)$.
- Dimensionality paradox for cMDS: error reaches a plateau $\approx 0.1801 \cdot n^3 \sigma^2$.

■ Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time $O(kn^2)$ using SVD.

- Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time $O(kn^2)$ using SVD.
- Landmark MDS [Silva, Tenenbaum 04]: embedding s landmarks first and the rest placed wrt landmarks can significantly speed up the process.
- Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time $O(kn^2)$ using SVD.
- Landmark MDS [Silva, Tenenbaum 04]: embedding s landmarks first and the rest placed wrt landmarks can significantly speed up the process.
- The current Github: https://github.com/KLu9812/MDSPlus

Future Work

- Applications to machine learning models and tasks.
- $\;\blacksquare\;$ Further study of \mathbb{R}^d under general bilinear forms.

Unit disk of $(1, 1)$ signature in the plane.

Chengyuan Deng, Jie Gao, Kevin Lu, Feng Luo, Hongbin Sun, Cheng Xin, to appear at NeurIPS 2024. https://arxiv.org/abs/2411.10889

- NSF IIS-2229876, DMS-2220271, DMS-2311064, CCF-2208663, CCF-2118953, and CRCNS2207440.
- Questions?