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Non-Euclidean Dissimilarities

d-dim vectors:

■ Euclidean metric: ℓ2, ∥p − q∥ =
√∑d

i=1(pi − qi )2.

In applications, many distances/dissimilarities are not Euclidean:

■ Minkowski distance (ℓp), cosine similarity, Hamming, Jaccard,
Mahalanobis, Chebyshev, and KL-divergence.

■ Some may not even be a metric (e.g., no triangle inequality).

■ Human perception of similarity is not a metric. [Tversky & Gati 82]

■ Negative entries (e.g.: cosine similarity, correlation, signed
distance).

Dimension reduction for non-Euclidean distances/dissimilarities?
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Dimension Reduction for Non-Euclidean Data

Given a symmetric dissimilarity matrix D = {Dij} of a dataset P of n

elements, find k-dimensional vector representation P̂ and a distance
function f such that D̂ij = Φ(p̂i , p̂j) approximates Dij .

■ Φ is a bilinear form: Φ(u, v) is linear wrt each variable u or v .

■ Wlog, Φ(u, v) = uTAv with a symmetric matrix A.

■ Euclidean setting: A = I and Φ(u, v) = uT v is dot product.

■ When A is positive semi-definite: isometric to the Euclidean space.

■ Minimize STRESS error ∥D̂ − D∥2F .
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Outline

■ Brief review of classical dimension reduction via multi-dimensional
scaling (cMDS).

■ Problems with cMDS on non-Euclidean data.

■ How to fix it with non-Euclidean MDS.
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Classical Multi-Dimensional Scaling (cMDS)

Given an input matrix of Euclidean distances between n points in Rd ,
recover the coordinates of the points. [Torgerson 1958]

■ Euclidean distance matrix (EDM) D = {d2
ij}

■ Centering: B = −1
2CDC , where C = I − 1

n1n1
T
n .

■ B is the Gram matrix of D. We find its orthogonal diagonalization
UTΛU, Λ = diag(λ1, ...λn)

■ Since D is Euclidean, B is positive semi-definite.

■ X =
√

Diag(Λ)U is a n× n dimensional matrix of rank d (or less),
specifying the coordinates of n points in Rn.
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cMDS for Dimension Reduction

If we want to find an embedding in Rk with k < d , we keep the
dimensions corresponding to the k largest eigenvalues.

Wiki: voting patterns in the United States House of Representatives.
6 of 22



cMDS in Reality

In practice, the input distance matrix D is not necessarily Euclidean
and may not be a metric.

The standard practice is to use cMDS anyway to find D̂, the
embedding distance matrix.

■ cMDS does not minimize STRESS error ∥D − D̂∥2F – In Euclidean
setting, cMDS minimizes STRAIN error (for Gram matrix).

■ Increasing k can give worse STRESS error. [SBRG’23, TP’16] –
dimensionality paradox.

■ How can classical multidimensional scaling go wrong?, NeurIPS’23. [SBRG’23]

■ Taking all positive eigenvectors is suboptimal in classical multidimensional
scaling. SIAM J. Optim, 2016. [TP’16]
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cMDS in Reality

Genomics data from the Curated Microarray Database (CuMiDa)
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cMDS in Reality

Eigenvalues of Gram matrix B are no longer non-negative

9 of 22



Non-Euclidean MDS

■ If input data is no longer Euclidean, limiting the embedding in
Euclidean space is too restrictive and ill-fit.

■ cMDS drops all negative eigenvalues which contain important
information.

■ Goal: dimension reduction to k-dim vectors with general bilinear
form f (u, v) = uTAv to minimize STRESS error.
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Non-Euclidean MDS

■ We still start from the Gram Matrix B = UTΛU.

■ Let X =
√
Diag(|Λ|)U.

■ Redefine Gram Matrix to be B = XTAX where
A = diag(sgn(λ1), ...sgn(λn)).

■ In doing this, we have changed the inner product to :

Φ(u, v) =

p∑
i=1

uivi −
p+q∑

i=p+1

uivi .

with the addition and subtraction corresponding to the positive
and negative eigenvalues. This is called pseudo-Euclidean space
with (p, q) signature.
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Non-Euclidean Dimension Reduction

If we use only k non-zero eigenvalues, how to choose?

■ Analysis of STRESS error.

■ Which k eigenvalues from the input Gram matrix should we take?

■ What if we are not limited to eignvalues from the input Gram
matrix?
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Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S , STRESS=C1 + C2 + C3.

■ C1 = 4
∑

i /∈S λ
2
i .

■ C2 = 4[
∑

i /∈S λi ]
2.

■ C3 ≥ 0

Classical MDS: when all λi ≥ 0, choosing largest k eigenvalues
minimizes C1 + C2. – No longer true with negative eigenvalues.
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Non-Euclidean MDS: Choice of Eigenvalues

We developed an optimal algorithm to minimize C1 + C2: throw away
eigenvalues of small magnitude & keep sum to be close to 0.

■ iteratively add an eigenvalue to S :

■ If
∑

remaining eigenvalues is < 0, select the most negative one.

■ If
∑

remaining eigenvalues is > 0, select the most positive one.
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Non-Euclidean MDS: Choice of Eigenvalues

If we are not limited to choose only from input eigenvalues but any k
non-zero numbers:

■ Equivalently, we allow scaling of the chosen eigenvalues.

■ In order to minimize C1 + C2, we minimize:

min
|W |=k

[∑
i /∈W

λ2
i +

1

1 + k
(
∑
i /∈W

λi )
2

]

■ The optimal algorithm now needs to look at marginal gain of
adding the most positive or negative eigenvalue instead.
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Experiments

Sources of non-Euclidean distances in generated data:

■ Random noise: a simplex with random weights.

■ Distance between sets: min distance between balls in space.

Dataset Size # {λ < 0} Classes Metric
Simplex 1000 900 N.A. ✗
Ball 1000 887 N.A. ✗

Brain 130 53 5 ✗
Breast 151 59 6 ✗

Colorectal 194 78 2 ✗
Leukemia 281 117 7 ✗
Renal 143 57 2 ✗

MNIST 1000 454 10 ✓
Fashion 1000 429 10 ✓
CIFAR-10 1000 399 10 ✓
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Experiments: Significantly lower STRESS

Lower-MDS [Sonthalia et.al’21]: symmetric, low-rank, trace-zero PSD
SMACOF [Scikit-learn]: non-linear optimization using majorization

Dataset cMDS Lower-MDS Neuc-MDS Neuc-MDS+ SMACOF
Random-Simplex 80.520 31.542 1.179 0.194 15.962
Euclidean Ball 36.975 17.303 1.196 1.351 4e6

Brain (50161) 2.894 0.289 0.046 0.045 0.081
Breast (45827) 2.822 0.423 0.029 0.029 0.078

Colorectal (44076) 1.464 0.221 0.017 0.026 0.036
Leukemia (28497) 2.958 0.624 0.078 0.096 0.005
Renal (53757) 0.490 0.090 0.026 0.036 0.017
MNIST 65.107 37.896 9.935 9.885 2.35e5

Fashion-MNIST 35.235 1.955 0.613 0.612 2.80e5
CIFAR10 26.598 1.276 0.858 0.850 1.63e5
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Experiments: STRESS error drops when k goes up

No dimensionality paradox: STRESS drops monotonically when
dimension k is higher.
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No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix B ∈ Rn×n

where Bij is iid with second moments σ2. Let eC denote the C1 + C2

error for cMDS and eN for Non-Euclidean MDS,

1. when k = o(n), eC ≈ n2σ2(1 + 4k2

n − 4k
n ), eN ≈ n2σ2(1− 4k

n )

2. when k = cn, with c → 1, eN ≈ 0. When c ≥ 1/2,
eC ≈ 0.1801 · n3σ2.

■ No agressive dimension reduction with k = o(n) — In contrast, ℓ2
distances in Rn enjoy dimension reduction to dimension O(log n).

■ Dimensionality paradox for cMDS: error reaches a plateau
≈ 0.1801 · n3σ2.
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Practical Considerations

■ Non-Euclidean MDS, like cMDS, asks for solving top k
largest/smallest eigenvalues, which requires time O(kn2) using
SVD.

■ Landmark MDS [Silva,Tenenbaum 04]: embedding s landmarks
first and the rest placed wrt landmarks can significantly speed up
the process.

■ The current Github: https://github.com/KLu9812/MDSPlus
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Future Work

■ Applications to machine learning models and tasks.

■ Further study of Rd under general bilinear forms.

Unit disk of (1, 1) signature in the plane.
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