Non-Euclidean Multi-Dimensional Scaling

Jie Gao

Computer Science Department Rutgers University

December 5th 2024

d-dim vectors:

• Euclidean metric: ℓ_2 , $\|p-q\| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

d-dim vectors:

• Euclidean metric: ℓ_2 , $\|p-q\| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

In applications, many distances/dissimilarities are not Euclidean:

 Minkowski distance (lp), cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.

d-dim vectors:

• Euclidean metric: ℓ_2 , $\|p-q\| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (lp), cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]

d-dim vectors:

• Euclidean metric: ℓ_2 , $\|p-q\| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (lp), cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]
- Negative entries (e.g.: cosine similarity, correlation, signed distance).

d-dim vectors:

• Euclidean metric: ℓ_2 , $\|p-q\| = \sqrt{\sum_{i=1}^d (p_i - q_i)^2}$.

In applications, many distances/dissimilarities are not Euclidean:

- Minkowski distance (lp), cosine similarity, Hamming, Jaccard, Mahalanobis, Chebyshev, and KL-divergence.
- Some may not even be a metric (e.g., no triangle inequality).
- Human perception of similarity is not a metric. [Tversky & Gati 82]
- Negative entries (e.g.: cosine similarity, correlation, signed distance).

Dimension reduction for non-Euclidean distances/dissimilarities?

Given a symmetric dissimilarity matrix $D = \{D_{ij}\}$ of a dataset P of n elements, find k-dimensional vector representation \hat{P} and a distance function f such that $\hat{D}_{ij} = \Phi(\hat{p}_i, \hat{p}_j)$ approximates D_{ij} .

• Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.

- Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.

- Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.
- Euclidean setting: A = I and $\Phi(u, v) = u^T v$ is dot product.
- When A is positive semi-definite: isometric to the Euclidean space.

- Φ is a bilinear form: $\Phi(u, v)$ is linear wrt each variable u or v.
- Wlog, $\Phi(u, v) = u^T A v$ with a symmetric matrix A.
- Euclidean setting: A = I and $\Phi(u, v) = u^T v$ is dot product.
- When A is positive semi-definite: isometric to the Euclidean space.
- Minimize STRESS error $\|\hat{D} D\|_F^2$.

Outline

- Brief review of classical dimension reduction via multi-dimensional scaling (cMDS).
- Problems with cMDS on non-Euclidean data.
- How to fix it with non-Euclidean MDS.

Classical Multi-Dimensional Scaling (cMDS)

Given an input matrix of Euclidean distances between *n* points in \mathbb{R}^d , recover the coordinates of the points. [Torgerson 1958]

- Euclidean distance matrix (EDM) $D = \{d_{ii}^2\}$
- Centering: $B = -\frac{1}{2}CDC$, where $C = I \frac{1}{n}\mathbf{1}_{n}\mathbf{1}_{n}^{T}$.
- *B* is the Gram matrix of *D*. We find its orthogonal diagonalization $U^T \Lambda U$, $\Lambda = diag(\lambda_1, ..., \lambda_n)$
- Since *D* is Euclidean, *B* is positive semi-definite.
- X = √Diag(Λ)U is a n × n dimensional matrix of rank d (or less), specifying the coordinates of n points in ℝⁿ.

cMDS for Dimension Reduction

If we want to find an embedding in \mathbb{R}^k with k < d, we keep the dimensions corresponding to the k largest eigenvalues.

Wiki: voting patterns in the United States House of Representatives.

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \hat{D} , the embedding distance matrix.

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \hat{D} , the embedding distance matrix.

• cMDS **does not** minimize STRESS error $||D - \hat{D}||_F^2$ - In Euclidean setting, cMDS minimizes STRAIN error (for Gram matrix).

In practice, the input distance matrix D is not necessarily Euclidean and may not be a metric.

The standard practice is to use cMDS anyway to find \hat{D} , the embedding distance matrix.

- cMDS **does not** minimize STRESS error $||D \hat{D}||_F^2$ In Euclidean setting, cMDS minimizes STRAIN error (for Gram matrix).
- Increasing k can give worse STRESS error. [SBRG'23, TP'16] dimensionality paradox.

- How can classical multidimensional scaling go wrong?, NeurIPS'23. [SBRG'23]
- Taking all positive eigenvectors is suboptimal in classical multidimensional scaling. SIAM J. Optim, 2016. [TP'16]

Genomics data from the Curated Microarray Database (CuMiDa)

Comparing Stress on Random-simplex Dataset

Eigenvalues of Gram matrix B are no longer non-negative

 If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.

- If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.
- cMDS drops all negative eigenvalues which contain important information.

- If input data is no longer Euclidean, limiting the embedding in Euclidean space is too restrictive and ill-fit.
- cMDS drops all negative eigenvalues which contain important information.
- Goal: dimension reduction to k-dim vectors with general bilinear form $f(u, v) = u^T A v$ to minimize STRESS error.

Non-Euclidean MDS

- We still start from the Gram Matrix $B = U^T \Lambda U$.
- Let $X = \sqrt{Diag(|\Lambda|)}U$.

Non-Euclidean MDS

- We still start from the Gram Matrix $B = U^T \Lambda U$.
- Let $X = \sqrt{Diag(|\Lambda|)}U$.
- Redefine Gram Matrix to be B = X^TAX where A = diag(sgn(λ₁), ...sgn(λ_n)).

Non-Euclidean MDS

- We still start from the Gram Matrix $B = U^T \Lambda U$.
- Let $X = \sqrt{Diag(|\Lambda|)}U$.
- Redefine Gram Matrix to be B = X^TAX where A = diag(sgn(λ₁), ...sgn(λ_n)).
- In doing this, we have changed the inner product to :

$$\Phi(u,v)=\sum_{i=1}^p u_iv_i-\sum_{i=p+1}^{p+q} u_iv_i.$$

with the addition and subtraction corresponding to the positive and negative eigenvalues. This is called pseudo-Euclidean space with (p, q) signature.

Non-Euclidean Dimension Reduction

If we use only k non-zero eigenvalues, how to choose?

If we use only k non-zero eigenvalues, how to choose?

Analysis of STRESS error.

If we use only k non-zero eigenvalues, how to choose?

- Analysis of STRESS error.
- Which k eigenvalues from the input Gram matrix should we take?
- What if we are not limited to eignvalues from the input Gram matrix?

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, $STRESS = C_1 + C_2 + C_3$.

• $C_1 = 4 \sum_{i \notin S} \lambda_i^2$.

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, $STRESS = C_1 + C_2 + C_3$.

•
$$C_1 = 4 \sum_{i \notin S} \lambda_i^2$$
.
• $C_2 = 4 [\sum_{i \notin S} \lambda_i]^2$.

Non-Euclidean MDS: Error Analysis

Suppose we select k out of n eigenvalues S, $STRESS = C_1 + C_2 + C_3$.

- $C_1 = 4 \sum_{i \notin S} \lambda_i^2$.
- $C_2 = 4[\sum_{i \notin S} \lambda_i]^2$.
- $C_3 \ge 0$

Classical MDS: when all $\lambda_i \ge 0$, choosing largest k eigenvalues minimizes $C_1 + C_2$. – No longer true with negative eigenvalues.

We developed an optimal algorithm to minimize $C_1 + C_2$: throw away eigenvalues of small magnitude & keep sum to be close to 0.

We developed an optimal algorithm to minimize $C_1 + C_2$: throw away eigenvalues of small magnitude & keep sum to be close to 0.

- iteratively add an eigenvalue to S:
- If \sum remaining eigenvalues is < 0, select the most negative one.
- If \sum remaining eigenvalues is > 0, select the most positive one.

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

• Equivalently, we allow scaling of the chosen eigenvalues.

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

- Equivalently, we allow scaling of the chosen eigenvalues.
- In order to minimize $C_1 + C_2$, we minimize:

$$\min_{|W|=k} \left[\sum_{i \notin W} \lambda_i^2 + \frac{1}{1+k} (\sum_{i \notin W} \lambda_i)^2 \right]$$

If we are not limited to choose only from input eigenvalues but any k non-zero numbers:

- Equivalently, we allow scaling of the chosen eigenvalues.
- In order to minimize $C_1 + C_2$, we minimize:

$$\min_{W|=k} \left[\sum_{i \notin W} \lambda_i^2 + \frac{1}{1+k} (\sum_{i \notin W} \lambda_i)^2 \right]$$

The optimal algorithm now needs to look at marginal gain of adding the most positive or negative eigenvalue instead.

Experiments

Sources of non-Euclidean distances in generated data:

- Random noise: a simplex with random weights.
- Distance between sets: min distance between balls in space.

Dataset	Size	$\# \{\lambda < 0\}$	Classes	Metric
Simplex	1000	900	N.A.	X
Ball	1000	887	N.A.	X
Brain	130	53	5	X
Breast	151	59	6	X
Colorectal	194	78	2	X
Leukemia	281	117	7	X
Renal	143	57	2	X
MNIST	1000	454	10	1
Fashion	1000	429	10	1
CIFAR-10	1000	399	10	1

Experiments: Significantly lower STRESS

Lower-MDS [Sonthalia et.al'21]: symmetric, low-rank, trace-zero PSD SMACOF [Scikit-learn]: non-linear optimization using majorization

Dataset	cMDS	Lower-MDS	Neuc-MDS	$Neuc-MDS^+$	SMACOF
Random-Simplex	80.520	31.542	1.179	0.194	15.962
Euclidean Ball	36.975	17.303	1.196	1.351	4еб
Brain (50161)	2.894	0.289	0.046	0.045	0.081
Breast (45827)	2.822	0.423	0.029	0.029	0.078
Colorectal (44076)	1.464	0.221	0.017	0.026	0.036
Leukemia (28497)	2.958	0.624	0.078	0.096	0.005
Renal (53757)	0.490	0.090	0.026	0.036	0.017
MNIST	65.107	37.896	9.935	9.885	2.35e5
Fashion-MNIST	35.235	1.955	0.613	0.612	2.80e5
CIFAR10	26.598	1.276	0.858	0.850	1.63e5

Experiments: STRESS error drops when k goes up

No dimensionality paradox: STRESS drops monotonically when dimension k is higher.

18 of 22

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $C_1 + C_2$ error for cMDS and e_N for Non-Euclidean MDS,

1. when
$$k = o(n)$$
, $e_C \approx n^2 \sigma^2 (1 + \frac{4k^2}{n} - \frac{4k}{n})$, $e_N \approx n^2 \sigma^2 (1 - \frac{4k}{n})$

2. when
$$k = cn$$
, with $c \to 1$, $e_N \approx 0$. When $c \ge 1/2$,
 $e_C \approx 0.1801 \cdot n^3 \sigma^2$.

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $C_1 + C_2$ error for cMDS and e_N for Non-Euclidean MDS,

1. when
$$k = o(n)$$
, $e_C \approx n^2 \sigma^2 (1 + rac{4k^2}{n} - rac{4k}{n})$, $e_N \approx n^2 \sigma^2 (1 - rac{4k}{n})$

2. when
$$k = cn$$
, with $c \to 1$, $e_N \approx 0$. When $c \ge 1/2$, $e_C \approx 0.1801 \cdot n^3 \sigma^2$.

■ No agressive dimension reduction with k = o(n) — In contrast, l₂ distances in ℝⁿ enjoy dimension reduction to dimension O(log n).

No Dimension Reduction for Random Dissimilarities

[Theorem] Consider a random symmetric, centered matrix $B \in \mathbb{R}^{n \times n}$ where B_{ij} is iid with second moments σ^2 . Let e_C denote the $C_1 + C_2$ error for cMDS and e_N for Non-Euclidean MDS,

1. when
$$k = o(n)$$
, $e_C \approx n^2 \sigma^2 (1 + rac{4k^2}{n} - rac{4k}{n})$, $e_N \approx n^2 \sigma^2 (1 - rac{4k}{n})$

2. when
$$k = cn$$
, with $c \to 1$, $e_N \approx 0$. When $c \ge 1/2$, $e_C \approx 0.1801 \cdot n^3 \sigma^2$.

- No agressive dimension reduction with k = o(n) In contrast, l₂ distances in ℝⁿ enjoy dimension reduction to dimension O(log n).
- Dimensionality paradox for cMDS: error reaches a plateau $\approx 0.1801 \cdot n^3 \sigma^2$.

 Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time O(kn²) using SVD.

- Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time O(kn²) using SVD.
- Landmark MDS [Silva, Tenenbaum 04]: embedding s landmarks first and the rest placed wrt landmarks can significantly speed up the process.

- Non-Euclidean MDS, like cMDS, asks for solving top k largest/smallest eigenvalues, which requires time O(kn²) using SVD.
- Landmark MDS [Silva, Tenenbaum 04]: embedding s landmarks first and the rest placed wrt landmarks can significantly speed up the process.
- The current Github: https://github.com/KLu9812/MDSPlus

Future Work

- Applications to machine learning models and tasks.
- Further study of \mathbb{R}^d under general bilinear forms.

Unit disk of (1,1) signature in the plane.

Acknowledgements

Chengyuan Deng, Jie Gao, Kevin Lu, Feng Luo, Hongbin Sun, Cheng Xin, to appear at NeurIPS 2024. https://arxiv.org/abs/2411.10889

- NSF IIS-2229876, DMS-2220271, DMS-2311064, CCF-2208663, CCF-2118953, and CRCNS2207440.
- Questions?