
ERRATUM TO AFFINE MANIFOLDS, SYZ
GEOMETRY AND THE “Y” VERTEX

JOHN LOFTIN, SHING-TUNG YAU, AND ERIC ZASLOW

1. Main result

The purpose of this erratum is to correct an error in the proof of
the main result of [2]. A semi-flat Calabi-Yau structure on a smooth
manifold M consists of an affine flat structure, together with an affine
Kähler metric whose potential satisfies det Φij = 1 in the local affine
coordinates. The main result of [2] is

Main Result. There exist many nontrivial semi-flat Calabi-Yau struc-
tures on the complement of a trivalent vertex of a graph inside a ball
in R3.

We present two separate constructions of the Main Result below:
The first, presented in Section 3 below, uses hyperbolic affine sphere
structures constructed in [3]. The second approach, proved in Section
4 below, is to use elliptic affine spheres constructed by

Theorem 2′. Let U be a nonzero holomorphic cubic differential on CP1

with exactly 3 poles of order two. Let M be CP1 minus the pole set of
U . At each pole of U , let w be a local coordinate so that U = 1

w2 dw3 in
a neighborhood of the pole. Let there be a conformal background metric
on M which is equal to

| log |w|2|
|w|

|dw|2

on a neighborhood of each pole. Then there is a δ > 0 so that for all
ε ∈ (0, δ), there is a smooth bounded function η on M satisfying

(1) ∆η + 4‖εU‖2e−2η + 2eη − 2κ = 0.

(Here ∆ is the Laplace operator of the background metric, ‖ · ‖ is the
induced norm on cubic differentials, and κ is the Gauss curvature.)

The bound δ only depends on
∫

M
|U | 23 .

This replaces Theorem 2 of [2], which has a gap in its proof. The
only essential difference between Theorem 2 of [2] and Theorem 2′

is that in Theorem 2, we claimed an explicit value for the bound δ,
while now in Theorem 2′, we must assume δ is a small positive number
without explicit estimates. We stress that this small strengthening of
the hypothesis does not affect the Main Result.
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2. Erratum

The proof of Theorem 2 of [2] is incomplete. There is a sign error
in the proof of Part 2 of Proposition 8 which we have not yet been
able to overcome. We provide a separate proof of Theorem 2′, which is
only slightly weaker, in Section 4 below. We also give another alternate
proof of the Main Result in Section 3 below.

Theorem 2 was used to produce global solutions of the equation
governing two-dimensional elliptic affine spheres,

(2) ∆u + 4‖U‖2e−2u + 2eu − 2κ = 0,

on CP1 for U a nonzero cubic differential with three poles of order
2, and ∆ and κ the Laplacian and curvature of a background metric.
Theorem 2 claimed to find a solution of (2) for each U which is small
in the sense that

(3)

∫
CP1

|U |
2
3 <

π 3
√

2

3
.

Below in the proof of Theorem 2′, we produce solutions to (2) for all
such U satisfying ∫

CP1

|U |
2
3 < δ

for a small δ > 0. Then a result of Baues-Cortés [1] relates two-
dimensional elliptic affine spheres to three-dimensional semi-flat Calabi-
Yau metrics, and the three poles of U form the rays of the “Y” vertex.

(The original bound
3√2
3π

is sharp if it is true [2].)
The examples in Sections 2,4,5 of [2] and the construction of local

radially symmetric solutions to equation (2) near a pole of U in Section
6.1 of [2] are unaffected by Theorem 2.

3. Hyperbolic affine spheres and metrics near the “Y”
vertex

Our first alternative proof of the Main Result is based on the follow-
ing analogue of the result of Baues-Cortés:

Proposition 1. Assume n is even. Let H be a hyperbolic affine sphere
in Rn+1 centered at the origin with affine mean curvature −1. Replace
H by an open subset of itself if necessary so that each ray through the
origin hits H only once. Let

C ′ =
⋃

0<r<1

rH
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be the union of all line segments from the origin to H. Then the func-
tion Φ: C ′ → R given by

Φ =

∫
(rn+1 − 1)

1
n+1 dr

is convex and solves the real Monge-Ampère equation det Φij = 1 on
C ′ ⊂ Rn+1.

The proof of this proposition is the same as our proof of Baues-
Cortés’s result (which we label as Theorem 1 in [2]).

Proposition 1 then reduces the problem of finding a semi-flat Calabi-
Yau structure on a neighborhood of the “Y” vertex of a graph in R3

to finding a hyperbolic affine sphere structure on S2 minus 3 singular
points. The next proposition, which follows from [3], provides many
such examples.

Proposition 2. Let U be a meromorphic cubic differential on CP1 with
three poles, each of order at most 3. Then there is a background metric
h and a solution u to

(4) ∆u + 4‖U‖2e−2u − 2eu − 2κ = 0

so that euh is the metric of a hyperbolic affine sphere.

This proposition, together with a result of Wang [6], exhibits many
hyperbolic affine sphere structures on S2 minus the pole set of U . Thus
we find, using Proposition 1, many nontrivial examples of semi-flat
Calabi-Yau metrics on a neighborhood of the “Y” vertex of a graph in
R3. Moreover, the holonomy type around each puncture on S2 (but
not the global holonomy representation) is determined in [3].

4. Construction of elliptic affine spheres

This section is devoted to the proof of Theorem 2′, using the barrier
methods of [4]. First of all, we note

Lemma 3. A function η satisfies (1) if and only if ν = η−log ε satisfies

(5) ∆ν + 4‖U‖2e−2ν + 2εeν − 2κ = 0.

It will be convenient to pass to a branched cover of CP1 under which
the pullback of U has 6 poles of order one. For example, consider the
map

Π: Z 7→ Z2 + Z−2,

for Z an inhomogeneous coordinate on CP1. Π is then a branched
cover from CP1 → CP1 with branch points over Z = 2,−2,∞. If we
allow the (order-two) poles of U to be at 2,−2,∞, then V = Π∗U has
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six poles of order one at 0,∞, 1,−1, i,−i. Let G be the group of deck
transformations of Π. Note |G| = 4.

This discussion shows that Theorem 2′ is equivalent to the existence
of a G-invariant bounded solution µ of

(6) Lh,ε(µ) = ∆hµ + 4‖V ‖2
he

−2µ + 2εeµ − 2κh = 0

for ε < δ and for a G-invariant background metric h on N = Π−1M
which is equal to | log |z|2| |dz|2 near the poles of V . (Here the coordi-
nate z is chosen so that V = 1

z
dz3 near z = 0.)

Proposition 4. There is a δ > 0 so that there are smooth bounded
G-invariant functions s, S on N satisfying

s ≤ S,(7)

Lh,ε(s) ≥ 0,(8)

Lh,ε(S) ≤ 0(9)

for all ε ∈ (0, δ).

Proof. These barriers follow from the same arguments as in Section
3.1 of [4]. Recall z is a local coordinate near each pole of V so that
V = 1

z
dz3 near the pole z = 0, and that the background metric is equal

to | log |z|2| |dz|2 near z = 0. All the explicit formulas for barriers below
are invariant under the action of G: a nontrivial element of G acts at
a fixed point z = 0 by z 7→ −z, and the formulas below only depend
on |z|.

Let α ∈ (−1, 0), and let f be a G-invariant positive function which is
equal to | log |z||α in a neighborhood of each pole of V and is equal to a
constant outside a neighborhood of the poles. Then by the calculations
in [4], for β � 0, s = βf satisfies

Lh,ε(s) ≥ Lh,0(s) ≥ 0.

(This computation uses the fact that V has no zeros, although the case
in which V has zeros can be handled, too [4].)

On the other hand, to produce S, let k be a smooth G-invariant
metric on CP1 which is equal to |dz|2 near each pole of V . Let κ̃ be a
G-invariant positive function on N which is equal to

1

2|z|2(log |z|)2

in a neighborhood of each pole and so that∫
N

(κk − κ̃)dVk = 0
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for dVk the volume form of k. Also, let ξ be a G-invariant function equal
to log | log |z|2| near each pole z = 0 and smooth away from the poles.
Apply the Green’s function of ∆k to produce a G-invariant function g̃
so that

∆kg̃ = 2κk − 2κ̃−∆kξ.

Since ∆k(log | log |z|2|) = − 1
|z|2(log |z|)2 = −2κ̃ in the sense of distribu-

tions near z = 0, g̃ is harmonic near z = 0 and is thus smooth. By
construction, g = g̃ + ξ satisfies

g = log | log |z|2|+ O(1)

near each pole of V . (We may also produce g by applying the Green’s
function to 2κk − 2κ̃ as in [4].) Compute for a constant c,

Lk,0(g + c) = 4e−2g−2c‖V ‖2
k − 2κ̃ < 0

on N for c � 0, since e−2g‖V ‖2
k and κ̃ have the same order of growth

as z → 0. If we relate the metrics h and k by k = evh, then compute
for S = g + c + v

Lh,0(S) = evLk,0(g + c) < 0.

The asymptotics of g and the definition of v ensure that S is bounded.
Moreover,

Lh,0(S) ≤ − C

|z|2| log |z||3

for a constant C > 0 near each pole of V . On the other hand, eS is
bounded, and so on all of N

Lh,ε(S) = Lh,0(S) + 2εeS < 0

for all positive ε which are small enough. �

Now we use the method of sub- and super-solutions to produce a
G-invariant solution to Lh,ε(µ) = 0 on N . Exhaust N by compact
submanifolds Nn with boundary

N =
⋃
n

Nn, Nn ⊂ int Nn+1.

Assume each Nn is G-invariant. We proceed as in e.g. Schoen-Yau
[5] Proposition V.1.1 (which is essentially the same result on compact
manifolds without boundary)

Proposition 5. For ε sufficiently small, there exists a G-invariant
solution µn to (6) on Nn which satisfies s ≤ µn ≤ S on the interior of
Nn.
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Proof. Write Lh,ε(µ) = ∆hµ + f(x, µ) for f(x, t) = 4‖V ‖2
he

−2t + 2εet −
2κh and x ∈ Nn. By compactness, there is a constant γ > 0 so that
F (x, t) = γt + f(x, t) is increasing for t ∈ [−A, A] for a constant A =
An satisfying −A ≤ s ≤ S ≤ A on Nn (for now, we suppress the
dependence on n). Define an operator H by Hµ = −∆hµ + γµ, and
define inductively sk and Sk

s0 = s, H(sk) = F (x, sk−1), sk|∂Nn = S.
S0 = S, H(Sk) = F (x, Sk−1), Sk|∂Nn = S.

Note that the Dirichlet problems admit unique solutions to make sk, Sk

well-defined. The functions sk, Sk are G-invariant by this uniqueness.
As in [5], we use the maximum principle to show that

s = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ · · · ≤ Sk ≤ · · · ≤ S2 ≤ S1 ≤ S0 = S.

Then the monotone pointwise limits sk → s∞ and Sk → S∞ are each
C2,α solutions to (6) on the interior of Nn (use the standard elliptic
theory as in [5]). Let µn = s∞, which is G-invariant, since it is the
limit of G-invariant functions. �

Proposition 6. As n →∞, there is a subsequence ni so that µni
→ µ

in C2
loc on N . µ is a G-invariant bounded solution to (6).

Proof. Choose n and let m ≥ n. Then µm are uniformly bounded
solutions to (6) on Nn, as |µm| ≤ An on Nn. So there are Lp estimates
for µm and ∆hµm on Nn, which lead to local Lp

2 estimates on µm on
each open subset of On ⊂ Nn. Then we may use Sobolev embedding
to get C0,α estimates on µm and ∆hµm:

‖µm‖C0,α , ‖∆hµm‖C0,α ≤ Cn on On,

where we have shrunk On slightly. Then by the Schauder theory, there
are uniform C2,α estimates for µm onOn (which is again shrunk a little).
All these estimates are uniform in m ≥ n large on each On ⊂ N . We
may still assume On is still an exhaustion of N :

N =
⋃
n

On, On b On+1.

Then we may use the Ascoli-Arzelá Theorem and the usual diago-
nalization argument to produce a subsequence µni

→ µ converging in
C2 on any compact subset of N , and so µ is a solution to (6) bounded
between s and S. µ is G-invariant, since it is a limit of functions which
are all G-invariant. �

To complete the proof of Theorem 2′, we simply note that all the
estimates only depend on ‖U‖, and since the space of admissible U on

CP1 has one complex dimension, δ depends only on
∫

M
|U | 23 .
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Remark. It is presumably possible to solve (1) for a nontrivial cubic
differential U on CP1 which admits≤ 3 poles of order 2 and an arbitrary
number of poles of order 1. It is not possible to have more than 3 poles
of order 2, since the curvature κ of the background metric contributes a
point mass at each pole of order 2 (while the corresponding background
metric for poles of order 1 makes no such contribution). We have∫

CP1

2κ dV = 8π − 2π`

for ` the number of poles of order 2. Integrating equation (1) then
shows that there are no nontrivial solutions of (1) if ` > 3. (In the
present case, the essential fact is that the orbifold CP1/G admits a
positive-curvature orbifold metric.)
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