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1. MAIN RESULT

The purpose of this erratum is to correct an error in the proof of
the main result of [2]. A semi-flat Calabi-Yau structure on a smooth
manifold M consists of an affine flat structure, together with an affine
Kahler metric whose potential satisfies det ®;; = 1 in the local affine
coordinates. The main result of [2] is

Main Result. There exist many nontrivial semi-flat Calabi- Yau struc-

tures on the complement of a trivalent vertex of a graph inside a ball
in R3.

We present two separate constructions of the Main Result below:
The first, presented in Section 3 below, uses hyperbolic affine sphere
structures constructed in [3]. The second approach, proved in Section
4 below, is to use elliptic affine spheres constructed by

Theorem 2'. Let U be a nonzero holomorphic cubic differential on CP*
with exactly 3 poles of order two. Let M be CP' minus the pole set of
U. At each pole of U, let w be a local coordinate so that U = # dw? in
a neighborhood of the pole. Let there be a conformal background metric
on M which is equal to

| log |wl?|
|wl

on a neighborhood of each pole. Then there is a & > 0 so that for all
e € (0,6), there is a smooth bounded function n on M satisfying

(1) An + 4| eU|]Pe " 4 2e" — 2K = 0.

|dw|*

(Here A is the Laplace operator of the background metric, || - || is the
induced norm on cubic differentials, and K is the Gauss curvature.)

The bound & only depends on [, U)3.

This replaces Theorem 2 of [2], which has a gap in its proof. The
only essential difference between Theorem 2 of [2] and Theorem 2’
is that in Theorem 2, we claimed an explicit value for the bound 4,
while now in Theorem 2, we must assume ¢ is a small positive number
without explicit estimates. We stress that this small strengthening of

the hypothesis does not affect the Main Result.
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2. ERRATUM

The proof of Theorem 2 of [2] is incomplete. There is a sign error
in the proof of Part 2 of Proposition 8 which we have not yet been
able to overcome. We provide a separate proof of Theorem 2’, which is
only slightly weaker, in Section 4 below. We also give another alternate
proof of the Main Result in Section 3 below.

Theorem 2 was used to produce global solutions of the equation
governing two-dimensional elliptic affine spheres,

(2) Au+4||U||e " + 2e* — 2k = 0,

on CP! for U a nonzero cubic differential with three poles of order
2, and A and k the Laplacian and curvature of a background metric.
Theorem 2 claimed to find a solution of (2) for each U which is small
in the sense that

2 /2
® [
cp! 3

Below in the proof of Theorem 2’, we produce solutions to (2) for all

such U satisfying
/ Ui <6
cp?

for a small 6 > 0. Then a result of Baues-Cortés [1] relates two-
dimensional elliptic affine spheres to three-dimensional semi-flat Calabi-
Yau metrics, and the three poles of U form the rays of the “Y” vertex.
(The original bound g/—f is sharp if it is true [2].)

The examples in Sections 2,4,5 of [2] and the construction of local
radially symmetric solutions to equation (2) near a pole of U in Section
6.1 of [2] are unaffected by Theorem 2.

3. HYPERBOLIC AFFINE SPHERES AND METRICS NEAR THE “Y”
VERTEX

Our first alternative proof of the Main Result is based on the follow-
ing analogue of the result of Baues-Cortés:

Proposition 1. Assume n is even. Let H be a hyperbolic affine sphere
in R" centered at the origin with affine mean curvature —1. Replace
H by an open subset of itself if necessary so that each ray through the
origin hits H only once. Let

C' = U rH

0<r<1
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be the union of all line segments from the origin to H. Then the func-
tion ®: C" — R given by

b = /(r"Jrl — 1)7#1 dr

is convex and solves the real Monge-Ampére equation det ®;; = 1 on
C' c R**L,

The proof of this proposition is the same as our proof of Baues-
Cortés’s result (which we label as Theorem 1 in [2]).

Proposition 1 then reduces the problem of finding a semi-flat Calabi-
Yau structure on a neighborhood of the “Y” vertex of a graph in R3
to finding a hyperbolic affine sphere structure on S? minus 3 singular
points. The next proposition, which follows from [3], provides many
such examples.

Proposition 2. Let U be a meromorphic cubic differential on CP' with
three poles, each of order at most 3. Then there is a background metric
h and a solution u to

(4) Au+4||U|*e™ 2" — 2e* — 2k = 0
so that e"h is the metric of a hyperbolic affine sphere.

This proposition, together with a result of Wang [6], exhibits many
hyperbolic affine sphere structures on S? minus the pole set of U. Thus
we find, using Proposition 1, many nontrivial examples of semi-flat
Calabi-Yau metrics on a neighborhood of the “Y” vertex of a graph in
R3. Moreover, the holonomy type around each puncture on S? (but
not the global holonomy representation) is determined in [3].

4. CONSTRUCTION OF ELLIPTIC AFFINE SPHERES

This section is devoted to the proof of Theorem 2, using the barrier
methods of [4]. First of all, we note

Lemma 3. A function n satisfies (1) if and only if v = n—log € satisfies
(5) Av +4||U||*e™? + 2ee” — 2k = 0.

It will be convenient to pass to a branched cover of CP' under which
the pullback of U has 6 poles of order one. For example, consider the
map

: 72— 2%+ 7272,
for Z an inhomogeneous coordinate on CP'. TI is then a branched
cover from CP' — CP' with branch points over Z = 2, -2, c0. If we
allow the (order-two) poles of U to be at 2, —2, 00, then V' = IT*U has
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six poles of order one at 0,00,1,—1,7, —i. Let G be the group of deck
transformations of II. Note |G| = 4.

This discussion shows that Theorem 2’ is equivalent to the existence
of a G-invariant bounded solution y of

(6) Lie(1) = App + 4|V [2e 4 2ee” — 20, = 0

for € < § and for a G-invariant background metric h on N = II71M
which is equal to |log|z|?| |dz|? near the poles of V. (Here the coordi-
nate z is chosen so that V' = 1dz* near z = 0.)

Proposition 4. There is a 6 > 0 so that there are smooth bounded
G-invariant functions s, S on N satisfying

(7) s < S,
(8) Lh,ﬁ(s) 2 Oa
(9) Lp(S) < 0

for all e € (0,0).

Proof. These barriers follow from the same arguments as in Section
3.1 of [4]. Recall z is a local coordinate near each pole of V' so that
V= % dz3 near the pole z = 0, and that the background metric is equal
to | log |z|?| |dz|* near z = 0. All the explicit formulas for barriers below
are invariant under the action of GG: a nontrivial element of G acts at
a fixed point z = 0 by z — —z, and the formulas below only depend
on |z|.

Let a € (—1,0), and let f be a G-invariant positive function which is
equal to |log |z||* in a neighborhood of each pole of V' and is equal to a
constant outside a neighborhood of the poles. Then by the calculations
in [4], for B < 0, s = Bf satisfies

the(s) Z Lh,O(S) Z 0

(This computation uses the fact that V' has no zeros, although the case
in which V' has zeros can be handled, too [4].)

On the other hand, to produce S, let k be a smooth G-invariant
metric on CP' which is equal to |dz|? near each pole of V. Let & be a
G-invariant positive function on N which is equal to

1
2[z[*(log |2[)?

in a neighborhood of each pole and so that

/N(Hk RV = 0
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for dV}, the volume form of k. Also, let £ be a G-invariant function equal
to log | log |z|?| near each pole z = 0 and smooth away from the poles.
Apply the Green’s function of A, to produce a G-invariant function g
so that

Since Ag(log |log|z|?]) = —m = —2F in the sense of distribu-

tions near z = 0, ¢ is harmonic near z = 0 and is thus smooth. By
construction, g = g + & satisfies

g = log|log|2*| + O(1)
near each pole of V. (We may also produce g by applying the Green’s
function to 2kj — 2K as in [4].) Compute for a constant c,
Lio(g+c) =4e || V| =2k <0

on N for ¢ > 0, since e"%||V||? and & have the same order of growth
as z — 0. If we relate the metrics h and k by k& = e"h, then compute
for S=g+c+v

ng(S) = e”Lkvo(g + C) < 0.

The asymptotics of g and the definition of v ensure that S is bounded.
Moreover,

C

L <
no(5) <~ aTiog [T

for a constant C' > 0 near each pole of V. On the other hand, e’ is
bounded, and so on all of N

Lh,E(S) = Lhyo(S) + 26€S <0
for all positive € which are small enough. ([l

Now we use the method of sub- and super-solutions to produce a
G-invariant solution to Lp(u) = 0 on N. Exhaust N by compact
submanifolds N, with boundary

N=JN.,  N.CintN,..

Assume each N, is G-invariant. We proceed as in e.g. Schoen-Yau
[5] Proposition V.1.1 (which is essentially the same result on compact
manifolds without boundary)

Proposition 5. For € sufficiently small, there exists a G-invariant
solution p, to (6) on N, which satisfies s < u, < S on the interior of
N,.
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Proof. Write Ly (1) = App+ f(z, p) for f(x,t) = 4||V]|Ze 2" + 2ee’ —
2kp and x € N,,. By compactness, there is a constant v > 0 so that
F(z,t) = vyt + f(x,t) is increasing for t € [—A, A] for a constant A =
A, satisfying —A < s < § < A on N, (for now, we suppress the
dependence on n). Define an operator H by Hu = —App + yp, and
define inductively s and Sy

S0 = S, H(sk) = F(x,s5-1), Sklon, = S
S() = S, H(Sk) = F(Z‘, Sk—l); Skla]vn = S

Note that the Dirichlet problems admit unique solutions to make s, Sy
well-defined. The functions s, Sy are G-invariant by this uniqueness.
As in [5], we use the maximum principle to show that

§=8 <85 <5< <5 < <5< <5 <5 <5 =5

Then the monotone pointwise limits s, — s, and S, — S, are each
C?** solutions to (6) on the interior of N, (use the standard elliptic
theory as in [5]). Let u, = S, which is G-invariant, since it is the
limit of G-invariant functions. O

Proposition 6. Asn — oo, there is a subsequence n; so that ji,, —

in C2_ on N. uis a G-invariant bounded solution to (6).

Proof. Choose n and let m > n. Then u,, are uniformly bounded
solutions to (6) on N, as |u,| < A, on N,. So there are LP estimates
for p,, and App,, on N, which lead to local L} estimates on p,, on
each open subset of O,, C N,,. Then we may use Sobolev embedding
to get C*“ estimates on g, and Ay fy,:

|t |l o, | AR ]| co.e < C on O,

where we have shrunk O, slightly. Then by the Schauder theory, there
are uniform C** estimates for p,,, on O,, (which is again shrunk a little).
All these estimates are uniform in m > n large on each O, C N. We
may still assume O, is still an exhaustion of N:

N=J0. 0,e0,..

Then we may use the Ascoli-Arzeld Theorem and the usual diago-
nalization argument to produce a subsequence p,,, — j converging in
C? on any compact subset of N, and so y is a solution to (6) bounded
between s and S. p is G-invariant, since it is a limit of functions which
are all G-invariant. O

To complete the proof of Theorem 2', we simply note that all the
estimates only depend on ||U||, and since the space of admissible U on
CP' has one complex dimension, § depends only on [, |U ‘%
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Remark. 1t is presumably possible to solve (1) for a nontrivial cubic
differential U on CP! which admits < 3 poles of order 2 and an arbitrary
number of poles of order 1. It is not possible to have more than 3 poles
of order 2, since the curvature k of the background metric contributes a
point mass at each pole of order 2 (while the corresponding background
metric for poles of order 1 makes no such contribution). We have

/ 2kdV = &1 — 27/
CP!

for ¢ the number of poles of order 2. Integrating equation (1) then
shows that there are no nontrivial solutions of (1) if £ > 3. (In the
present case, the essential fact is that the orbifold CP'/G admits a
positive-curvature orbifold metric.)
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