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Abstract. In the Labourie-Loftin parametrization of the Hitchin component of
surface group representations into SL(3,R), we prove an asymptotic formula for
holonomy along rays in terms of local invariants of the holomorphic di�erential
de�ning that ray. Globally, we show that the corresponding family of equivariant
harmonic maps to a symmetric space converge to a harmonic map into the as-
ymptotic cone of that space. The geometry of the image may also be described
by that di�erential: it is weakly convex and a (one-third) translation surface. We
de�ne a compacti�cation of the Hitchin component in this setting for triangle
groups that respects the parametrization by Hitchin di�erentials.
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1. Introduction

In a pioneering work in the 1980's and early 1990's, Hitchin and others ([Hit87],
[Cor88], [Sim92]) developed a beautiful non-Abelian Hodge theory for character va-
rieties of surface groups in higher rank Lie groups. The subject has been intensely
studied ever since and while new perspectives, for example more synthetic/algebro-
geometric [FG06] or dynamical [Lab06, Gui08], have emerged, there remain some
basic questions about how to properly geometrically interpret Hitchin's original
parametrizaton of a principal component of the character variety in terms of the
holomorphic data he used. (Indeed, in [Hit92], Hitchin remarks, �Unfortunately, the
analytical point of view used for the proofs gives no indication of the geometrical
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signi�cance of the Teichmüller component.�) The goal of this paper is to relate the
holonomy of a representation in a Hitchin component to the local synthetic geometry
of the holomorphic di�erential that Hitchin associates to it, at least in an asymptotic
sense.

More precisely, we focus on the Hitchin component Hit3 of surface group represen-
tations into SL(3,R). Hitchin ([Hit92]) parametrizes this component in terms of pairs
(q2, q3) of quadratic and cubic di�erentials q2 ∈ H0(X0,K

2
X0

), q3 ∈ H0(X0,K
3
X0

) on
a �xed Riemann surface X0. A parametrization, invariant under the action of the
mapping class group, was given independently by Labourie ([Lab07]) and Loftin
([Lof01]): from their perspective, Hit3 may be seen as the cubic di�erential bundle
C over the Teichmüller space T(S).

We study families de�ned by rays in this parametrization, and in particular the
asymptotics. Of course, a ray is de�ned as multiples sq0, for q0 a �xed cubic dif-
ferential on a �xed Riemann surface Σ = (S, J) and s > 0, and so has holomorphic
invariants that are projectively �xed; on the other hand, via the Labourie-Loftin
parametrization, the ray de�nes a family of holonomies hol(s) = Hol(ρs) of repre-
sentations ρs. We relate the asymptotics of the holonomies Hols to the holomorphic
invariants of the form q0: we give a formula for the leading term of the holonomy
Hols([γ]) of a curve class [γ] in terms of the intersection number of [γ] with the form

q0. The class [γ] may be represented by a geodesic cγ in the metric |q0|
2
3 : this metric

is �at away from the zeroes of q0, with cone points of total angle 2π(1 + 1
3) degp(q0)

at a zero p of q0. The segments, known as saddle connections, between the zeroes are
denoted c1, ...., cl.

1 Of course, in such a zero-free region, the cubic di�erential q0 has
three well-de�ned cube roots ϕ1, ϕ2, ϕ3 and we may compute intersection numbers

−2
2
3Re

�
δ ϕj of curves δ against these roots. Let ν

i denote the largest of the real parts
of the three periods; this is equivalent to the logarithm of the largest eigenvalue of
the holonomy of a natural development of that saddle connection into a�ne space.
Then our main results on asymptotic holonomy may be summarized in the theorem
below: we comment later on what is elided in the statement as well as some of the
subtleties in its statement and hence proof.

Theorem A. For every curve class [γ], we have

lim
s→+∞

log ∥Hols([γ])∥
s

1
3

=
∑
i=1

νi (1.1)

where ∥ · ∥ is any submultiplicative matrix norm.
In particular, if σj(Hols(cγ)) denotes the j-th largest singular value of the �at

geodesic cγ homotopic to c̃γ with saddle connections c1, . . . , cl, then

lim
s→+∞

log(σj(Hols(cγ)))

s
1
3

=
l∑

i=1

lim
s→+∞

log(σj(Hols(ci)))

s
1
3

(1.2)

1Saddle connections in this paper are just Euclidean geodesic segments, not restricted to be
horizontal in some way.
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for j = 1, 2, 3.

As suggested previously, the main qualitative result is that the leading term of
the holonomy, in this regime of a ray, is visible through the local expressions of
the Hitchin holomorphic parametrization. That the right-hand-side of (1.1) is ex-
pressed as a sum of maxima is consistent with other �tropical� expressions regarding
asymptotics, see for example [Foc98].

There are some nuances. First, we observe the role of the zeros of the holomorphic
form q0. They have no explicit presence in either formula (1.1) or (1.2).

Yet, there is a subtlety in that we add the dominant eigenvalue for each saddle
connection, so these must get aligned as the geodesic cγ transitions from a saddle
connection coming into a zero. Here, two considerations collide: �rst we must un-
derstand the general form of the unipotents that arise as a path crosses the Stokes
lines that emanate from a zero [DW15]. Second, we must show that the matrix per-
mutations de�ned by these unipotents match up the dominant eigenvalues of saddle
connections: this occurs because of the geometry of the unipotents that occur in the
limits. The resulting agreement of directions between incoming and outgoing saddle
connections is a linchpin of the current work. It is somewhat remarkable that it
holds not only generically but also in the special cases where the saddle connections
are in the directions of Stokes lines or walls of Weyl chambers.

We also note that, in contrast to some treatments (e.g. [MSWW16], [OSWW20]),
we do not restrict to simple zeroes. In general, this present formula might be seen
as an extension of the work of the �rst author in [Lof07]. (See also the extension of
that work by Collier-Li [CL17] on more general cyclic Higgs bundles.)

Finally, we relate these considerations to the harmonic map hs : Σ̃ → X de�ned
via the solution to Hitchin's equations. Now, equation (1.2) gives asymptotics of the
singular values, and we recall that the singular values of an element M ∈ SL(3,R)
de�ne the distance in the symmetric space X = SL(3,R)/SO(3) between the origin
and [M ], with asymptotics then de�ning distance in the asymptotic cone. We then
study the geometry of the limiting harmonic map to the asymptotic cone, obtained
by taking an ω-limit of X, rescaling by the growth of the co-diameter of the image
of hs.

Theorem B. Upon rescaling by s−
1
3 , the family of harmonic maps hs : Σ̃ → X

converges to a Lipschitz harmonic map h∞ : Σ̃ → Coneω(X). The corresponding
rescaled family of holonomy representations ρs : π1Σ → SL(3,R) converges to a
representation ρ∞ to the isometry group of Coneω(X). The harmonic map h∞ is
equivariant with respect to ρ∞. The cubic di�erential q0 induces a 1

3 -translation

surface structure on the image h∞(Σ̃) ⊂ Coneω, which is compatible with the local
geometry of Coneω(X).

More precise statements and proofs are contained in Proposition 8.6 and Theo-
rems 8.7 and 8.9 below.
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The structure on h∞(Σ̃) involves natural local models uk : B → (X, d), where B is
a ball and uk is a conformal harmonic map to the asymptotic cone Coneω(X) de�ned
in terms of the cubic di�erential ψk = zkdz3 and its three cube roots ϕ1, ϕ2, ϕ3. In
particular, the image of the punctured ball B \ {0} comprises 2(k + 3) �at sectors
Wi which meet only consecutively on geodesics and to which uk is de�ned by

uk(x) =

(
−2

2
3Re

(� x

0
ϕ1

)
,−2

2
3Re

(� x

0
ϕ2

)
,−2

2
3Re

(� x

0
ϕ3

))
for x in a sector of B. We prove in Theorems 8.7 and 8.9 that the harmonic map
h∞ has this local structure, where ψk is a restriction of q0 to B.

Now, group actions on buildings have arisen in the work of several authors ([Par12],
[BIPP21]) with harmonic maps to these buildings having some prominence ([BIPP21],
[KNPS15], [MOT21]). Here one might compare the lower rank constructions of sur-
face group actions on real trees in the context of SL(2,R) character varieties: see
[Bes88], [Wol89], [Wol95]. In the present context, it is worth focusing on the papers
of Katzarkov-Noll-Pandit-Simpson ([KNPS15], [KNPS17]), in which the authors out-
line an approach to compactifying character varieties of surface group representations
in SL(d,C). Of course, the present paper can be seen as demonstrating a part of
that program in a real setting.

Moreover, though, in a companion paper ([LTW22]), we prove a uniqueness the-
orem for conformal equivariant harmonic maps to buildings which applies in our
situation. Thus we �nd that in settings in which the harmonic maps have an image
in the asymptotic cone of SL(3,R)/SO(3), those harmonic maps coincide with the
maps described in this paper as endpoints of rays. In particular, those maps would
be de�nable in terms of cubic di�erentials projectively approximated by the Hitchin
di�erentials for the approximating representations. The results of Theorems 8.7
and 8.9, and the uniqueness results in [LTW22], then in some sense unify some of
the various approaches to asymptotic holonomy of representations and the limiting
buildings.

In the concluding section of this paper, we provide an example of a full com-
pacti�cation in a speci�c example, that of the SL(3,R) Hitchin component of most
(p, q, r)-triangle groups.

Two features of our technique limit the scope of these results. First, we rely heavily
on the cyclic nature of the representations, and the resulting substantial symmetries
in the Hitchin system. Indeed, in the present work, that system is but a single scalar
equation. That is somewhat less of a limitation than it may seem, as some analogous
results are available in the case of Sp(4,R) ([OT20], [TW19]). Second, here we �x the
conformal structure of the domain: considering asymptotics where both the domain
Riemann surface and the representation degenerate seems to require an analysis �ner
than what we present here. Finally, we are greatly aided by the asymptotic cone be-
ing two-dimensional, and hence the same dimension as the domain Σ. This restricts
the �exibility of the limiting harmonic maps.
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Organization. In the second section, we de�ne our notation and present some back-
ground material. Section 3 is devoted to presenting some required analysis of the
Hitchin partial di�erential equation which governs the harmonic maps. In Section 4,
we analyze the holonomy near a zero of q0: we are interested in the holonomy along
a generic saddle connection and along a portion of an arc that links the zero that
crosses a Stokes line. Section 5 assembles these partial holonomies of individual sad-
dle connections into a preliminary description of the asymptotic holonomy. Then, in
Section 6. we discuss the phenomenon that the unipotents that describe the tran-
sition between incoming and outgoing saddle connections intertwine the dominant
eigenvalues. In Section 7, we collect all of the ingredients from the previous sections
and prove the main result on asymptotic holonomy displayed above. Section 8 pivots
to describe how the endpoint of a ray is a harmonic map to a building, displaying
the local structure and induced metric to q0, and showing that the image is �weakly
convex� in the sense of Parreau [Par21]. Finally, Section 9 displays a corollary of
our work in a very special case: the compacti�cation of Hit3 in the case of a triangle
group, where we can provide a somewhat complete account of the compacti�cation
using our methods.
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And Representation varieties (the GEAR Network). In addition, some of this work
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supported by the National Science Foundation with grant DMS-2005551 and the
Simons Foundation. The authors appreciate useful conversations with David Du-
mas, Michael Kapovich, Anne Parreau, Marc Burger, Alessandra Iozzi and Beatrice
Pozzetti.

2. Background material

The geometry relating cubic di�erentials and representations in Hit3 is that of a
special sort of surface, a hyperbolic a�ne sphere H, in R3. There are natural a�ne
invariants on a hyperbolic a�ne sphere, a Riemannian metric called the Blaschke
metric g, and a cubic di�erential q which is holomorphic with respect to the conformal
structure induced by the Blaschke metric, related by the compatibility relation

κ(g) = −1 + 2∥q∥2g, (2.1)

where κ(g) is the Gauss curvature, and ∥q∥g is the pointwise norm of q with respect
to the metric g. Let f : D → R3 be a parametrization of H conformal with respect
to g, from a domain D ⊂ C. Then f is transverse to the tangent plane TfH and
we have the following structure equations for the frame F = (f fz fz̄) in R3, for z a
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conformal coordinate and g = eϕ|dz|2

F−1dF =

 0 0 1
2e
ϕ

1 ∂zϕ 0
0 qe−ϕ 0

 dz +

 0 1
2e
ϕ 0

0 0 q̄e−ϕ

1 0 ∂z̄ϕ

 dz̄. (2.2)

Equation 2.2 then gives the connection form of the pullback ∇ of the �at connection
on R3 to the rank-3 bundle 1 ⊕ TD over D, for 1 the trivial line bundle. Equation
2.1 and ∂z̄q = 0 ensure ∇ is �at. On a compact Riemann surface, the holonomy of
∇ gives a Hitchin representation into SL(3,R).

Alternately, given a holomorphic cubic di�erential q over Σ, we may use this data
to de�ne a stable rank-3 Higgs bundle, which then induces an equivariant conformal
harmonic map from Σ̃ to the symmetric space X = SL(3,R)/SO(3). We need not
avail ourselves of the details of this construction, as the harmonic map can be con-
structed directly from the hyperbolic a�ne sphere. To see this, identify X with the
space of all metrics (positive-de�nite quadratic forms) on R3 of determinant 1. The
Blaschke lift h at a given point f on H is then the metric on R3 for which

• f has norm 1,
• f is orthogonal to TfH,
• the metric restricted to TfH is the Blaschke metric g.

To relate the Blaschke lift h to the frame F , it is useful to use an orthonormal frame
for h. For z = x+ iy, the frame

F̂ =
(
f fx

|fx|g
fy

|fy |g

)
= F

 1 0 0

0 e−ϕ/2 ie−ϕ/2

0 e−ϕ/2 −ie−ϕ/2


is orthonormal. Thus

h = (F̂⊤)−1F̂−1 = (F⊤)−1

 1 0 0
0 0 1

2e
ϕ

0 1
2e
ϕ 0

F−1.

Cheng-Yau ([CY86], [CY77]) proved that any hyperbolic a�ne sphere with a com-
plete Blaschke metric is asymptotic to a properly convex cone in R3, which we take
to have vertex at the origin. Likewise, for every such convex cone, there is a unique
hyperbolic a�ne sphere asymptotic to the cone invariant under special linear auto-
morphisms of the cone and with complete Blaschke metric. By projecting R3 → RP2,
we may identify H with a properly convex domain in RP2. On a compact Riemann
surface Σ of genus at least 2 equipped with a cubic di�erential q, there is a unique
solution to Equation 3.1 below (this is the global version of Equation 2.1 above).

Thus the universal cover Σ̃ is identi�ed with a convex domain Ω in RP2, and Σ
itself admits a quotient of Ω by projective automorphisms. In other words, we have
induced a convex RP2 structure on Σ. Choi-Goldman ([Gol90],[CG93]) show that
convex RP2 structures are equivalent to Hitchin representations.

Dumas and the third author [DW15] address the case of polynomial cubic di�eren-
tials on C, and show there is a unique complete Blaschke metric on that plane. The
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convex domain in this case is a convex polygon with d+ 3 sides, for d the degree of
the polynomial. Indeed polynomial cubic di�erentials on C are equivalent to convex
polygons, up to appropriate equivalences. In this work, we are primarily interested
in cubic di�erentials of the form zd dz3, which corresponds to the regular convex
polygon of d + 3 sides. In general, the analysis of the boundary of the polygon fol-
lows by comparison to the simpler geometry of inscribed and circumscribed triangles
around each vertex and edge.

Example 2.1. The triangle case (for a constant cubic di�erential on C and in which
the Blaschke metric is �at) can be worked out explicitly and goes back to �iµeica
([Tzi08]). We see that this is a fundamental model for us, and so we describe some
of its features. In terms of a natural local coordinate in which the cubic di�erential
q = dw3, for w = reiθ, there are �Stokes� directions for rays θ = π

6 + π
3k for k an

integer. In the sectors bounded by θ = π
3 + 2π

3 k, the rays limit on a vertex of the
triangle; the rays parallel to those angles �ll out the sides of the polygon.

For a general convex polygon, in each sector in between the Stokes directions, the
a�ne sphere is well approximated by an appropriate �iµeica surface. Upon crossing
a Stokes ray, the approximating �iµeica surface changes by the action of a unipo-
tent transformation determined by the geometry of the convex polygon: the unique
unipotent transformation in R3 whose projective action on RP2 transforms a given
inscribed (circumscribed) triangle in the polygon to the subsequent circumscribed
(inscribed) triangle by moving a single vertex.

We will also encounter other special directions in C, which represent the walls of
Weyl chambers at θ = π

3k, upon identifying C with the maximum torus of the Lie
algebra of SL(3,R).

3. Asymptotics of the Blaschke metric

Consider a ray of cubic di�erentials qs = sq0 on a �xed Riemann surface Σ = (S, J)
with conformal hyperbolic metric σ. Let gs = eµsσ be the Blaschke metric on the
associated a�ne sphere. The real-valued functions µs are solutions of Wang equation

∆σµs = 2eµs − 4e−2µs |qs|
2

σ3
+ 2κ(σ). (3.1)

Near each zero of q, Nie has studied rescaled limits of the associated convex RP2

structure, which converge to a regular polygon [Nie22]. Our approach focuses on
precise estimates comparing the corresponding a�ne spheres.

3.1. Asymptotics far from the zeros. We compare the Blashke metrics gs with

the �at metric with cone singularities |qs|
2
3 . The following results are well-known.

Lemma 3.1 ([Lof04], [DW15]). The Blaschke metric gs satis�es gs > 2
1
3 |qs|

2
3 .

Lemma 3.2 ([OT21]). The area of the Blaschke metric satis�es

2
1
3 ∥qs∥ ≤ Area(S, gs) ≤ 2

1
3 ∥qs∥+ 2π|χ(S)|
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where ∥q∥ =
�
S |q|

2
3 .

We consider now the quantity

Fs = µs −
1

3
log

(
2|qs|2

σ3

)
in order to compare gs and |qs|

2
3 outside the zeros of qs. Outside the zeros of q0, the

function Fs satis�es the PDE

∆
|q0|

2
3
Fs = 2

4
3 s

2
3 (eFs − e−2Fs).

By Lemma 3.1, Fs > 0 and ∆σFs > 0. Hence Fs is subharmonic.

Lemma 3.3 (Coarse bound on Fs). Let p ∈ S and let r0 be the radius of a ball

around p for the �at metric |q0|
2
3 which does not contain any zeros of q0. Then

Fs(p) ≤ log

(
Area(S, gs)

2
1
3πs

2
3 r20

)
.

Proof. The ball B of radius s
1
3 r0 for the �at metric qs does not contain any zeros.

By subharmonicity of Fs and Jensen's Inequality, we have

eFs ≤ e
�
B FsdAqs ≤

 
B
eFsdAqs = 2−

1
3

 
B
eµsdAσ ≤ Area(S, gs)

2
1
3πs

2
3 r20

.

□

Lemma 3.4 (Error decay). Let p ∈ S be a point at q0-distance r0 from the zeros of
q0. Then for any δ > 1, there is a D > 0 so that

Fs(p) ≤ Ds
1
6 e−

√
3·2

2
3 ass

1
3 r0/δ,

with as → 1 as s→ +∞.

Proof. Consider the ball centered at p of radius s
1
3 r0/δ for the �at metric qs. Since

this ball does not contain any zeros of q0, we may choose coordinates on the ball so
that q0 = dz3 and p is at z = 0. Then Fs on this ball satis�es

∆Fs = 2
4
3 s

2
3 · 2e−Fs/2 sinh

(
3

2
Fs

)
.

By Lemma 3.3 and Lemma 3.2, the function e−Fs/2 is uniformly bounded below by
a constant c > 0. Then

∆Fs ≥ 3 · 2
4
3 s

2
3 cFs.

Similarly, the function Fs is bounded above by a constant A = A(δ) > 0 on the
boundary of the ball. Let η be the solution of the system{

∆η = 3 · 2
4
3 s

2
3 cη,

η|∂ = A.
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We know η(r) = A I0(
√
3·2

2
3
√
c·s

1
3 r)

I0(
√
3·2

2
3
√
c·s

1
3 r0/δ)

, where I0(κr) is the only radial solution of{
∆I0 = κ2I0,
I0|∂ = 1.

It is well-known ([AS64]) that I0(κx) is the Bessel function of the �rst kind and has
asymptotic behavior I0(κx) ∼ eκx√

x
as x→ +∞. By the maximum principle,

Fs(0) ≤ η(0) =
A

I0(
√
3 · 2

1
3
√
c · s

1
3 r0/δ)

≤ Ds
1
6 e−

√
3·2

2
3
√
c·s

1
3 r0/δ.

This implies that Fs decays exponentially outside the zeros of q0. Now, remember
that the constant c comes from the bound on e−Fs/2. From the decay of Fs, we can
improve this bound to e−Fs/2 ≥ as with as → 1 as s → +∞, and the lemma is
proved. □

Notation. For simplicity, we denote by m(s) the exponent appearing in Lemma 3.4,
i.e.

m(s) = m(s, r0, δ) =
√
3 · 2

2
3ass

1
3 r0/δ.

3.2. Estimates around a zero. We now move to the study of the asymptotic
behavior of µs around a zero of the Pick di�erential. We denote by hs = eνs |dz|2 the
Blaschke metric of the a�ne sphere with polynomial cubic di�erential qs = szkdz3

on C. We want to compare µs and νs on the ball B = {|z| < ϵ}. We rewrite the
Blaschke metric gs = eµsσ with respect to the background �at metric |dz|2 on B:
gs = eϕs |dz|2, where ϕs is a solution of the PDE (only de�ned on the closure of B)

∆ϕs = 2eϕs − 4e−2ϕs |qs|2. (3.2)

Thus νs is a solution of the same equation as ϕs, but with di�erent boundary values.

Lemma 3.5. On ∂B, we have ϕs − νs = O(s
1
6 e−m(s)) as s→ +∞.

Proof. We know from Lemma 3.4 that

ϕs|∂B = µs + log(σ) =
1

3
log(2s2ϵ2k) +O(s

1
6 e−m(s))

for r0 = 3
k+3ϵ

k+3
3 , where we recall that σ is the hyperbolic metric on the �xed

Riemann surface Σ. Thus it is su�cient to show that

νs =
1

3
log(2s2ϵ2k) + o(s

1
6 e−m(s)).

Changing complex coordinates to w = s
1

k+3 z, the ball B can be rewritten as B =

{|w| < s
1

k+3 ϵ}. In these coordinates, eνs |dz|2 = eψs |dw|2 with ψs = νs − 2
k+3 log(s),

and qs = wkdw3. The estimates of ([DW15, Theorem 5.7]) then tell us that

ψs|∂B =
1

3
log(2s

2k
k+3 ϵ2k) +O

(
e−m(s)

s
1
6

)
.
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Hence, on ∂B,

νs = ψs +
2

k + 3
log(s)

=
1

3
log(2s

2k
k+3 ϵ2k) +

1

3
log(s

6
k+3 ) +O

(
e−m(s)

s
1
6

)

=
1

3
log(2s2ϵ2k) +O

(
e−m(s)

s
1
6

)
.

□

Lemma 3.6. On the ball B, we have ϕs − νs = O(s
1
6 e−m(s)) as s→ +∞.

Proof. De�ne ηs = ϕs − νs. It satis�es the PDE

∆ηs = ∆ϕs −∆νs = 2eϕs − 4e−2ϕs |qs|2 − 2eνs + 4e−2νs |qs|2

on B. Dividing by eνs , we �nd, upon setting hs = eνs |dz|2, that

∆hsηs = e−νs∆ηs = 2eηs − 4e−2ϕs−νs |qs|2 − 2 + 4e−3νs |qs|2

= 2(eηs − 1)− 4
|qs|2

e3νs
(e−2ηs − 1).

By the maximum principle,

|ηs| ≤ max(|max(ηs|∂B)|, |min(ηs|∂B)|),
which gives the desired estimate by Lemma 3.5. □

4. Comparison between affine spheres

We denote by Fs(z) the frame �eld of the a�ne sphere arising from the data
(σ, sq0) on the surface S restricted to the ball B = {|z| < ϵ}. We normalize the
a�ne sphere so that Fs(0) = Id for all s > 0. With this choice Fs will be complex-
valued, belonging to a subgroup of SL(3,C) isomorphic to SL(3,R). Recall that Fs
is the solution to the ODE {

F−1
s dFs = Usdz + Vsdz̄,
Fs(0) = Id,

where Us, Vs are the matrices arising from the structure equations of the a�ne sphere.
Precisely,

Us =

 0 0 1
2e
ϕs

1 ∂zϕs 0
0 qse

−ϕs 0

 , Vs =

 0 1
2e
ϕs 0

0 0 q̄se
−ϕs

1 0 ∂z̄ϕs

 . (4.1)

We denote by FM (w) the frame �eld of the (model) a�ne sphere over C with
polynomial cubic di�erential wkdw3 normalized so that FM (0) = Id. Note FM (w)
solves {

F−1
M dFM = UMdw + VMdw̄,
FM (0) = Id.
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We compare Fs and FM on the ball B = {|z| < ϵ} centered at a zero of order k for

q0. Recall that w = s
1

k+3 z, so we consider

Gs(z) = Fs(z)F
−1
M (s

1
k+3 z).

The matrices Gs satisfy the di�erential equation

G−1
s dGs = FM (s

1
k+3 z)F−1

s (z)[dFs · F−1
M (s

1
k+3 z)− Fs(z)F

−1
M (s

1
k+3 z)dFMF

−1
M (s

1
k+3 z)s

1
k+3 ]

= FM (s
1

k+3 z)[Usdz + Vsdz̄ − UMdz − VMdz̄]F
−1
M (s

1
k+3 z)

= FM (s
1

k+3 z)[(Us − UM )dz + (Vs − VM )dz̄]F−1
M (s

1
k+3 z)

= FM (s
1

k+3 z)ΘF−1
M (s

1
k+3 z),

when written in the z coordinate, where

Θ(z) =

 0 0 (eϕs − eνs)/2
0 ∂z(ϕs − νs) 0
0 szk(e−ϕs − e−νs) 0

 dz +

 0 (eϕs − eνs)/2 0
0 0 sz̄k(e−ϕs − e−νs)
0 0 ∂z̄(ϕs − νs)

 dz̄.

where νs was de�ned in section 3.2.

Lemma 4.1. On B, we have ∥Θ∥∞ ≤ Cs
5
3 e−m(s) as s→ +∞.

Proof. We handle the various entries in Θ one-by-one. First of all, the Mean Value
Theorem implies for |z| < ϵ that

eϕs(z) − eνs(z) = ep(z)(ϕs(z)− νs(z))

for some p(z) between ϕs(z) and νs(z). A straightforward application of the Maxi-
mum Principle applied to equation (3.2) on B, together with a boundary estimate
from Lemma 3.4, then gives

ϕs(z) ≤
1

3
log(2s2ϵ2k) + o(1),

and the same is true for νs(z). Then Lemma 3.6 shows

eϕs(z) − eνs(z) = O(s
2
3 · s

1
6 e−m(s)) = O(s

5
6 e−m(s)).

Similarly,

e−ϕs(z) − e−νs(z) = −e−p(z)(ϕs(z)− νs(z))

for some p(z) between ϕs(z) and νs(z). By considering the change of coordinate

w = s
1

k+3 z, we see for all z ∈ C

νs(z) = − 1

k + 3
log(s2) + ν1(s

− 1
k+3 z).
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Now ν1 is bounded below, as in [DW15, Corollary 5.2], which implies

e−νs(z) = O(s
2

k+3 ).

Lemma 3.6 then shows

e−ϕs(z) − e−νs(z) = O(s
2

k+3
+ 1

6 e−m(s)).

The result then follows if we show a decay estimate holds for ∂z(ϕs − νs) and
∂z̄(ϕs − νs). Set ηs = ϕs − νs. We know from the computations in Lemma 3.6 that

∆hsηs = 2(eηs − 1)− 4
|qs|2

e3νs
(e−2ηs − 1).

Then |qs|2/e3νs is uniformly bounded, because |qs|2 = s2|z|2k and, using the same
notation as in Lemma 3.5 and the subsolution for ψs found in [DW15, Theorem 5.1],

3νs = 3ψs +
6

k + 3
log(s)

≥ log(2s
2k
k+3 |z|2k) + log(s

6
k+3 )

= log(2s2|z|2k) .

So

∥∆hsηs∥∞ ≤ Cs
1
6 e−m(s)

and, using the supersolution for νs in [DW15, Theorem 5.1],

∥∂z∂z̄ηs∥∞ ≤ ∥eνs∥∞∥∆hsηs∥∞ ≤ C(|qs|2 + a)
1
3 s

1
6 e−m(s) ≤ Cs

5
6 e−m(s).

The bounds on ∂z(ϕs − νs) and ∂z̄(ϕs − νs) then follow from the Schauder and Lp

estimates. □

Proposition 4.2. Let U be a neighborhood of the union of the Stokes rays on B.
For every γ > 0, there is s0 > 0 so that for all z ∈ B \ U and s > s0,

∥FM (s
1

k+3 z)ΘF−1
M (s

1
k+3 z)∥∞ ≤ γ.

Proof. Let FT denote the frame �eld of the standard �iµeica surface (see Example 2.1)
with cubic di�erential dx3 on the plane, which can be explicitly be written as

FT (x) = S exp

 2
2
3Re(x) 0 0

0 2
2
3Re(x/ω) 0

0 0 2
2
3Re(x/ω2)

 S−1

for ω = e2πi/3 and some choice of conjugating matrix S.
From [DW15, Lemma 6.4], we know that, outside a compact set K ⊂ C, we have

FM ( 3
k+3w

k+3
3 ) = (A + o(1))FT (

3
k+3w

k+3
3 ) as w → ∞, where A is a constant matrix

that only depends on the sector in the complement of the Stokes rays containing

w. Here we use 3
k+3w

k+3
3 because the result of [DW15] is stated in terms of natural
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coordinates for q0, instead of the coordinate, say w, centered at the zero of q0.
Therefore,∥∥∥∥FM ( 3

k + 3
w

k+3
3

)∥∥∥∥
∞

≤ C

∥∥∥∥FT ( 3

k + 3
w

k+3
3

)∥∥∥∥
∞

for all w ∈ C.

By [DW15, page 1768], we conclude that

∥FM (s
1

k+3 z)∥∞∥F−1
M (s

1
k+3 z)∥∞ ≤ Cec(θ)s

1
3 ϵ

k+3
3 ,

where c(θ) ≤ 2
2
3

√
3 and achieves this maximum value when θ corresponds to a Stokes

direction. In particular, when z ∈ B\U , there is α > 0 such that c(θ) ≤ 2
2
3

√
3−α. In

the de�nition of m(s), we may choose both δ su�ciently close to 1 and s su�ciently
large so that

s
5
3 ec(θ)s

1
3 ϵ

k+3
3 e−m(s) ≤ e−βs

1
3

for some β > 0. Therefore, by Lemma 4.1,

∥FM (s
1

k+3 z)ΘF−1
M (s

1
k+3 z)∥∞ ≤ Ce−βs

1
3 ≤ γ

for s su�ciently large, independently of z ∈ B \ U . □

Corollary 4.3. There exists s0 > 0 such that for all s > s0 and z ∈ B \U , we have

Gs(z) = Id + o(Id) as s → +∞.

Proof. Let z = teiθ ∈ B \ U . Then by Lemma B.2 in [DW15] applied to B(t) =

FM (s
1

k+3 teiθ)Θ(t)F−1
M (s

1
k+3 teiθ) with t ∈ [0, ϵ] and Proposition 4.2, we have

∥Gs(teiθ)− Id∥∞ ≤ Cγ,

which can be made arbitrarily small as s→ +∞. □

In particular, this implies that for all z ∈ B \ U ,

Fs(z) = Gs(z)FM (s
1

k+3 z) = (Id + o(Id))FM (s
1

k+3 z) as s→ +∞.

Combining this with the fact that FM (s
1

k+3 z) = (A+ o(Id))FT(s
1

k+3 z), where A only
depends on the sector in the complement of the Stokes line that contains z, we obtain

Corollary 4.4. For every z ∈ B inside the ith sector in the complement of the Stokes
rays,

Fs(z) · F−1
T (s

1
k+3 z)

s→+∞−→ Ai .

Here, of course, we have adapted our choice of U to our choice of z.

Corollary 4.5. Let [θ0, θ1] contain one Stokes direction in its interior. Then

A−1
0 A1 = SUS−1,

where U is one of the unipotents introduced in [DW15].

Proof. The matrices Ai are de�ned as the limit of FM (s
1

k+3 eiθi)F−1
T (s

1
k+3 eiθi) as

s→ ∞. Thus the result follows from [DW15, Lemma 6.5]. □
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Theorem 4.6 (holonomy along arcs). Let γ(t) = ϵeit with t ∈ [θ0, θ1] as in Corollary

4.5. Consider Gt(s) = Fs(γ(t))F
−1
T (s

1
k+3γ(t)). Then

lim
s→+∞

G−1
θ0

(s)Gθ1(s) = SUS−1,

where U is the same unipotent as in Corollary 4.5.

Proof. This follows immediately from Corollaries 4.4 and 4.5 because

Gθ0(s) = Fs(ϵe
iθ0)F−1

T (s
1

k+3 ϵeiθ0) → A0,

Gθ1(s) = Fs(ϵe
iθ1)F−1

T (s
1

k+3 ϵeiθ1) → A1,

and A−1
0 A1 = SUS−1. □

We remark that when the interval [θ0, θ1] contains more than one Stokes direction
we can still apply Corollary 4.5 and Theorem 4.6 after splitting the interval [θ0, θ1]
into subintervals containing only one Stokes direction and thus satisfying the assump-
tions of Corollary 4.5. Because the holonomy is multiplicative along concatenation
of paths, we will have

lim
s→+∞

G−1
θ0

(s)Gθ1(s) = SUS−1,

where U is now a product of unipotents depending on the Stokes directions the arc
crosses.

5. Asymptotic holonomy

We want to compute the asymptotic holonomy of the �at connection ∇s on the

rank-3 bundle E = O⊕ TCΣ along a |q0|
2
3 -geodesic path that may cross some of the

zeros of the cubic di�erential q0. We say such a geodesic path γ is regular in that
each segment away from the zeros of q0 are

• not in the directions of the walls of a Weyl chamber, so that Re(γ∗ϕi) ̸=
Re(γ∗ϕj) for i ̸= j. Here ϕi is a root of p(λ) = λ3 − q0.

• not in the Stokes directions.

We later remove these hypotheses.
It is convenient to work in the universal cover of S. Equip S with the conformal

hyperbolic metric and identify S̃ with the strip model of the hyperbolic plane

H2 = {w = µ+ iν ∈ C : |µ| < π/2}

with metric gH2 = dµ2+dν2

cos2(µ)
. The vertical line µ = 0 with arc-length parameter ν is a

geodesic; so a hyperbolic deck transformation can be represented, up to conjugation,
by the transformation T (w) = w + iL, where L is the translation length.

Remark 5.1. We want to use this model because it gives a way of de�ning a frame on
E which we can use to compute parallel transport. The bundle E lifts to a bundle
Ẽ over H2 which we now trivialize using the global frame F = {1, ∂w, ∂w̄}. This
frame is not parallel with respect to ∇s. However, because it is globally de�ned, we
can de�ne the holonomy of ∇̃s along an arc as a comparison between the terminal
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parallel transport of a frame in the �xed basis and the frame at the terminal point.
Given [γ] ∈ π1(S), we can assume that the hyperbolic isometry corresponding to
[γ] is Tγ(w) = w + iL for some L ∈ R. Fix w0 ∈ H2 and let w1 = Tγ(w0). Note

that F(w0) = T ∗
γF(w1). Let cγ(t) be the |q0|

2
3 -geodesic connecting w0 and w1 with

t ∈ [0, 1]. If we have a matrix representation M(cγ(t)) of the parallel transport
along cγ(t) with respect to the frame F, then the matrix M(cγ(1)) represents the
holonomy of the �at connection between the �nal and initial points as their frames
are identi�ed in the quotient.

Remark 5.2. We can assume that w0 and w1 are not zeros of q0, so that the geodesic
path cγ starts and ends with a segment not containing any zeros.

The path cγ will in general cross some of the zeros p1, . . . , pℓ of the cubic di�erential
q0 with multiplicities k1, . . . , kℓ. In fact, we write cγ as the union of c1, . . . , cℓ, where

each ci is the straight line path in the �at coordinates for |q0|
2
3 from pi to pi−1. Each

ci does not intersect any zeros of q0 except at its endpoints. We �x ϵ > 0 and identify
a neighborhood Ni of each zero and a conformal coordinate z so that q0 = zkidz3 on

Ni and the |q0|
2
3 -radius of Ni is ϵ. Note for ϵ small the closures Ni do not intersect.

We modify cγ to form a new path c̃γ by deleting each cγ ∩Ni and replacing it with
an arc βi in ∂Ni so that c̃γ is continuous and homotopic to the original geodesic.

Now cγ \∪iNi consists of a number of line segments c̃i ⊂ ci in the �at q0-coordinates.

Divide each line segment c̃i between Ni and Ni+1 into two segments δ̃i and α̃i−1, so
that each Ni has an incoming line segment α̃i and an outgoing one δ̃i.

Figure 1. De�nition of the subpaths.

In total, c̃γ is the concatenation of α̃ℓ, βℓ, δ̃ℓ, . . . , α̃1, β1, δ̃1. The basepoint is p =

α̃ℓ ∩ δ̃1. We also denote by αi and δi the prolongments of α̃i and δ̃i to their forward
and backward zero respectively. Since c̃γ and cγ are homotopic, the holonomies along
these paths are the same. Then

Hols(c̃γ) = Hols(δ̃1)Hols(β1)Hols(α̃1) · · ·Hols(δ̃ℓ)Hols(βℓ)Hols(α̃ℓ).
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We want to �nd estimates for each factor and arrive at something of the form

Hols(c̃γ) = A(s) + E(s), ∥E(s)∥ = o(∥A(s)∥)

with A(s) explicit and depending only on q0 and on the geodesic path cγ .

Remark 5.3. Let z = z(w) be a conformal change of coordinates. For instance, let z
be a natural coordinate for qs. The coordinate z induces a new frame G = {1, ∂z, ∂z̄}.
There is a diagonal matrix d(z) depending on the derivatives of z so that F = G d(z).
Moreover, if z1 and z2 are two natural coordinates at a point, then z1 and z2 di�er by
a translation and a multiplication by a third root of unity. If we choose the natural
coordinates so that they induce the same frame on the overlaps, we can multiply the
matrices representing the parallel transport along consecutive arcs.

Remark 5.4. If (U, z1) and (U, z2) are two natural coordinate charts that cover a
path γ and overlap at a point a, we note that z1 and z2 induce the same frame at a
if and only if the path γ makes the same angle with the positive horizontal axis, as
seen in the coordinates z1 and z2.

Let a, a′ ∈ H2 and denote by Ta,a′ the parallel transport from a to a′ for the lift

∇̃s of the �at connection. Assume a and a′ are not zeros of q0 and are in the same
natural coordinate z . Let G(a) = {1, ∂z, ∂z̄} be the standard frame induced by z.
The frame G is de�ned at a′ as well; so we can �nd a matrix Ψs(a

′) such that

Ta,a′(G(a))Ψs(a
′) = G(a′).

Let z(t) be a path connecting a and a′. The parallel transport condition is equivalent
to Ψs(z(t)) being a solution of the initial value problem{

Ψs(z(0)) = Id,
Ψ−1
s dΨs = Usdz + Vsdz̄,

where Us and Vs are de�ned in Equation (4.1). The matrix representing the parallel

transport Ta,a′ : Ẽa → Ẽa′ with respect to the frames G(a) and G(a′) is then Ψs(a
′)−1.

In what follows, instead of solving the initial value problem above, we compare
Ψs with the solution ΨT of the initial value problem{

ΨT (z(0)) = Id,
Ψ−1
T dΨT = UTdz + VTdz̄,

where UT and VT are the matrices appearing in the structure equations for the a�ne
sphere over C with constant cubic di�erential dz3. We know ([Lof07]) that

ΨT (|w|eiθ) = S exp(|z|D(θ))S−1,

where

D(θ) =

 2
2
3 cos θ 0 0

0 2
2
3 cos(θ − 2π/3) 0

0 0 2
2
3 cos(θ − 4π/3)

 . (5.1)

and S is the conjugating matrix that appeared e.g. in Proposition 4.2.
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Remark 5.5. Note thatΨs solves the same ODE as the frame �eld Fs of the associated
a�ne sphere. They di�er by the value at the initial point.

The �rst author in [Lof07] considered the case of geodesic paths which do not
hit any zeros and determined the asymptotic behavior of the eigenvalues along such
paths. We would like to use Proposition 3 of [Lof07], but unfortunately the published
statement must be modi�ed to Proposition 5.6 below, as there is a gap in the proof.
The �nal paragraph of the proof in [Lof07] is unsupported. The main theorem of
[Lof07] is still true, as follows from the results presented here. The main additional
technique needed, which was available at the writing of [Lof07], is the fact that the
largest eigenvalue of the holonomy along a path (and the reverse path) is enough to
determine all the eigenvalues in SL(3,R). The �rst author regrets the error.

Thus we have the following proposition. We note that Collier-Li and Mochizuki
have proved stronger estimates in a more general setting in the case in which no two
eigenvalues are equal [CL17, Moc16].

Proposition 5.6 (Holonomy along rays). The parallel transports along the segments

α̃i and δ̃i with respect to the frame G induced by a natural coordinate z for qs are
given by the matrices

Hols(α̃i) = Sdiag(es
1
3 µ̃i1 , es

1
3 µ̃i2 , es

1
3 µ̃i3)S−1 + o(es

1
3 µ̃i),

Hols(δ̃i) = Sdiag(es
1
3 λ̃i1 , es

1
3 λ̃i2 , es

1
3 λ̃i3)S−1 + o(es

1
3 λ̃i),

as s→ +∞, where

µ̃ij = −2
2
3Re

(�
α̃i

ϕj

)
, λ̃ij = −2

2
3Re

(�
δ̃i

ϕj

)
,

ϕj are the roots of λ3 − q0, and

µ̃i = max{µ̃i1, µ̃i2, µ̃i3}, λ̃i = max{λ̃i1, λ̃i2, λ̃i3}.
Remark 5.7. The error bounds in the previous proposition can be improved to

O(es
1
3 (µ̃i−C)) for C a positive constant depending the q0-distance of the path to

the zero set of q0, by using Lemma 3.4 instead of the coarser bounds used in [Lof07].

Note that if we parametrize the path δ̃i by δ̃i(t) = teiθi with t ∈ [ϵ′, Li/2] for Li the

q0-length of the geodesic segment between successive zeros of q0 and ϵ′ = 3
k+3ϵ

k+3
3 ,

then

Re

(�
δ̃i

ϕj

)
= Re

(� Li/2

ϵ′
δ̃∗i ϕj

)
= (Li/2− ϵ′) cos(θi − 2(j − 1)π/3).

Hence the position of the largest eigenvalue of the diagonal matrix depends only on
the angle that δ̃i makes with the positive x-axis in the chosen natural coordinates.

Remark 5.8. There is a relation between the diagonal matrices in Proposition 5.6
and ΨT . Precisely, if w = reiθ and γ(t) = teiθ with t ∈ [0, r], then

ΨT (w) = Sdiag(e−µ1 , e−µ2 , e−µ3)S−1 =: SD(γ)S−1,
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where

µj = −2
2
3Re

(�
γ
ϕj

)
,

and we choose the same conjugating matrix S as in Section 4.2.

We now compute the parallel transport along the circular arcs βi. In the z-
coordinate centered at a zero so that qs = szkidz3, the path βi is parametrized by

βi(θ) = ϵeiθ with θ ∈ [θi, θi+1]. Let w = 3
k+3ω

jis
1
3 z

k+3
3 be a natural coordinate for

qs. Choose ji ∈ {1, 2, 3} so that the angle the incoming path αi makes with the
positive x-axis coincides with the angle we saw in the previous natural coordinate
chart.

Proposition 5.9 (Holonomy along arcs). Assume θi and θi+1 do not correspond to
Stokes directions. Then the holonomy along βi satis�es

Hols(βi) = F−1
T (βi(θi+1))(SU(θi, θi+1)

−1S−1 + o(Id))FT (βi(θi)) as s→ +∞

with respect to the frame induced by the natural coordinate. Here U(θi, θi+1) is a
product of unipotent matrices depending on which Stokes rays the path βi crosses.

Proof. Recall that Hols(βi) is the inverse of the matrix Ψs which solves the initial
value problem {

Ψ−1
s dΨs = Usdz + Vsdz̄,

Ψ(βi(θi)) = Id.

The frame �eld Fs(z) is a solution of the same ODE with di�erent initial conditions,
so

Ψs(z) = Fs(ϵe
iθi)−1Fs(z)

is the solution of the above initial value problem. Now, by Corollaries 4.4 and 4.5
and the subsequent remark,

lim
s→+∞

FT (s
1

k+3 ϵeiθi)F−1
s (ϵeiθi)Fs(ϵe

iθi+1)F−1
T (s

1
k+3 ϵeiθi+1) = A−1

i Ai+1 = SUS−1,

where U = U(θi, θi+1) is as in the statement. Hence

Ψs(ϵe
iθi+1) = Fs(ϵe

iθi)−1Fs(ϵe
iθi+1) = F−1

T (s
1

k+3 ϵeiθi)(SUS−1+o(1))FT (s
1

k+3 ϵeiθi+1).

Because Hols = Ψ−1
s the claim follows. □

Combining the holonomy of each subpath (Proposition 5.9 and Proposition 5.6),
we obtain

Hols(c̃γ) =
ℓ∏
i=1

(
SD(δ̃i)

−1S−1 + o(es
1
3 λ̃i)

)
· (5.2)

SD(δi \ δ̃i)−1S−1(SU(θi, θi+1)
−1S−1 + o(Id))SD(αi \ α̃i)−1S−1 ·(

SD(α̃i)
−1S−1 + o(es

1
3 µ̃i)

)
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with respect to a frame induced by natural coordinates. Here es
1
3 λ̃i and es

1
3 µ̃i are

the largest eigenvalues of D(δ̃i)
−1 and D(α̃i)

−1 respectively.

Remark 5.10. The holonomy with respect to the global frame F will only di�er by
multiplication on the left and on the right by the change of frame between the global
coordinate on H2 and the natural coordinate for qs. These, however, only grow
polynomially in s, so they do not in�uence the estimates that follow.

We can then write
Hol(c̃γ) = A(s) + E(s)

by setting

A(s) =
ℓ∏
i=1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1. (5.3)

It is worth emphasizing two aspects of the de�nition above of A(s). First, the
de�nition makes no reference to the radius ϵ of the balls Bi cut out around the
zeroes. Moreover, the formula for A(s) allows for an extension of the formula for
A(s), �rst stated for the modi�ed path c̃γ to the q0-geodesic cγ . These points will be
essential for computing �nal holonomy formulas, e.g. in Theorem A, which do not
depend on ϵ or other constructions around the zeroes.

Lemma 5.11. Along any regular geodesic, the highest order term in (5.3) is

A(s) =
ℓ∏
i=1

cji,kie
s
1
3 (µiki

+λiji
)
SEji,ki(Id + o(Id))S−1, (5.4)

where Ej,k denotes the elementary matrix with 1 in position (j, k) and cji,ki is a non-

zero constant. Here µiki = µi and λiji = λi are s−
1
3 times the logarithms of the largest

eigenvalues of D(αi)
−1 and D(δi)

−1 respectively.

Proof. This is a consequence of Proposition 6.3 below, whose precise statement we
defer until later, as it depends on terminology developed in Section 6. This proposi-
tion shows that the element in position (ji, ki) of U(θi, θi+1)

−1 is non-zero. We then
factor each term in the triple product in Equation (5.3). □

Remark 5.12. Two consecutive terms in the above product have the property that
Eji,ki · Eji+1,ki+1

= Eji,ki+1
(since ki = ji+1) because the position of the highest

eigenvalue only depends on the angle the path makes with the x-axis in a natural
coordinate and our choices of coordinates keep this angle constant when the coor-
dinate patches cover the same straight path. Note, indeed, that αi and δi+1 (with
indices intended modulo ℓ) are part of the same straight line segment ci+1.

We also give an argument to address the special case in which the the angle of a
geodesic segment is in a Stokes direction, extending Lemma 5.11 to the case when
Proposition 5.9 does not hold. De�ne c̃i = δ̃i ∪ α̃i−1 to be the geodesic segment in
c̃γ corresponding to this geodesic arc. Then the estimates of [DW15] fail to hold at
its endpoints c̃i ∩ βi and c̃i ∩ βi−1. We will modify c̃i, βi, βi−1 slightly by moving the
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Figure 2. Path modi�ed by η.

endpoints. Recall ci = δi ∪ αi−1 is the corresponding geodesic segment between the
zeros in γ.

We rewrite (5.3) as

A(s) = SD(αℓ)

[
ℓ∏
i=1

D(ci)
−1U(θi, θi+1)

−1

]
D(αℓ)

−1S−1. (5.5)

Proposition 5.13. Lemma 5.11 holds for homotopy classes of free loops for which
the �at geodesic's saddle connection segments are all either regular or travel along
Stokes rays: in other words, if no saddle connection is contained in a wall of a Weyl
chamber.

Proof. It su�ces to address the case of a single saddle connection along a Stokes ray.
Each endpoint of the c̃i is in the �at coordinate ϵeiθ for θ a Stokes direction. We
modify the angle by ±η for a small positive constant η to avoid these directions. So
de�ne βηi to be the new arc formed by replacing the endpoint ϵeiθ by ϵei(θ±η), and
similarly de�ne βηi−1. De�ne c̃

η
i to be the geodesic path between these endpoints of

βηi and βηi−1. By choosing η small enough we can ensure the straight line homotopy

between c̃i and c̃
η
i does not cross any other zeros of the cubic di�erential.

In certain cases we also need to specify the signs ±η. At each zero along the
geodesic γ, the incoming and outgoing rays must make an angle of ≥ π with respect
the �at metric, when measured in clockwise and counterclockwise directions around
the zero. Proposition 6.3 below requires that each arc begins and ends away from
a Stokes ray and must subtend an angle > π (and so at least 3 Stokes rays will be
transversed by the arc). For each endpoint of c̃i choose ±η so that the arcs βηi and
βηi−1 both subtend an angle > π. This is possible since the total angle around a zero
of order k is 2π+2πk/3. Note that in some cases we are free to choose either +η or
−η; then there is a di�erent holonomy matrix along the arc depending on the sign.
Lemma 6.5 below shows that this matrix leaves the relevant entries unchanged, in
terms of the leading order terms.

De�ne cηi to be the union of c̃ηi and the two radial paths from the zeros pi−1, pi
to the endpoints of c̃ηi . See Figure 2. Now by Proposition 5.6 and Remark 5.8, the
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contribution for cηi in (5.5) is given by

Sdiag(es
1
3 νi,η1 , es

1
3 νi,η2 , es

1
3 νi,η3 )S−1 + o(es

1
3 νi,η)

where

νi,ηj = −2
2
3Re

(�
cηi

ϕj

)
= −2

2
3Re

(�
ci

ϕj

)
= νij = µi−1

j + λij ,

since ϕj is closed and cηi is homotopic to ci. This shows as above that the conclusion
of Lemma 5.11 holds.

Note we call the entire modi�ed path c̃η. It is obtained from c̃ by replacing, for
each appropriate i, c̃i by c̃

η
i and βi by β

η
i , etc. □

6. No branching

In this section we exploit the geometry of the convex regular polygon to which a
hyperbolic a�ne sphere with cubic di�erential zkdz3 project in order to analyze the
non-zero entries of the unipotent matrices U(θi, θi+1)

−1 of the previous section. The
key result, Proposition 6.3, asserts that the unipotents in the holonomy formula (5.3)
� that connect the holonomy of segments that come into a zero with the holonomy
of segments that leave a zero � have an entry that allows the largest eigenvalues of
those holonomies to multiply. This is crucial for the form of the formula (5.3).

Proposition 6.3 below will be used later to show that the induced map from the
Riemann surface to the real building given by the asymptotic cone is locally injective
near the zeros of the cubic di�erential, and thus can have no branching behavior.
The corresponding phenomenon in the real tree case is called �folding,� which does
occur in some situations (e.g. [DDW00], [Wol07]).

Choose a local coordinate w on C \ {0} so that q = dw3. Consider f the cor-
responding embedding of the Riemann surface into R3 whose image is a hyperbolic
a�ne sphere with Pick di�erential q, and consider the frame F = (f, fw, fw̄) of the
a�ne sphere. Let fT , FT be the corresponding embedding and frame for a stan-
dard �iµeica surface (as described in Example 2.1). The osculation map G(z) =
F (z)F−1

T (z) then has limits SL−S
−1, SL0S

−1, SL+S
−1 along rays γ(t) = teiθ of an-

gle θ for θ ∈ (−π/2,−π/6), (−π/6, π/6), (π/6, π/2) respectively ([DW15]). These
matrices determine the construction of the convex polygon P onto which the a�ne
sphere f(C) projects. Let us summarize the main step of the contruction. We label
the vertices of P as r0, r1, . . . , rn−1 ∈ RP2 with indices in Zn. Let rjrj+1 denote the
line connecting rj and rj+1, and let ej denote the edge of P from rj to rj+1. Three
successive vertices rj−1, rj , rj+1 form an inscribed triangle in P around the vertex
rj . Also de�ne points qj = rj−1rj ∩ rjrj+1rj+2 so that rj , qj , rj+1 are the vertices of
a circumscribed triangle Tj of P centered around the edge ej . See Figure 3.

Proposition 6.1. In the above setting the following holds:

(1) rj ∈ riri+1 if and only if j = i or j = i+ 1.
(2) qj ∈ riri+1 if and only if j = i− 1 or j = i+ 1.
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Figure 3. Inscribed and circumscribed triangles. Here each in-
scribed triangle includes a dotted edge and each circumscribed tri-
angle contains one edge of the polygon and extends the immediate
neighbors of that edge to meet a point qj exterior to the polygon.

Proof. Statement (1) is obvious from the convexity of P .
To prove statement (2), note we need only prove the "only if" part. So assume

qj ∈ riri+1. As qi, ri, ri+1 are the vertices of a triangle, we see j ̸= i. To �nd a
contradiction, assume j < i−1 or j > i+1 and that qj ∈ riri+1. Recall qj = rj−1rj∩
rj+1rj+2. By convexity, Tj ⊃ P . Since P is a convex polygon, it is the intersection
of n closed half-planes Hk, each bounded by rkrk+1 ⊃ ek. Since qj ∈ riri+1, we see
P is a subset of the smaller triangle Tj ∩ Hi, which cannot contain both ej−1 and
ej+1. This is a contradiction. □

The columns of the matrices L−, L+ project to the vertices of a circumscribed
triangle of P , whereas the columns of L0 project to the vertices of an inscribed trian-
gle. Moreover, the middle vertex of an inscribed triangle is always obtained as L0ei
where Sei is the eigenvector corresponding to the highest eigenvalue of FT (z). The
unipotent matrices arise then by taking the products L−1

− L0 and similar. We deter-
mine these unipotent matrices explicitly in the case P is regular. Choose coordinates
in RP2 so that

rj =

[
cos

2πj

n
, sin

2πj

n
, 1

]t
.
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We then compute that

q0 =

[
1

2
+

1

2
sec

2π

n
,
1

2
tan

2π

n
, 1

]t
,

while qj can be computed as rjq0, where we view rj , q0 ∈ C. In other words, in the

natural inhomogeneous coordinate chart {[x, y, 1]t} in RP2, qj is found by rotating
q0 by an angle of 2πj/n.

The paper [DW15] provides a scheme of determining the projective transforma-
tions of triangles (across Stokes lines) to form the polygon, as well as the order of the
largest eigenvalue corresponding to each vertex. See the tables on pages 1771-1772
in [DW15].

7→

 r−1

r0
r1

 7→

 q0
r0
r1

 7→

 r2
r0
r1

 7→

 r2
q1
r1

 7→

 r2
r3
r1

 7→

 r2
r3
q2

 7→

m
ℓ
s

∣∣∣∣∣ s
ℓ
m

∣∣∣∣∣ s
m
ℓ

∣∣∣∣∣ m
s
ℓ

∣∣∣∣∣ ℓ
s
m

∣∣∣∣∣ ℓ
m
s

∣∣∣∣∣ m
ℓ
s

−π
6 0 π

6
π
3

π
2

2π
3

5π
6 π 7π

6
4π
3

3π
2

5π
3

11π
6

(6.1)

Here each 7→ refers to crossing a Stokes line, which in standard �at coordinates are
at angles −π

6 ,
π
6 ,

π
2 ,

5π
6 , . . . , while each vertical line refers to crossing a wall of a Weyl

chamber, at angles 0, π3 ,
2π
3 , π, . . . . The s,m, ℓ refer to the smallest, medium and

largest eigenvalue respectively of the frame FT (z).
There is of course more than one projective transformation which takes a triangle

to a triangle, but the ones we are interested in are determined by the conditions that
they are unipotent and that they �x the vector lifts to R3 of the relevant rj 's �xed
by the projective transformation. The next proposition shows, at least in the regular
case, that these vector lifts of rj , qj can be done globally, and that the relevant linear
transformations corresponding to crossing several Stokes lines near a zero can be
computed in terms of simple changes of bases (in contrast to a more complicated
scheme of multiplying out several transformations).

Proposition 6.2. Let P be a regular convex polygon as above. There are vector lifts
r⃗j , q⃗j ∈ R3 of the points rj , qj ∈ RP2 for which the linear transformations lifting the
corresponding triangle transformations are all unipotent. The choice of such a set of
lifts is unique up to a nonzero multiplicative constant.

Proof. We may easily check that

r⃗j =

(
cos

2πj

n
, sin

2πj

n
, 1

)t
and q⃗0 =

(
− cos

2π

n
− 1,− sin

2π

n
,−2 cos

2π

n

)t
satisfy the conditions, with q⃗j again being de�ned by rotating q⃗0 by an angle of
2πj/n. □
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It follows that the matrix U(θi, θi+1)
−1 represents the change of basis between

Bi = {v1, v2, v3} and Bi+1 = {w1, w2, w3} where vj and wj project to the vertices
of inscribed or circumscribed triangles of the regular polygon P . Therefore, if vki is
the vector corresponding to the highest eigenvalue of D(αi)

−1 and wji is the vector
corresponding to the highest eigenvalue of D(δi)

−1, the entry (ji, ki) of U(θi, θi+1)
−1

is nonzero if and only if vki has a component along wji in the basis Bi+1. It is
important to note, because of the orientations of the paths near a given zero pi, that
the highest eigenvalue of D(αi)

−1 is the highest eigenvalue of FT , while the highest
eigenvalue of D(δi)

−1 is the lowest eigenvalue of FT .
As promised above in Lemma 5.11, we now prove

Proposition 6.3. Consider any convex polygon P . If the highest eigenvalue of
D(δi)

−1 is in position ji and the highest eigenvalue of D(αi)
−1 is in position ki, then

the (ji, ki)-entry of U(θi, θi+1)
−1 is not zero.

Proof. Refer to Figure 3 and Equation 6.1. Because the paths δi and αi are part

of a geodesic for the �at metric |q0|
2
3 , the angle between δi and αi is at least π

(measured in the singular �at metric) at either side. Since Stokes rays are π/3
apart, the interval [θi, θi+1] contains at least three Stokes directions. Crossing a
Stokes direction corresponds to ��ipping� the initial triangle (i.e., moving to the
next triangle in the sequence displayed in (6.1), accomplished geometrically between
triangles that share an edge). We assume that the initial basis {v1, v2, v3} projects
to a circumscribed triangle and thus is of the form {r⃗j , q⃗j , r⃗j+1}. In this case the
eigenvector corresponding to the highest eigenvalue can project to either rj or rj+1:
it projects to rj if the direction θi is in the �rst half of the interval determined by
two Stokes directions and to rj+1 otherwise. We will explain the argument in detail
when the highest eigenvalue is in the direction of r⃗j ; the case of r⃗j+1 or when the
initial basis projects to an inscribed triangle are analogous and left to the reader. If
the direction of the highest eigenvalue is r⃗j , then after at least three �ips in counter-
clockwise direction, by Proposition 6.1, the point rj does not lie in any of the lines
generated by the �nal triangle. Hence all entries in the �rst column of U(θi, θi+1)

−1

are non-zero. If we move in clockwise direction instead, then after at least �ve �ips
the point ri never lies on any of the lines generated by the vertices of the �nal triangle
and the claim follows as before. Thus, we only need to check what happens when
only three or four Stokes directions are contained in the interval [θi, θi+1].

If the �nal triangle is obtained after four �ips, then it is circumscribed and the
vertex corresponding to the highest eigenvalue of D(δi)

−1 is qj−2, i.e. the one vertex
outside the polygon. This is because, referencing Equation 6.1 again, we see both
that the highest eigenvalue of D(δi)

−1 is the lowest eigenvalue of FT (z) and that
the corresponding eigenvector always projects to the vertex exterior to the polygon.
Because rj ∈ rj−1qj−2 (see for example Figure 3), the coordinates of r⃗j with respect
the �nal basis {r⃗j−1, q⃗j−2, r⃗j−2} have a nonzero component along q⃗j−2, hence the
corresponding entry in U(θi, θi+1)

−1 is nonzero. Finally, if the �nal basis is obtained
after only three �ips, it is easy to see that the highest eigenvalues of D(αi+1)

−1 and
D(δi)

−1 are always in the same position: this follows again by a careful reading of
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equation (6.1). (We add some details. Recall that we chose the initial point to be in
the �rst half of the region between Stokes lines, i.e. in the region between the Stokes
line and the Weyl chamber. For example, we are focused on a point in the region
between 3π

2 and 5π
3 ; after three �ips, this point lands in the region between π

2 and
2π
3 . By inspection of the corresponding bases in (6.1), we see that the initial and
terminal basis element, r2, corresponding to the highest eigenvalue is unchanged, so
the corresponding entry in the unipotent is non-vanishing.) In general the chain in
Equation 6.1 then shows that the triple (rj , qj , rj+1) is sent to (rj , rj−1, rj−2), so the
elements on the diagonal are all non-zero.

Finally, we note that in the argument above, all the conditions checked involve
only incidences of the given points and lines in RP2, and not the choices of vector
lifts in R3. Thus the proposition holds not only for regular polygons, but for all
convex polygons. □

Below in Proposition 6.8, we extend Proposition 6.3 to determine the signs of all
the relevant entries. These signs will be useful in handling the special cases in which
the angle of a geodesic segment in the �at metric is at a Stokes line or wall of a Weyl
chamber.

We recall Cramer's Rule from linear algebra:

Lemma 6.4. If v is a vector in Rm, and w1, . . . , wm is a basis, then v =
∑

α λ
αwα,

where

λα =
det(w1, . . . , wα−1, v, wα+1, . . . , wm)

det(w1, . . . , wm)
=:

Dv

D
.

Assume for now that the polygon is regular, so that all the rj , qj lift to vectors
r⃗j , q⃗j as in Proposition 6.2. It is useful to set up some notation for the following
results. We let v = r⃗k be the eigenvector with the largest eigenvalue of D(α̃i)

−1 for
the incoming ray α̃i. The frame for the outgoing ray is {wα}, and w ∈ {wα} is the

one with the largest eigenvalue for D(δ̃i)
−1. We can write {wα} \ {w} = {r⃗j , r⃗j+1}

for some j.

Lemma 6.5. Dv is unchanged if the incoming or outgoing angles vary by crossing
a single Stokes line.

Proof. Refer to equation (6.1). If the incoming angle moves across a single Stokes
ray, the largest eigenvector v of FT is unchanged: recall that in equation (6.1), each
Stokes ray, denoted by 7→, bisects a Weyl chamber region, whose boundaries are
denoted by vertical lines. If the outgoing angle is changed by crossing a single Stokes
line, then the smallest eigenvector w of FT is the only vector to change in the frame
{wi}. Upon replacing w with v, we see Dv (and indeed the underlying matrix) is
unchanged. □

Lemma 6.6. Dv = det(r⃗j , r⃗j+1, r⃗k) for some j, k ∈ Z/n. Dv > 0 if k ̸= j, j+1, and
is 0 otherwise.

Proof. From (6.1) we see v, as the eigenvector of the largest eigenvalue for an incom-
ing ray, is of the form v = r⃗k for some k. Similarly, upon replacing w ∈ {wi} with v,
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we see, upon perhaps performing a cyclic permutation, that Dv = det(r⃗j , r⃗j+1, r⃗k)
for some i.

If k = j, j + 1, it is obvious that Dv = 0. On the other hand, if k ̸= j, j + 1,
then rj , rj+1, rk form a counterclockwise-oriented triangle in the plane. By Propo-
sition 6.2, r⃗j = (rj , 1) ∈ R3. So this orientation of the triangle implies Dv =
det(r⃗j , r⃗j+1, r⃗k) > 0. □

Lemma 6.7. D > 0.

Proof. In the case of an inscribed triangle, D = det(r⃗j , r⃗j+1, r⃗j+2) for some j. Thus as
in the previous lemma, D > 0. To pass from an inscribed to a circumscribed triangle,
the frame is changed by a unipotent transformation, which leaves the determinant
D unchanged. □

Proposition 6.8. Let P be any convex polygon. Given the notation of Proposition
6.3, the (j, k) entry of U(θi, θi+1)

−1 is positive.

Proof. Proposition 6.3 shows the relevant entry is nonzero. We have checked its
positivity for the particular case of regular polygons. Then the general result follows
by continuity and the connectedness of the moduli space of convex n-gons. □

7. Main Theorem - asymptotics of singular values

In this section, we prove the asymptotics of singular values of the holonomy as-
sociated to geodesic paths. The singular values naturally give the distance in the
symmetric space SL(3,R)/SO(3). First, in Theorem 7.1, we focus on the case of reg-
ular geodesic paths (allowing Stokes directions). In these cases, we have shown there
is always a unique largest element in each diagonal matrix D(ci)

−1 in (5.5), while
the relevant elements linking them together in U(θi, θi+1)

−1 are positive. Later, in
Theorem 7.5, we remove the remaining restrictions to allow any geodesic path with-
out any restriction on the angles of the segments. Finally in Corollary 7.6 we extend
the analysis beyond just singular values to include eigenvalues.

Theorem 7.1. Using the same notation as in Lemma 5.11, for every regular path
c̃γ, and indeed for every path none of whose segments is contained in a wall of a Weyl
chamber, we have

lim
s→+∞

log ∥Hols(c̃γ)∥
s

1
3

=

ℓ∑
i=1

νi,

where ∥ · ∥ is any submultiplicative matrix norm and νi is the largest of the νij =

−2
2
3Re

�
ci
ϕj.

Proof. Recall from Section 5 that Hols(c̃γ) = A(s) + E(s). Assume for now that
∥E(s)∥ = o(∥A(s)∥); we return to check this assumption after using it to conclude
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the theorem. Then

log ∥Hols(c̃γ)∥ = log ∥A(s) + E(s)∥

= log ∥A(s)∥+ log

∥∥∥∥ A(s)

∥A(s)∥
+

E(s)

∥A(s)∥

∥∥∥∥
= log

ℓ∏
i=1

e
s
1
3 (µiki

+λiji
)

∥∥∥∥∥
ℓ∏
i=1

cji,kiSEji,ki(Id + o(Id))S−1

∥∥∥∥∥
+ log

∥∥∥∥ A(s)

∥A(s)∥
+

E(s)

∥A(s)∥

∥∥∥∥ ,
where Eji,ki denotes the (ji, ki) elementary matrix. Now,

A(s)

∥A(s)∥
+

E(s)

∥A(s)∥
→ N, with ∥N∥ = 1, as

E(s)

∥A(s)∥
→ 0

and
ℓ∏
i=1

cji,kiSEji,ki(Id + o(Id))S−1 =M + o(Id), M = S

(
ℓ∏
i=1

cji,kiEji,ki

)
S−1 ̸= 0.

Hence,

lim
s→+∞

log ∥Hols(c̃γ)∥
s

1
3

= lim
s→+∞

[(
ℓ∑
i=1

µiki + λiji

)
+

log ∥M + o(Id)∥
s

1
3

+
1

s
1
3

log

∥∥∥∥ A(s)

∥A(s)∥
+

E(s)

∥A(s)∥

∥∥∥∥
]

=

ℓ∑
i=1

µiki + λiji =

ℓ∑
i=1

µi−1
ki−1

+ λiji =

ℓ∑
i=1

νi,

where as usual i− 1 is considered modulo ℓ.
We only need to check the condition on the error: ∥E(s)∥ = o(∥A(s)∥). For this

estimate we are going to use the L∞-norm ∥ · ∥∞. Note, however, that because all
matrix norms are equivalent the result holds for any matrix norm. Recall that E(s)
is equal to

ℓ∏
i=1

(
SD(δ̃i)

−1S−1 + o(es
1
3 λ̃i)

)
·

SD(δi \ δ̃i)−1S−1(SU(θi, θi+1)
−1S−1 + o(Id))SD(αi \ α̃i)−1S−1 ·(

SD(α̃i)
−1S−1 + o(es

1
3 µ̃i)

)
−

ℓ∏
i=1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1.
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Hence E(s) is a sum of terms in which at least one of the factors contains o(Id),

o(es
1
3 µ̃i), or o(es

1
3 λ̃i). For instance, in the case where o(Id) arises once, we will have

a term of the form

Em(s) =

m−1∏
i=1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1 ·

SD(δm)
−1S−1o(Id)SD(αm)

−1S−1 ·
ℓ∏

i=m+1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1

and so

∥Em(s)∥∞ ≤ C o(1)

ℓ∏
i=1

∥D(δi)
−1∥∞∥D(αi)

−1∥∞ ≤ C o(1)

ℓ∏
i=1

es
1
3 νi = o(∥A(s)∥∞).

In this case, of course, we combined diagonal matrices in a convenient way. Yet even
when the diagonal matrices do not simplify, we may obtain the same estimate. For
instance, consider

E′
m(s) =

m−1∏
i=1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1 ·

o(es
1
3 λ̃m)SD(δm \ δ̃m)−1U(θm, θm+1)

−1D(αm)
−1S−1

ℓ∏
i=m+1

SD(δi)
−1U(θi, θi+1)

−1D(αi)
−1S−1.

Then

∥E′
m(s)∥∞ ≤ C o(es

1
3 λ̃m)∥D(δm \ δ̃m)−1∥∞∥D(αm)

−1∥∞ ·
ℓ∏
i=1
i ̸=m

∥D(δi)
−1∥∞∥D(αi)

−1∥∞

= C o(es
1
3 λ̃m)

ℓ∏
i=1
i ̸=m

es
1
3 (µi+λi)∥D(δm \ δ̃m)−1∥∞∥D(αm)

−1∥∞

using Lemma 5.11, where, we recall that es
1
3 λm is the largest eigenvalue of D(δm)

−1.

This last expression will be o(∥A(s)∥∞) if we can show that o(es
1
3 λ̃m)∥D(δm\δ̃m)−1∥∞ =

o(es
1
3 λm). Note that ∥D(αm)

−1∥∞ = es
1
3 µm . Now, if δ̃m(t) = s

1
3 teiθm with t ∈
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[ϵ, Lm/2], then δm(t) = s
1
3 teiθm with t ∈ [0, Lm/2] and

D(δ̃m)
−1 = exp

s 1
3 (ϵ− Lm/2)

 cos(θm)
cos(θm − 2π

3 )
cos(θm − 4π

3 )

 ,

D(δm)
−1 = exp

−s
1
3Lm/2

 cos(θm)
cos(θm − 2π

3 )
cos(θm − 4π

3 )

 ,

D(δm \ δ̃m)−1 = exp

−s
1
3 ϵ

 cos(θm)
cos(θm − 2π

3 )
cos(θm − 4π

3 )

 .

So if the largest eigenvalue of D(δ̃m)
−1 is in position j, then

∥D(δ̃m)
−1∥∞ = es

1
3 (ϵ−Lm/2) cos(θm−(j−1)2π/3) = es

1
3 λ̃m ,

∥D(δm \ δ̃m)−1∥∞ = e−s
1
3 ϵ cos(θm−(j−1)2π/3),= es

1
3 (λm−λ̃m)

∥D(δm)
−1∥∞ = e−s

1
3 (Lm/2) cos(θm−(j−1)2π/3) = es

1
3 λm ,

Thus, o(es
1
3 λ̃m)∥D(δm \ δ̃m)−1∥∞ = o(es

1
3 λm), as required.

The remaining cases are analogous, involving smaller error terms. □

In particular, if we choose the submultiplicative matrix norm

∥M∥2 := σ1(M)

where σ1(M) denotes the highest singular value of M , in other words the highest

eigenvalue of
√
M tM , we obtain

Corollary 7.2. For every regular path cγ that is the concatenation of saddle con-
nections cℓ, . . . , c1 we have

lim
s→+∞

log(σ1(Hols(cγ)))

s
1
3

=
l∑

i=1

lim
s→+∞

log(σ1(Hols(ci)))

s
1
3

.

Proof. Because the paths cγ and c̃γ have the same holonomy, by de�nition of µiki and

λiji , Proposition 5.6 and the fact that the saddle connection ci is the concatenation

of δi and αi−1 (see Figure 1), we have

lim
s→+∞

log(σ1(Hols(ci)))

s
1
3

= µiki + λi−1
ji−1

= νi,

where the indices are to be intended modulo ℓ. Thus the result follows from Theorem
7.1 applied to the norm ∥ · ∥2. □

We can also deduce the asymptotics of the other singular values
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Corollary 7.3. Let σj denote the j-th largest singular value. Then

lim
s→+∞

log(σj(Hols(cγ)))

s
1
3

=
ℓ∑
i=1

lim
s→+∞

log(σj(Hols(ci)))

s
1
3

for j = 1, 2, 3.

Proof. We already know that the result holds for σ1(Hols(cγ)) by Corollary 7.2.
Because

log(σ3(Hols(cγ))) = − log(σ1(Hol
−1
s (cγ))) = log(σ1(Hols(c

−1
γ ))) ,

the statement is also true for σ3(Hols(cγ)) by applying the previous corollary to the
path c−1

γ . Moreover, since Hols(cγ) ∈ SL(3,R), we have

log(σ1(Hols(cγ))) + log(σ2(Hols(cγ))) + log(σ3(Hols(cγ))) = 0 ,

hence the result holds for σ2(Hols(cγ)) as well. □

We now give an argument extending the above results to the case of �at geodesics
that are not regular, in that they contain segments in the wall directions of a Weyl
chamber. We begin with the generic situation where each �at geodesic segment has
corresponding diagonal holonomy with a unique largest eigenvalue. In that case,
as above, we compute the largest asymptotic singular value and then reverse the
direction of the path to �nd the smallest. This determines the asymptotic eigenvalue
structure. In particular, the arguments above already su�ce to determine the largest
asymptotic singular value along any geodesic path in which each segment has a unique
largest eigenvalue. We summarize the discussion in the following proposition.

Proposition 7.4. Theorem 7.1 and Corollary 7.2 hold for �at geodesic paths all of
whose segments ci are such that each diagonal matrix D(ci)

−1 has a distinct largest
eigenvalue.

Now we address the remaining case where paths may contain segments so that at
least one D(ci)

−1 has two largest eigenvalues. In this case, Lemma 5.11 becomes

A(s) =
ℓ∏
i=1

e
s
1
3 (µiji

+λiki
)
S
(∑

α

cjiα ,kiαEjiα ,kiα

)
(Id + o(Id))S−1, (7.1)

where in each sum α ranges over one or two indices in {1, 2, 3}: one if there is a
unique largest eigenvalue of D(ci)

−1, and two if there are two largest eigenvalues.
Proposition 6.8 then shows that the coe�cients cjiα ,kiα are all positive, and thus
there are no cancellations. This is enough for the analysis above on submultiplicative
matrix norms and singular values to apply.

Thus we have proved

Theorem 7.5. For every geodesic path c̃γ, we have

lim
s→+∞

log ∥Hols(c̃γ)∥
s

1
3

=
ℓ∑
i=1

νi
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where ∥ · ∥ is any submultiplicative matrix norm.
In particular, if σj(Hols(cγ)) denotes the j-th largest singular value of the �at geodesic
cγ homotopic to c̃γ with saddle connections c1, . . . , cl, then

lim
s→+∞

log(σj(Hols(cγ)))

s
1
3

=
ℓ∑
i=1

lim
s→+∞

log(σj(Hols(ci)))

s
1
3

for j = 1, 2, 3.

Because Hols(cγ) is diagonalizable with positive eigenvalues, Theorem 7.5 also
implies a similar asymptotic formula for the eigenvalues of Hols(cγ).

Corollary 7.6. For every closed curve γ ∈ π1(S), let cγ be the geodesic representative

for the �at metric |q0|
2
3 . Assume that cγ is the concatenation of saddle connections

c1, . . . , cl. Then

lim
s→+∞

log(Λ(Hols(γ)))

s
1
3

=

ℓ∑
i=1

lim
s→+∞

log(Λ(Hols(ci)))

s
1
3

=

ℓ∑
i=1

νi

where Λ(M) denotes the spectral radius of M .
In particular, Corollary 7.3 holds when replacing singular values with eigenvalues.

Proof. It is well known that the spectral radius, i.e. the absolute values of the largest
(possibly complex) eigenvalue of a matrix M , can be computed as

Λ(M) = lim
r→+∞

∥M r∥
1
r .

Since Hols(c̃γ) has all real and positive eigenvalues, its spectral radius coincides with
its largest eigenvalue. Moreover, because cγ and c̃γ are in the same free homotopy
class, we can do this computation for Hols(c̃γ). Now, we know that

Hols(c̃γ) = A(s) + E(s)

with ∥E(s)∥ = o(∥A(s)∥) as s→ +∞ and

A(s) =

ℓ∏
i=1

e
s
1
3 (µiji

+λiki
)
S
(∑

α

cjiα ,kiαEjiα ,kiα

)
(Id + o(Id))S−1 (7.2)

for some positive constants cjiα ,kiα . Fix δ > 0 small and let s0 be such that for all
s ≥ s0 we have ∥E(s)∥ ≤ δ∥A(s)∥. Then, for all s ≥ s0

Hols(c̃γ)
r = A(s)r + E′(s)

with ∥E′(s)∥ ≤ 2rδ∥A(s)∥r for every integer r > 1. Therefore,

Λ(Hols(c̃γ)) = lim
r→+∞

∥Hols(c̃γ)r∥
1
r

= lim
r→+∞

∥A(s)r∥
1
r

∥∥∥∥ A(s)r

∥A(s)r∥
+

E′(s)

∥A(s)r∥

∥∥∥∥ 1
r

= Λ(A(s))C(s)
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for all s ≥ s0, where

C(s) = lim
r→+∞

∥∥∥∥ A(s)r

∥A(s)r∥
+

E′(s)

∥A(s)r∥

∥∥∥∥ 1
r

.

First we compute the spectral radius Λ(A(s)) of the matrix A(s). From (7.2), we
�nd

A(s)r = exp

(
ℓ∑
i=1

rs
1
3 νi

)(
ℓ∏
i=1

S

(∑
α

cjiα ,kiαEjiα ,kiα

)
(Id + o(Id))S−1

)r

= exp

(
ℓ∑
i=1

rs
1
3 νi

)
(M + o(Id))r

as s→ +∞, where

M =

ℓ∏
i=1

S

(∑
α

cjiα ,kiαEjiα ,kiα

)
S−1 ̸= 0

Hence, for s su�ciently large,

Λ(A(s)) = lim
r→+∞

∥A(s)r∥
1
r = exp

(
ℓ∑
i=1

s
1
3 νi

)
Λ(M + o(Id)) .

We then observe that the function C(s) is uniformly bounded for s ≥ s0, because∥∥∥∥ A(s)r

∥A(s)r∥
+

E′(s)

∥A(s)r∥

∥∥∥∥ ≤ 1 +
∥E′(s)∥
∥A(s)r∥

≤ 1 +
2rδ∥A(s)∥r

∥A(s)r∥

≤ (1 + 2rδ)∥M + o(Id)∥r

∥(M + o(Id))r∥

which implies that C(s) ≤ ∥M + o(Id)∥Λ(M + o(Id))−1. Therefore,

lim
s→+∞

log(Λ(Hols(c̃γ)))

s
1
3

= lim
s→+∞

log(Λ(A(s)))

s
1
3

=
ℓ∑
i=1

νi .

Now, the saddle connection ci is the concatenation of δi and αi−1, where indices are
intended modulo ℓ (see Figure 1), so by Theorem 4.6,

lim
s→+∞

log(Λ(Hols(ci)))

s
1
3

= νi ,

which gives the desired asymptotics of the largest eigenvalue. Repeating the same
argument as in Corollary 7.3, the formula actually holds for all eigenvalues of Hols(γ).

□
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8. Harmonic map to the real building

By work of Hitchin ([Hit92]), the Hitchin representation ρs : π1(S) → SL(3,R)
arising from the ray of cubic di�erentials qs = sq0 are constructed along with an
associated ρs-equivariant conformal harmonic map hs : Σ̃ → SL(3,R)/SO(3) to
the symmetric space (see Section 2). In this section we study both the asymptotic
behavior of hs around a zero and also describe the geometry of the limiting harmonic
map h∞ : Σ̃ → B to an R-building.

8.1. Generalities on Euclidean buildings. We recall here the de�nition and main
properties of R-buildings. We direct the interested reader to [KL97] for a more thor-
ough discussion.

Let A denote a �nite-dimensional a�ne Euclidean space. The Tits boundary of A
is a sphere, denoted by ∂T itsA. A subgroup Waff ⊂ Isom(A) is an a�ne Weyl group
if it is generated by re�ections across hyperplanes of A, called walls, and its linear
part Wlin is �nite. The pair (A,Waff ) is a Euclidean Coxeter complex. We denote
by ∆mod the quotient ∂TitsA/Wlin.

An oriented geodesic ray determines a point in ∂T itsA. Its ∆mod-direction is its
projection to ∆mod. AWeyl chamber with tip at p ∈ A is a complete cone with vertex
at p for which its Tits boundary is a ∆mod chamber. A germ of a Weyl chamber
based at p ∈ A is an equivalence class of Weyl chambers based at p for the following
equivalence relation: W andW ′ are equivalent if their intersection is a neighborhood
of p in both W and W ′. The germ of a Weyl chamber is denoted by ∆pW . We say
that two germs ∆pW and ∆pW

′ are opposite if one is the image of the other under
the longest element in the Weyl group Wlin. We say that two Weyl chambers based
at p are opposite if their germs are.

De�nition 8.1. A Euclidean R-building modeled on a Euclidean Coxeter complex
(A,Waff ) is a CAT (0) space B that satis�es the following axioms:

a) Each oriented geodesic segment xy is assigned a ∆mod-direction θ(xy) ∈ ∆mod.
For any pair of oriented geodesic segments xy and xz emanating from the same
point x ∈ B, the di�erence of their ∆mod-directions is smaller than their compar-
ison angle;

b) Given δ1, δ2 ∈ ∆mod, denote by D(δ1, δ2) the �nite set given by all of the possible
distances between points in theirWaff orbit. The angle between any two geodesic
segments xy and xz lies in the �nite set D(θ(xy), θ(xz)).

c) There is a collection A of isometric embeddings ιA : A → B that preserve ∆mod-
directions and that is closed under precomposition by isometries in Waff . Each
image A = ιA(A) is called an apartment of B. Each geodesic segment, ray and
complete geodesic is contained in an apartment.

d) Coordinate charts {ιA}A∈A are compatible in the sense that, when de�ned, ιA1 ◦
ι−1
A2

is the restriction of an isometry in the Weyl group Waff .
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Remark 8.2. Many di�erent, though equivalent, sets of axioms of Euclidean R-
buildings appear in the literature. For a detailed discussion we refer the reader
to [BS14].

It follows immediately from the axioms that any two points x, y ∈ B are contained
in a common apartment A and the distance between them coincides with the Eu-
clidean distance computed inside A. Moreover, we can de�ne a (germ of a) Weyl
chamber in B as the image of a (germ of a) Weyl chamber in A under some chart
ιA. The following property will be useful.

Proposition 8.3 ([Par12]). Two opposite Weyl chambers based at p ∈ B are con-
tained in a unique apartment.

The boundary at in�nity of B is de�ned as the set of equivalence classes of geo-
desic rays, where two rays are equivalent if they remain at bounded distance. Given
any ξ ∈ ∂∞B and p ∈ B, there is a unique geodesic ray ξp in the equivalence class of
ξ starting at p.

Given a point p ∈ B, and two geodesic segments c1, c2; [0, 1] → B such that
cj(0) = p, the angle between them is the quantity

∠p(c1, c2) = lim
s,t→0

∠̃p(c1(s), c2(t))

where ∠̃p denotes the angle of the Euclidean comparison triangle. This induces a
distance on the set ΣpB of equivalence classes of geodesic segments emanating from
p, where two segments are identi�ed if the angle between them is zero.

8.2. Asymptotic cone of SL(3,R)/SO(3). We denote by (X, d) the symmetric
space SL(3,R)/SO(3) endowed with the distance induced by its homogeneous Rie-
mannian metric. The construction of the asymptotic cone of (X, d) and, more gen-
erally, of any metric space relies on the choice of a non-principal ultra�lter.

De�nition 8.4. A non-principal ultra�lter is a �nitely additive probability measure
ω on P(R) such that

(1) ω(S) ∈ {0, 1} for every S ∈ P(R) ;
(2) ω(S) = 0 for every �nite subset S.

As we are interested in the behavior as s → +∞, we only consider non-principal
ultra�lters each supported on a countable subset of R whose only limit point in
[−∞,+∞] is +∞. Non-principal ulta�lters allow us to consistently de�ne limits of
bounded sequences without passing to subsequences. Precisely, a family of points
{ys}s∈R in a topological space Y is said to have a ω-limit y, denoted by y = limω ys
if for each neighborhood U of y we have ω({s ∈ R | ys ∈ U}) = 1.

De�nition 8.5. Let ∗ be a base point in (X, d) and let λs → ∞ be a sequence of
scaling factors. Fix a non-principal ultra�lter ω. The asymptotic cone of (X,λ−1

s d, ∗)
is the metric space (Coneω(X,λs, ∗), dω) where
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(1) points in Coneω(X,λs, ∗) are equivalence classes of families xs ∈ X such
that λ−1

s d(xs, ∗) is bounded. Here, two families xs, ys are equivalent if
limω λ

−1
s d(xs, ys) = 0 ;

(2) the distance between two points [xs] and [ys] is de�ned as

dω([xs], [ys]) := lim
ω
λ−1
s d(xs, ys) .

By work of [Tho02], the asymptotic cone of the symmetric space (X, d) is actually,
up to isometries, independent of the choice of the ultra�lter ω (if we assume the
continuum hypothesis) and of the base point ∗. Moreover, the asymptotic cone of
the symmetric space (X, d) can also be interpreted as the Gromov-Hausdor� limit of
the pointed sequence of metric spaces Xs = (X,λ−1

s d, ∗) ([Gro81] [KL97]) and it is
a non-discrete Euclidean building modelled on the a�ne Weyl group of sl(3,R). In
particular, we are going to identify the model Euclidean plane A with

A = {(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0} .

Then the linear part of the Weyl group consists of re�ections across the walls of
equation xi−xj = 0 for all i ̸= j. In particular, we identify ∆mod with the boundary
at in�nity of the Weyl chamber

a+ = {(x1, x2, x3) ∈ R3 | x1 > x2 > x3} .

Given x, y ∈ Coneω(X), we can �nd an apartment ιA : A → Coneω(X) such that
ιA(0) = x and ι−1

A (y) ∈ a+. Then the distance between x and y is

dω(x, y) = dA(0, ι
−1
A (y)) =

√
y21 + y22 + y23 ,

where yi are the coordinates of ι
−1
A (y).

Beside the Euclidean distance on an apartment, it is also useful to consider the
a+-valued distance de�ned by

da
+

ω (x, y) = da
+

A (0, ι−1
A (y)) = (y1, y2, y3) .

By a theorem of Parreau ([Par12]), the a+-valued distance on Coneω(X) is the ω-

limit of the analogously de�ned a+-valued distance da
+
on X rescaled by λ−1

s . (Here

this distance da
+
(x, y) on X relies on �nding a �at that contains x and y.) In other

words, if x = [xs], y = [ys] ∈ Coneω(X) with xs, ys ∈ X, then

da
+

ω (x, y) = lim
ω
λ−1
s da

+
(xs, ys) .

An apartment in Coneω(X) can be obtained as the ω-limit of a sequence of �ats
in X. Precisely, if ιFs : A → Fs ⊂ X are isometric parametrizations of a sequence of
maximal �ats Fs of X with the property that d(Fs, ∗) = O(λs), then the family ιFs

has an ω-limit ιF : A → Coneω(X) which de�nes an apartment in Coneω(X). See
[KL97] for more details.
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A family Gs ∈ SL(3,R) of isometries of X also induces an isometric action on
Coneω(X) provided that d(Gs(∗), ∗) = O(λs) by setting

Gs · [xs] := [Gs(xs)]

for any [xs] ∈ Coneω(X).

8.3. Limiting harmonic map to the building. Given a ray of cubic di�erentials
sq0, we consider the family of conformal harmonic maps hs : Σ̃ → X that are
equivariant under the corresponding Hitchin representations ρs : π1(Σ) → SL(3,R).
We �x a non-principal ultra�lter ω, a base point ∗ ∈ X and the sequence of scaling

factors λs = s
1
3 . We can consider the maps hs to take values in the re-scaled metric

spaces Xs = (X, s−
1
3d).

Proposition 8.6. The family hs : Σ̃ → Xs converges to a Lipschitz equivariant
harmonic map h∞ : Σ̃ → Coneω(X). The family of holonomy maps ρs : Xs → Xs

ω-converges to an isometry ρ∞ of Coneω(X), and h∞ is equivariant with respect to
ρ∞.

Proof. By [DM06, Theorem 1.2], it is su�cient to show that energy of the maps

hs : Σ̃ → X grows as O(s
2
3 ). Since hs is conformal, this amounts to estimating the

area of hs(D), where D ⊂ Σ̃ is a compact fundamental domain for the action of

π1(S). Now, the induced metric ĝs on the minimal surfaces hs(Σ̃) can be written in
terms of the Blaschke metric gs as (see [DL19])

ĝs = 2

(
1 +

e−3Fs

2

)
gs , (8.1)

hence ĝs is uniformly bi-Lipshitz to gs and the result follows from Lemma 3.2.
The ω-convergence of the holonomy maps follows from Remark 3.19 in [Par12].

The ρ∞-equivariance of h∞ follows from the fact that each hs is equivariant with
respect to ρs. □

The behavior of the limiting harmonic map h∞ : Σ̃ → Coneω(X) is well-known
outside the zeros of the cubic di�erential q0.

Theorem 8.7. For any p ∈ Σ̃ that is not a lift of a zero of the cubic di�erential q0,
there is a neighborhood Up centered at p and an apartment ιA : A → Coneω(X) with
ιA(p) = 0 such that

i) the induced distance on h∞(Up) is
√
3 · 2

1
6dq0;

ii) the limiting harmonic map h∞ sends Up inside A = ιA(A);
iii) for any q ∈ Up we have

ι−1
A ◦ h∞(q) =

(
−2

2
3Re

(� q

p
ϕ1

)
,−2

2
3Re

(� q

p
ϕ2

)
,−2

2
3Re

(� q

p
ϕ3

))
where ϕi are the cube roots of q0 (which are well-de�ned in Up).
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Proof. Let Up be a q0-disk around p that avoids neighborhoods of zeroes of q0. From

Equation 8.1 and Lemma 3.4, we know that the induced metric ĝs rescaled by s−
2
3

converges to 3 · 2
1
3 |q̃0|

2
3 uniformly on h∞(Up). To conclude that h∞ sends Up inside

a single apartment, it is su�cient to show that h∞(Up) is totally geodesic: this
follows from an extendibility feature of �at neighborhoods in buildings (see [AB08,
Theorem 11.53]). To this aim we show that for every q, q′ ∈ Up we have that

dω(h∞(q), h∞(q′)) =
√
3 · 2

1
6dq0(q, q

′). (8.2)

Since the asymptotic cone is a CAT (0) space, this implies that the unique geodesic
connecting h∞(q) and h∞(q′) is entirely contained in the image of h∞, hence h∞(Up)
is totally geodesic inside Coneω(X). We are thus left to prove Equation 8.2. Fix a
natural coordinate w on Up and let w0 and w

′
0 be the coordinates of q and q

′ in this

chart. We then parametrize the geodesic connecting w0 and w′
0 as γ(t) = w0 + teiθ

with t ∈ [0, L] so that w′
0 = w0 +Leiθ. Recall that the map h∞ is the ω-limit of the

maps hs : Σ̃ → Xs that can be expressed as

hs(w) = Ps(0)Fs(w)Ps(w)
−1

for some Ps ∈ SL(3,C). Indeed, from Section 2, we know that the equivariant
harmonic map hs is simply given by the frame �eld Fs of the a�ne sphere fs : C → R3

whose columns form at each point w ∈ C a real basis of R3 that is orthonormal for
(the lift of) the Blaschke metric. The matrices Ps represent the change of frame
between a real othonormal basis and the basis {1, ∂w, ∂w̄} induced by the natural
coordinate w. Therefore,

dω(h∞(w0), h∞(w′
0)) = lim

s→+∞
s−

1
3d(hs(w0), hs(w0)

′)

= lim
s→+∞

s−
1
3d(Fs(w0)P

−1
s (w0), Fs(w

′
0)Ps(w

′
0)

−1)

= lim
s→+∞

s−
1
3d(Ps(w

′
0)Fs(w

′
0)

−1Fs(w0)P
−1
s (w0), Id)

= lim
s→+∞

s−
1
3d(Hols(γ), Id)

(8.3)

By Proposition 5.6 (see also [Lof07]) and Corollary 7.3 the singular values σj(s) of
Hols(γ) satisfy

lim
s→+∞

s−
1
3 log(σj(s)) = −2

2
3Lλj

where (λ1, λ2, λ3) is a reordering of (cos(θ), cos(θ − 2π/3), cos(θ − 4π/3)) such that
λ1 ≥ λ2 ≥ λ3. Therefore, using that the distance d in the symmetric space X
from the identity is given as the Euclidean distance to the logarithms of the singular
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values, we see

dω(h∞(w0), h∞(w′
0)) = lim

s→+∞
s−

1
3

√√√√ 3∑
j=1

log2(σj(s))

= lim
s→+∞

s−
1
3

√√√√ 3∑
j=1

s
2
3 2

4
3L2λ2j + o(s

2
3 )

= 2
2
3L

√√√√ 3∑
j=1

cos2
(
θ − 2π(j − 1)

3

)
=

√
3 · 2

1
6L .

Since L = dq0(q, q
′) the proof of Equation 8.2 is complete.

Part iii) is a direct consequence of part ii) and the fact that the coordinates inside
an apartment are given by the rescaled limit of the singular values of hs(w). □

We note, in particular, that outside the zeros of q0 the map h∞ is smooth, so the
set of its singular points is discrete, and is locally injective. We can also describe
how these �ats combine outside the zeros.

Proposition 8.8. Let γ : [0, 1] → Σ be a geodesic path which avoids all zeros of q0
and which is not in the direction of a wall of the Weyl chamber. Then there is an
apartment A ⊂ Coneω(X) such that h∞(γ(t)) ∈ A for all t ∈ [0, 1].

Proof. Let J = {t ∈ I | there is apartment A ⊂ Coneω(X) such that h∞(γ([0, t])) ∈
A}. We want to show that J = I. First, we note that J is not empty because
there is an apartment containing h∞(γ(0)) by axiom c) in the de�nition of buildings.
Moreover, it is clear that if t ∈ J and s ≤ t then s ∈ J . Let t0 = sup(J) and suppose
by contradiction that t0 < 1. Let q = γ(t0). By Theorem 8.7, there is a neighborhood
Uq ⊂ Σ and an apartment Aq such that h∞(Uq) ⊂ Aq. Up to choosing a smaller
Uq, we can assume that Uq ∩ γ(I) = γ(J0) for some open interval J0 containing
t0. Let t1 ∈ J0 ∩ J and let p = γ(t1). Because t1 < t0, there is an apartment
Ap ⊂ Coneω(X) such that h∞(γ([0, t1])) ⊂ Ap. Let W−

p denote the Weyl chamber
with tip at x = h∞(p) containing h∞(γ([0, t1])). Since h∞(γ(J0)) ⊂ Aq, we can �nd
two opposite Weyl chambers W±

q with tip at x such that h∞(γ(t)) ∈W+
q for t ≥ t1

and h∞(γ(t)) ∈W−
q for t ≤ t1. Note that the germs of the sectors W−

p and W+
q are

opposite because the Weyl chambers W−
p and W−

q are equivalent and W+
q is clearly

opposite to W−
q . Hence, by Proposition 8.3, there is a unique apartment A ⊂ B that

contains W−
p and W+

q . Therefore, we can �nd t2 ∈ J0 ∩ J with t2 > t0 such that
h∞(γ([0, t2])) ⊂ A. Hence t2 ∈ J contradicting the fact that t0 = sup(J). □

We intend to complete the description of h∞ by studying its behavior in a neigh-
borhood of a zero of the cubic di�erential. Let us �x a coordinate chart around a
zero of order k of q0 such that q0 = zkdz3 on the ball B = {|z| < ϵ}.
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Theorem 8.9. The image h∞(B) consists of the union of 2(k+3) (cyclically ordered)

bounded, closed sectors {Wi}2(k+3)
i=1 of angle π

3 with tip at x = h∞(0) such that

i) Wi ∩Wj = ∅ for all j ̸= i± 1 (with indices intended modulo 2(k + 3));
ii) Wi ∩Wi+1 is a geodesic segment.

Proof. Let ϵ > 0 small and denote by ξi for i = 1, . . . , 2(k + 3) the Stokes directions
emanating from 0 ∈ B. Let Ci be the sector in B with tip at 0 bounded by the
directions ξi + ϵ and ξi+1 − ϵ. The ball B can be covered by (k + 3) standard

half-planes obtained from the natural coordinates w = 3
k+3z

k+3
3 . Note that two

such half-planes intersect in a sector of angle π
3 and in these coordinates the Stokes

directions correspond to the angles ±π
6 and ±π

2 . By Corollary 4.4, we can write

hs(w) = Ps(0)Ai(Id + o(Id))FT (s
1
3w)Ps(w)

−1 . (8.4)

Since

FT (w) = S exp

 2
2
3Re(w) 0 0

0 2
2
3Re(w/ω) 0

0 0 2
2
3Re(w/ω2)

 S−1 ,

by the same argument as in the proof of Theorem 8.7 the ω-limit hT of the map

Ps(0)(Id+o(Id))FT (s
1
3w)Ps(w)

−1 sends Ci inside an apartment in Coneω(X). More-
over, the image of a radial path in Ci is a geodesic in the building. Indeed, if we
parameterize such a path by γ(t) = teiθ with t ∈ [0, L] in the natural coordinate w,
then for all t ∈ [0, L] we have as in (8.3)

da
+

ω (hT (0)), hT (γ(t)) = lim
s→+∞

s−
1
3da

+
(Id, Ps(0)(Id + o(Id))FT (s

1
3 teiθ)Ps(w)

−1)

= t 2
2
3 (λ1, λ2, λ3) (8.5)

where (λ1, λ2, λ3) is a permutation of (cos(θ), cos(θ−2π/3), cos(θ−4π/3)) such that
λ1 ≥ λ2 ≥ λ3. Because this reordering only depends on θ, which is constant along
a radial path, and we already know that the image of hT is entirely contained in a
�at, we deduce that the image hT (γ) is a straight segment of length

dω(hT (0), hT (γ(L))) = 2
2
3L

√√√√ 3∑
j=1

cos2
(
θ − 2(j − 1)π

3

)
=

√
3 · 2

1
6L

Since ϵ is arbitrary and h∞ is continuous, we can conclude that the image of each
open sector between two consecutive Stokes rays must be contained in a closed sector
Wi with tip at x = h∞(0) of angle π

3 .

Now, recalling that A−1
i Aj = SUi,jS

−1 for some product of unipotents Ui,j , we can
write

h∞|Cj
= Ps(0)AiSUi,jS

−1hTPs(0)
−1 .
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We �rst use this to show that the interiors of Wi and Wi+1 are disjoint. This
immediately implies that Wi ∩Wi+1 is a geodesic segment because h∞ is continuous
and eachWi is circular sector. The previous computation (8.5) about the behavior of
radial paths under h∞ shows that we may have h∞(wi) = h∞(wi+1) for some wi ∈ Ci
and wi+1 ∈ Ci+1 only if they are at the same distance from the zero. However, in this
present case we compute from the expression A−1

i Aj = SUi,jS
−1 and Equation 8.4,

dω(h∞(wi), h∞(wi+1))

= lim
s→+∞

s−
1
3d(FT (s

1
3wi)Ps(wi)

−1, (Id + o(Id))SUi,i+1S
−1FT (s

1
3wi+1)Ps(wi+1)

−1)

= lim
s→+∞

s−
1
3d(Ps(wi+1)F

−1
T (s

1
3wi+1)SU

−1
i,i+1S

−1(Id + o(Id))FT (s
1
3wi)Ps(wi)

−1, Id)

≥ lim
s→+∞

s−
1
3 log

∥∥∥∥∥
√
3

3
Ps(wi+1)F

−1
T (s

1
3wi+1)SU

−1
i,i+1S

−1(Id + o(Id))FT (s
1
3wi)Ps(wi)

−1

∥∥∥∥∥
∞

= lim
s→+∞

s−
1
3 log ∥Ps(wi+1)SD

−1(s
1
3wi+1)U

−1
i,i+1(Id + o(Id))D(s

1
3wi)S

−1Ps(wi)
−1∥∞

where we use again that the distance d in the symmetric space X from the identity is
given as the Euclidean distance to the logarithms of the singular values. Now, note

that in D−1(s
1
3wi+1)U

−1
i,i+1D(s

1
3wi), at least one element on the diagonal is of the

form ecs
1
3 for some c > 0: here we use that we can express D(s

1
3wi+1) and D(s

1
3wi)

in a single coordinate, observing that the matrices are distinct, as well as that the
unipotent has but a single o�-diagonal nonzero entry. Hence,

dω(h∞(wi), h∞(wi+1)) ≥ c > 0

and h∞(wi) ̸= h∞(wi+1).
The same argument shows that h∞(Ci) and h∞(Cj) are disjoint as long as i ̸= j and
the natural coordinates wi and wj do not coincide. Note that in this case the bound

dω(h∞(wi), h∞(wi+1)) ≥ c

can be made independent of ϵ as the diagonal terms in D−1(s
1
3wj) and D(s

1
3wi)

never multiply to 1 in the sectors containing Ci and Cj . Hence, in this case Wi and
Wj are disjoint.
The only case that remains to be checked is when the natural coordinates on Ci and
Cj are the same, when |i − j| is a multiple of six. This happens when the angle

between these sectors for the �at metric |q0|
2
3 is at least 2π. We can then apply

Proposition 6.3 to guarantee that if the highest eigenvalue es
1
3 λi of D−1(s

1
3wi) is in

position ki and the highest eigenvalue es
1
3 λj of D(s

1
3wj) is in position kj , then the

(ki, kj)-entry of U−1
i,j is not zero. Therefore,

dω(h∞(wi), h∞(wj)) ≥ λi + λj > 0 .

Again the bound can be made independent of ϵ, hence Wi and Wj are disjoint in
this case as well. □
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We are then able to describe the global behavior of the harmonic map h∞.

Corollary 8.10. Let q̃0 denote the lift of the cubic di�erential q0 to the universal
cover Σ̃. Let d∞ be the path distance induced by dω on h∞(Σ̃) ⊂ Coneω(X). Then

h∞ : (Σ̃,
√
3 · 2

1
6dq̃0) → (h∞(Σ̃), d∞) is an isometry.

Proof. From Equation 8.1 and Lemma 3.4, we know that the induced metric ĝs
rescaled by s−

2
3 converges pointwise to 3 · 2

1
3 |q̃0|

2
3 and uniformly on every compact

set on the complement of the zeros of q̃0. Let B be a ball centered at a zero of order k
as in the setting of Theorem 8.9. Then the induced metric at h∞(0) is singular since
the total angle is 2π + 2kπ

3 . Moreover, in the proof of Theorem 8.9 we showed that
radial paths from the origin of q0-length L are sent to geodesic arcs in the building

of length
√
3 · 2

1
6L. We conclude that h∞(B) is isometric to (B, 3 · 2

1
3 |q0|

2
3 ) and the

statement follows. □

Not only is the image of the limiting harmonic map intrinsically a singular �at
surface, but h∞(Σ̃) inherits from the building a 1

3 -translation surface structure as
well, which allows us to reconstruct the original cubic di�erential q0, up to a positive
multiplicative constant.

Corollary 8.11. The image h∞(Σ̃) is naturally a 1
3 -translation surface. This struc-

ture is induced precisely by the cubic di�erential 3 · 2
1
3 q̃0.

Proof. By Corollary 8.10, we know that h∞(Σ̃) is a singular �at surface with metric 3·
2

1
3 |q̃0|

2
3 . This de�nes on h∞(Σ̃) a holomorphic cubic di�erential up to multiplication

by eiθ. On the other hand, a neighborhood of a regular point p of h∞(Σ̃) is contained
in an apartment Ap by Theorem 8.7 and the directions of the walls of the Weyl-
chambers based at p de�ne six special directions. If we identify Ap with

A = {(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0} ,
then these directions correspond to the lines xi − xj = 0 for i ̸= j. These can be
further divided into two groups, de�ned in accordance with which pair of the triple
of coordinates coincide: if we identify the positive Weyl-chamber with

a+ = {(x1, x2, x3) ∈ R3 | x1 > x2 > x3}
the two walls are given by x1 − x2 = 0 and x2 − x3 = 0 and the orbits of these lines
under the Weyl-group W divide the six walls into two categories, which we call type
I and type II. There is only one choice of θ so that along the directions of type II
the di�erential eiθ q̃0 is real and positive. □

Remark 8.12. Note that the only scaling factors λs that guarantee the existence of

the harmonic map h∞ by Proposition 8.6 are λs ∼= s
1
3 . Di�erent choices of such

permissible λs lead only to homothetic asymptotic cones, hence the projective class
of the translation surface h∞(Σ̃) is independent of such a choice of λs.

Finally, we relate the geometry of h∞(Σ̃) with the notion of weak-convexity in-
troduced by Anne Parreau ([Par21]). In brief, she considered the a+-valued distance
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da
+

ω on Coneω(X) and de�ned da
+

ω -geodesics as those paths γ : [0, 1] → Coneω(X)
such that for all t ∈ [0, 1]

da
+

ω (γ(0), γ(1)) = da
+

ω (γ(0), γ(t)) + da
+

ω (γ(t), γ(1))

Theorem 7.5 shows that the image under h∞ of a geodesic for the �at metric |q0|
2
3

is a geodesic for the distance da
+

ω . We deduce the following:

Corollary 8.13. The surface h∞(Σ̃) ⊂ Coneω(X) is weakly convex.

The argument proves a conjecture of Katzarkov, Noll, Pandit and Simpson ([KNPS17],
Conjecture 8.7) in the context of harmonic maps to buildings arising from limits of
Hitchin representations in SL(3,R) along rays of holomorphic cubic di�erentials.
(Formally, this conjecture concerns the �Finsler� distance, obtained by taking a
maximum of the vector-valued distance described above, and asks that the image
be geodesic in that distance. Here the geodesic nature holds for the vector-valued
distance by Theorem 7.5, and such �geodesics� for the two vector-valued distance
are clearly geodesics for the Finsler distance. The statement for the Finsler distance
then follows.)

Remark 8.14. Note that h∞(Σ̃) is not totally geodesic in Coneω(X). One can see
this by considering a q̃0-geodesic arc which passes through a zero of q̃0 and makes
an angle of more than π at that zero. The geodesic connecting the endpoints of that
arc lies in an apartment containing the endpoints and is necessarily Euclidean, i.e.
has no interior point with an angle between incoming and outgoing directions other
than π.

9. Epilogue: Triangle groups

We conclude with an example. Of course, for a closed surface X of high genus,
the Labourie-Loftin parametrization of the Hitchin component Hit3 is given as the
cubic di�erential bundle over the Teichmüller space of X. Thus, even with the
results of this paper, an analysis of the limits of this component would require an
understanding of the dependence of a diverging sequence of representations on the
rays that include them. On the other hand, for triangle groups, we may completely
describe the compacti�cation of the SL(3,R) Hitchin component.

9.1. The Hitchin component for triangle groups. Consider the oriented (p, q, r)
triangle group Γp,q,r. It is hyperbolic if p

−1 + q−1 + r−1 < 1. Denote the quotient of
H2 by Γ by Σp,q,r. Choi-Goldman have shown that the space of convex real projective
structures has real dimension 2 for 3 ≤ p, q < ∞ and 4 ≤ r < ∞ [CG93]. We call
these triangle groups projectively deformable. The general case of the dimension of the
SL(n,R) Hitchin component for triangle groups was settled by Long-Thistlethwaite
[LT19]. Recently, more closely to our point of view, Alessandrini-Lee-Scha�hauser
[ALS22] use Higgs bundles to study Hitchin components for orbifolds. In particular,
for each projectively deformable (p, q, r) group, the space of cubic di�erentials has
complex dimension one, and we can extend our techniques to give a compacti�cation
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of the Hitchin component in these cases.

We brie�y address cubic di�erentials for oriented triangle groups.

Lemma 9.1. Let p, q, r be integers at least 2. The complex dimension of the space
of cubic di�erentials on Σp,q,r is 1 if and only if p, q, r ≥ 3 and is 0 if any of p, q, r
is 2.

Proof. Consider a local coordinate z with z = 0 mapping to an orbifold point of
order p. Then w = zp is a holomorphic coordinate on the orbifold. The condition for
a holomorphic cubic di�erential near z = 0 to descend locally to the orbifold is that
it can be written as a holomorphic cubic di�erential in w away from w = 0. Thus
zn dz3 descends if and only if n ≥ 0 and n+ 3 is a multiple of p.

The case p > 2 and n = p − 3 leads to a pole of order 2 in w, as zn dz3 =
p−3w−2 dw3. The Riemann surface formed by treating the 3 orbifold points of Σp,q,r

as smooth points has genus zero and 3 distinguished points at the triangle vertices
of order p, q, r. Thus we seek cubic di�erentials on CP1 with poles of order at most
2 at 3 points, thus in a family with one complex parameter. Other values of p, n
require lower order poles (or zeros) at the relevant points. There are no nonzero
cubic di�erentials in these cases, in particular when any of p, q, r is 2. □

Proposition 9.2. For 3 ≤ p, q < ∞ and 4 ≤ r < ∞, the real projective structures
on Σp,q,r are parametrized by the complex scalings of the nonzero cubic di�erential
q0.

The fundamental domain of an oriented triangle orbifold consists of two adjacent
triangles, each with vertices at the p, q, r points.

Lemma 9.3. Let 3 ≤ p, q, r < ∞. A singular Euclidean structure on the orbifold
Σp,q,r is induced by a nonzero holomorphic cubic di�erential if and only if the triangles
with vertices p, q, r are equilateral.

Proof. Consider the Euclidean structure given by forcing the given triangles to be
equilateral, and let z be a �at conformal coordinate on one such triangle. Analytically
continue the cubic di�erential dz3 to the other triangle of the orbifold. Then we
may check the resulting cubic di�erential is holomorphic on the orbifold, as any
monodromy around the orbifold points amounts to translations and rotations by
third roots of unity. Such a scalar multiple αdz3, for α ∈ C, is also a holomorphic
cubic di�erential, and together these form the one-dimensional complex vector space
of all cubic di�erentials. □

Remark 9.4. On each of these triangle orbifolds Σp,q,r, it is useful to choose a par-
ticular representative q0. Give a consistent orientation to the equilateral triangles
forming Σp,q,r. We choose q0 so that the sides of the triangles have length 1 and at
any given vertex the outgoing edges correspond to the directions on which q0 is real
and positive.
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Theorem 9.5. Consider a family of cubic di�erentials seiθq0 on a closed surface
Σ, where s → +∞ and θ → θ∞. Let ρs,θ be the corresponding family of Hitchin
representations. Then the limiting data in terms of singular values and eigenvalues
converge to those determined in the limit by the ray seiθ∞q0. In particular, Theorems
A and B hold in this setting.

Outline of proof. Assume for simplicity that θ∞ = 0. For a given free homotopy
class of loops in Σ, consider the cubic di�erential eiθ∞q0 = q0 and the piecewise
geodesic path c̃η considered in Figure 2, modi�ed from a geodesic path along saddle
connections in Stokes directions. We compute the holonomy along c̃η as in Theorems
7.1 and 7.5.

The main consideration is to ensure that we have uniform estimates in θ as s→ ∞.
Note that the Blaschke metric is independent of θ, and the connection form in (2.2)
depends on θ only through the cubic di�erential q. The upshot is that θ varies in
Equation 5.1 and thus in terms of the holonomy along linear paths in Proposition
5.6. It is straightforward to show that the error terms in Proposition 5.6 are uniform
in θ as s → ∞, as can be seen in terms of the proof in [Lof07]. In other words, the

error term of the form o(e−s
1
3 µ̃i) satis�es

o(e−s
1
3 µ̃i)

e−s
1
3 µ̃i

→ 0 (9.1)

uniformly in θ as s→ ∞.
We also check that the estimates of [DW15] are uniform for θ near θ∞ as s→ ∞.

Recall, for the path c̃, in the case in which at least one arc βηi has a q0-Stokes
direction as an endpoint, we modify the path to c̃η to avoid all such endpoints. Thus
the same is true in a neighborhood of θ∞ as θ → θ∞. There the estimates of [DW15]
are uniform in compact sets away from the Stokes directions, in terms of the frames
needed in Corollary 4.4 and Theorem 4.6. The unipotent terms U are also continuous
as θ → θ∞, as they are determined by the geometry of the limiting (in this case,
regular) polygon, which varies continuously.

With these estimates in hand, the quantity we consider is the entry-wise L∞ norm
of the holonomy matrix, as given in (7.1). Our �rst concern is that the largest terms
in each matrix match up with positive terms cj,k in the adjacent unipotent matrices
in the product in (5.3). This remains true by continuity of the cj,k. If c

η contains any
saddle connection ci along a wall of the Weyl chamber, then there is more than one
largest eigenvalue of the holonomy along ci for q0. This is no longer true if θ ̸= θ∞.
We must consider the possibility then that this entry-wise L∞ norm may jump by a
positive bounded factor, in the case that cj,k →

∑
α cjα,kα in (7.1). Fortunately the

limit we take in Theorem 7.5, in terms of taking a logarithm and dividing by s
1
3 , is

insensitive to multiplication by a positive quantity bounded away from 0 and ∞.
Finally, we must ensure that the largest terms in the product of holonomy matrices,

upon taking the limit, are not a�ected by the various error terms we accumulate.
This is exactly the uniformity condition (9.1). □
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Corollary 9.6. The previous theorem holds for Σ a closed oriented orbifold of hy-
perbolic type.

Proof. Consider a smooth �nite orbifold cover Σ̌ → Σ and lift the cubic di�erential
to Σ̌. Then each complex scalar multiple of the cubic di�erential is also invariant
under the orbifold deck transformations. □

We next de�ne a compacti�cation of the Hitchin component Hit3(∆) of represen-
tations of a deformable triangle group ∆ = Γp,q,r into SL(3,R).

First we identify the Hitchin component Hit3(Γp,q,r) with C as in Proposition 9.2.
We then consider the map

La : C → P(aΓp,q,r)

seiθ 7→ {(log(σ1(ρs,θ(γ))), log(σ2(ρs,θ(γ))), log(σ3(ρs,θ(γ))))}γ∈Γp,q,r

where σj denotes the j-largest singular value and ρs,θ is the representation corre-

sponding to seiθq0. By [Kim04, Theorem B], this map is injective.
Next we also embed S1 in P(aΓp,q,r) as follows. For each eiθ ∈ S1, we consider

the harmonic map ĥθ : (Σ̃) → Coneω(X) that results as the ω-limit of the family of

harmonic maps hs : Σ̃ → X parameterized by a ray of cubic di�erentials seiθq0. Then
for each such map ĥθ, we compute the Weyl-chamber lengths of a representative a
curve class [γ] by considering the image in the principal Weyl chamber a of ĥθ([γ]),
following the prescription in Corollary 8.11. Naturally this de�nes a map S1 →
P(aΓp,q,r).

This map eiθ 7→ P(aΓp,q,r) is also an embedding: to see this, consider the canonical
cubic di�erential q0 de�ned in Remark 9.4, and a �xed curve class γ0 whose whose
|q0|-geodesic representative makes an angle of θ0 with the positive x-axis in a �xed
natural coordinate chart. (Here we take θ0 ∈ [−π

3 ,
π
3 ] so that the largest entry

in the vector is cos θ0.) Then for the �rotated� cubic di�erential eiθq0, the largest
entry changes to cos(θ0 +

θ
3). We regard S1 as the boundary of the complex plane

C in the usual way, and assert that the usual compacti�cation C ∪ S1 is taken
homeomorphically to its image in P(aΓp,q,r). This is proved in the next corollary.

Corollary 9.7. Consider a projectively deformable triangle group. Then the map
above C ∪ S1 → P(aΓp,q,r) provides a compacti�cation of the SL(3,R) Hitchin com-
ponent Hit3(Γp,q,r) ∼= C of representations of Γp,q,r.

Proof. We need to show that there is a subatlas of boundary charts for the compact-
i�cation comprising images of a segment T of the circle S1 and a sector in C de�ned
by that range T of angles; this amounts to showing that for a family seiθ, as s→ ∞
and θ → θ∞, the images in P(aΓp,q,r) of the representations associated to seiθ con-

verge to those of the harmonic map ĥθ∞ . This is the content of Theorem 9.5 and that
the map S1 → P(aΓp,q,r) de�ned on the limiting circle S1 de�ned by Corollary 8.11
depended only on the limit of the representations associated to the ray seiθ∞ . □

A compacti�cation in terms of harmonic maps is more delicate. Proposition 8.6
associates to a family of harmonic maps hs : Σ̃ → X parameterized by a ray of cubic
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di�erentials seiθq0 a limiting harmonic map h∞ : Σ̃ → Coneω(X), whose image (cf.
Corollary 8.11) is a 1

3 -translation surface, isometrically embedded into Coneω(X).
However, if more general diverging families of harmonic maps are considered, corre-
sponding to families seiθsq0 with s→ ∞ and θs → θ∞, their ω-limit ĥ∞ (which exists
by the same argument as in Proposition 8.6) are not precluded from depending on
the particular family and not only on θ∞. We may refer to the more classical Teich-
müller theory case, where equivariant harmonic maps us : Σ̃ → H2 are parameterized
by a family of quadratic di�erentials Qs. In that case, if Qs = sQ0 is a ray, us always
converges to an equivariant harmonic map u∞ : Σ̃ → T to a real tree given by pro-
jection onto the leaves of the vertical foliation of Q0 ([Wol95]). What is independent
of the family is the projective class of the vertical foliation of the Hopf di�erential
of the limiting harmonic map. In our setting, the harmonic map approach identi�es
the boundary points of a compacti�cation of the Hitchin component for Γp,q,r with
projective classes of 1

3 -translation surfaces.

(The Euclidean (3, 3, 3) triangle group also can studied from this point of view.
There is no hyperbolic structure on this orbifold, but there is still a nowhere-vanishing
cubic di�erential, which explicitly leads on the orbifold universal cover to the �iµeica
example. As the cubic di�erential scales to in�nity, the �iµeica scales as well, and
the limiting harmonic map into the real building simply covers a single apartment.)

Remark 9.8. We conclude with an informal remark. In the setting of these triangle
groups, the limiting harmonic maps to buildings take on enough of a combinatorial
nature that we may display how some of the constructions in Section 8 apply.

The simplest triangle group for this is the (3, 3, 4) group. One can visualize the
action of this group on the hyperbolic plane in terms of a triangulation: two of the
vertices of each triangle are vertices with a star of 6 triangles, and the remaining,
say special, vertex is a vertex with a star of eight triangles. Distinct special vertices
of adjacent triangles share the same opposite edge.

For the cubic di�erential q0 de�ned in Remark 9.4, the harmonic map takes each
triangle to an equilateral triangle in a building. In terms of the local geometry of the
map, the six triangles in the image of the star around a non-special vertex will lie
in a common apartment in the building, but the eight triangles in the image around
a special vertex cannot, due for example to cone angle considerations. We return to
this local geometry momentarily.

More globally, we comment a bit on some apartments which meet the image of the
harmonic map. Note that a geodesic segment between (images of) special vertices in
adjacent triangles � this segment will meet the opposite side orthogonally � may be
extended to an in�nite geodesic which subtends one of the angles, choose it always to
be on the right, at each special vertex of exactly π. This in�nite (oriented) geodesic is
the boundary of a Euclidean strip of parallel geodesics in the image of the harmonic
map whose preimages limits on a pair of distinct endpoints. Each of these strips
embed isometrically in an apartment which meets the image of the harmonic map in
a region that contains the strips. Since there is a geodesic segment between images of
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special vertices that bisects each triangle in the star of the image of a special vertex, a
neighborhood of the image of a special vertex is covered by eight such strips, and two
(non-disjoint) strips meet in a rhombus (angles alternately π

6 and π
3 ) whose vertices

are images of special vertices.
Note that each such strip meets four of the triangles in the star around the image

of a special vertex so that the apartment containing this strip meets those four
triangles, i.e. those four adjacent triangles around the image of a special vertex are in
an embedded �at in the building. On the other hand, �ve adjacent triangles around
that image vertex cannot be in an embedded �at (nor apartment) since that �at
would then force there to be a sixth triangle with one edge shared with the terminal
triangle and one shared with the initial triangle. That sixth triangle would combine
with the three remaining image triangles in the image to form an embedded cone
in the building of cone angle 4π

3 , which cannot exist in an NPC simplicial complex
(e.g. points equidistant but on opposite sides of the cone point are joined by distinct
geodesics on opposite sides of the cone point).
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