Exercise Manual for Math 135 Spring 2024 Edition

by Joseph "Dr. G" Guadagni
revised January 31, 2024

Contents

1 Chapter 1: Algebra and Precalculus Review 3
§1.1, 1.2, 1.3, 1.4, 7.2, Appendix B 4
2 Chapter 2: Limits 16
§2.1, 2.2: Introduction to Limits 17
§2.3: Techniques for Computing Limits 22
§2.4: Infinite Limits 29
§2.5: Limits at Infinity 33
§2.6: Continuity 37
3 Chapter 3: Derivatives 47
§3.1, 3.2: Introduction to the Derivative 48
$\S 3.3,3.4,3.5,3.9$: Rules for Computing Derivatives 56
§3.7: The Chain Rule 61
§3.8: Implicit Differentiation. 66
§3.11: Related Rates 71
4 Chapter 4: Applications of the Derivative 79
§4.1: Maxima and Minima 80
§4.3, 4.4: What Derivatives Tell Us and Graphing Functions 86
§4.5: Optimization Problems 100
§4.6: Linear Approximation and Differentials 108
§4.7: L'Hôpital's Rule 112
§4.9: Antiderivatives 118
5 Chapter 5: Integration 121
§5.1, 5.2: Introduction to the Integral 122
§5.3: Fundamental Theorem of Calculus 125
§5.5: Substitution Rule 128
6 Chapter 6: Additional Exercises 130
True or False? 131
Extra Challenges 134
7 Chapter 7: Sample Exams (Set A) 138
Sample Precalculus Exam A 139
Sample Midterm Exam \#1A 141
Sample Midterm Exam \#2A 142
Sample Midterm Exam \#3A 144
Sample Final Exam A 145

8 Chapter 8: Sample Exams (Set B) 148
Sample Precalculus Exam B . 149 Sample Midterm Exam \#1B . 151
Sample Midterm Exam \#2B . 153
Sample Midterm Exam \#3B . 155
Sample Final Exam B . 156

1 Chapter 1: Algebra and Precalculus Review

§1.1, 1.2, 1.3, 1.4, 7.2, Appendix B

Ex. A-1 Algebra/Precalculus
Fa17 Exam
Find all solutions to the following equation.

$$
2 \ln (x)=\ln \left(\frac{x^{5}}{5-x}\right)-\ln \left(\frac{x^{3}}{2+x}\right)
$$

Ex. A-2 Algebra/Precalculus

The number N of bacteria at time t grows exponentially, so that $N(t)=N_{0} e^{k t}$ for some constants N_{0} and k. Suppose an initial population of 100 bacteria grows to 500 after 2 hours. How many hours does it take for an initial population of 150 bacteria to grow to 300 ?

Ex. A-3 Algebra/Precalculus Fa19 Exam
Solve the inequality $\frac{3 x-6}{x+4}>0$. Write your answer using interval notation.
Ex. A-4 Algebra/Precalculus
Solve the inequality $\frac{3 x+6}{x-4}<0$. Write your answer using interval notation.

Ex. A-5 Algebra/Precalculus Sp20 Exam
Find the domain of the function $f(x)=\frac{\ln (80-x)}{\sqrt{x}-5}$. Write your answer using interval notation.
Ex. A-6 Algebra/Precalculus Su20 Exam
Let $f(x)=8-\frac{1}{5 x}$. Fully simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ with $h \neq 0$. In your work, make clear where you use the assumption $h \neq 0$.

Ex. A-7 Algebra/Precalculus
Su20 Exam
For both parts of this problem, consider the following inequality.

$$
\frac{(x-3)(x-6)}{x-5}<0
$$

Your goal is to identify an error in a false solution of this inequality, and then to solve the inequality yourself.
(a) A student submits the following work for solving this equality.
"First we multiply both sides by $(x-5)$. On the left side, this factor cancels, and on the right side we get 0 . So we have $(x-3)(x-6)<0$. The graph of $y=(x-3)(x-6)$ is a parabola that opens upward and crosses the x-axis at $x=3$ and $x=6$. This means that the graph is below the x-axis between these two x-values. So the solution to $(x-3)(x-6)<0$ is the interval $(3,6)$. But since the original inequality was undefined at $x=5$, we also have to exclude 5 . So the final answer is $(3,5) \cup(5,6)$."

The student's teacher does not give full credit for this solution, simply noting that $x=4$ is included in the student's answer, but $x=4$ does not satisfy the original inequality. So the final answer must be wrong.

What is the student's error? Be as specific as possible and explain why this is an error. To explain why the given solution is wrong, it is not enough to simply write the correct solution and observe that the two solutions are different.
(b) Solve the original inequality. Write your answer using interval notation.

Ex. A-8
Algebra/Precalculus
Fa20 Exam
Fully simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=\sqrt{x+2}$ and $h \neq 0$. Write your answer without square roots or fractional exponents in the numerator.

Ex. A-9 Algebra/Precalculus Fa20 Exam
For each part, use the graph of $y=g(x)$ below.

(a) Find the domain of $g(x)$. Write your answer in interval notation.
(b) Calculate $g(g(4))$.
(c) As $x \rightarrow 2$, which of the left-sided and right-sided limits of $g(x)$ exist?

Ex. A-10 Algebra/Precalculus Fa20 Exam
While solving the logarithmic equation

$$
\log _{2}(3 x+1)=3
$$

a student wrote the following steps (this work contains two distinct errors):

$$
\begin{gather*}
\log _{2}(3 x)+\log _{2}(1)=3 \tag{1}\\
\log _{2}(3 x)+0=3 \tag{2}\\
3 x=3^{2} \tag{3}\\
x=3 \tag{4}
\end{gather*}
$$

(a) Identify the lines in which the two errors occur and describe each error.
(b) What is the correct solution to the original equation?

Ex. A-11 Algebra/Precalculus

Fully simplify the difference quotient $\frac{f(3+h)-f(3)}{h}$ for $f(x)=\frac{6}{9-2 x}$ and $h \neq 0$. Your answer cannot contain a complex fraction (fraction within a fraction).

Ex. A-12

Algebra/Precalculus
${ }^{\text {Fa20 }}$ Exam
Suppose we have all of the following:

$$
\log _{3}(x)=A \quad, \quad \log _{3}(y)=B \quad, \quad \log _{b^{5}}(z)=C
$$

Write each of the following in terms of A, B, and C. Your final answer cannot contain any "log" symbol.
(a) $\log _{3}\left(\frac{\sqrt{x}}{9 y^{4}}\right)$
(b) $\log _{b}(z)$

Ex. A-13 Algebra/Precalculus

${ }^{\mathrm{Fa} 20}$ Exam
For each part, use the graph of $y=g(x)$ below.

(a) Calculate $g(g(1.5))$.
(b) Find the range of $g(x)$. Write your answer in interval notation.

Ex. A-14 Algebra/Precalculus

Suppose you have exactly 840 ft of fencing that will be used to build an enclosure that consists of two identical rectangular pens that share a common fence. Let x be the (vertical) length of each pen and let y be the (horizontal) width of each pen. See the figure below.

(a) Find an expression for $F(x)$, the area of one individual pen, as a function of x.
(b) Now suppose that, for each of the two pens, the sum of the length and width must not exceed 250 ft . In the context of this problem, what is the domain of F ? Write your answer in interval notation.

Ex. A-15 Algebra/Precalculus Sp21 Exam
Suppose $\log _{3}(x)=A$ and $\log _{3}(y)=B$. Rewrite the expression below in terms of A and B. Your final answer may not contain any logarithm symbol.

$$
\log _{3}\left(\frac{27 \sqrt{x}}{y^{4}}\right)
$$

Ex. A-16 Algebra/Precalculus
Fa21 Exam
The graph of $y=f(x)$ is given below.

Algebra/Precalculus

${ }^{\text {Fa21 Exam }}$
Note that f is piecewise linear. An explicit formula for $f(x)$ can be written in the following form, where A and B are constants.

$$
f(x)= \begin{cases}y_{1}(x) & \text { if }-8 \leq x<A \\ y_{2}(x) & \text { if } B \leq x \leq 8\end{cases}
$$

Calculate each of $A, B, y_{1}(x)$, and $y_{2}(x)$.

Ex. A-17 Algebra/Precalculus
For each part, use the graph of $y=f(x)$.
(a) Calculate $f(f(2))$.
(b) State the domain of f in interval notation.
(c) State the range of f in interval notation.

Ex. A-18 Algebra/Precalculus
Fa21 Exam
Suppose $\log _{3}(x)=A$ and $\log _{3}(y)=B$. Rewrite the expression below in terms of A and B. Your final answer may not contain any logarithm symbol.

$$
\log _{3}\left(\frac{27 \sqrt{x}}{y^{4}}\right)
$$

Ex. A-19 Algebra/Precalculus
Fa21 Exam
Rewrite the expression below as a single logarithm. Assume x and y are positive.

$$
\frac{1}{2}\left(\log _{5}(x)-7 \log _{5}(y)\right)+3 \log _{5}(x-1)
$$

Ex. A-20 Algebra/Precalculus
Fa21 Exam
Suppose $\cos (\theta)=\frac{A}{7}$ with $0<A<7$ and $\sin (\theta)<0$. Find $\sec (\theta), \sin (\theta)$, and $\tan (\theta)$ in terms of A.

Algebra/Precalculus
A bacteria colony has an initial population of 3500 . The population grows exponentially and triples every 7 hours. Recall that this means the population P at time t satisfies $P(t)=P_{0} e^{k t}$ for some constants P_{0} and k.
(a) Find the exact value of the growth constant k.
(b) Find the population after 25 hours.
(c) Find the time (in hours) when the population will be 12,600 .

A rectangular box is constructed according to the following rules.

- the length of the box is twice its width
- the height of the box is 5 feet more than three times the length

Let ℓ, w, and h denote the length, width, and height of the box, respectively, measured in feet.
(a) Write the height of the box in terms of w.
(b) Write an expression for $V(w)$, the volume of the box measured in cubic feet, as a function of its width.
(c) Suppose the rules also require that the sum of the box's width and height to be less than 26 feet. Under this condition, what is the domain of the function $V(w)$?

Ex. A-23 Algebra/Precalculus Fa21 Exam

Let $f(x)=\frac{2}{3 x}$ and assume $h \neq 0$. Fully simplify each of the following expressions:
(a) $f(x+h)$
(b) $f(x+h)-f(x)$
(c) $\frac{f(x+h)-f(x)}{h}$

Ex. A-24 Algebra/Precalculus Fa21 Exam

Find the domain of the function $f(x)=\sqrt{x^{2}+x-6}+\ln (10-x)$. Write your answer using interval notation.

Ex. A-25 Algebra/Precalculus
Sp22 Exam
For each part, use the graph of $y=g(x)$ given below and let $f(x)=8 x^{2}-4 x+15$.
(a) Find an expression for $g(x)$.
(b) Calculate the y-intercept of the graph of $y=$ $f(g(x))$.
(c) Calculate $g(f(x))$.

Ex. A-26 Algebra/Precalculus Sp 22 Exam
A 100-gram sample of a radioactive substance decays to 65% of its initial mass in 15 hours. Recall that the mass of the sample M at time t satisfies $M(t)=M_{0} e^{k t}$ for some constants M_{0} and k.
(a) Find the growth constant k.
(b) Find the mass of the sample after 22 hours.
(c) Find the time in hours when the sample will have a mass of 41 grams.
Ex. A-27 Algebra/Precalculus Sp22 Exam

A rectangular box is constructed according to the following rules.

- The length of the box is 5 times its width.
- The volume of the box is 110 cubic feet.

Let L, W, and H be the length, width, and height of the box (measured in feet), respectively.
(a) Write an equation in terms of L, W, and H that expresses the first constraint.
(b) Write an equation in terms of L, W, and H that expresses the second constraint.
(c) Write an expression for $S(W)$, the total surface area of the box as a function of W.
(d) Suppose the rules also require that the sum of the box's length and width be less than 78 feet. What is the domain of $S(W)$ in this context?

Ex. A-28 Algebra/Precalculus
Sp22 Exam
Suppose $\log _{16}(x)=A$ and $\log _{16}(y)=B$. Rewrite the expression below in terms of A and B. Your final answer may not contain any logarithm symbol.

$$
\log _{16}\left(\frac{4 x^{7}}{\sqrt[9]{y}}\right)
$$

Ex. A-29 Algebra/Precalculus

Sp22 Exam
Let $f(x)=\sqrt{3 x}$ and assume $h \neq 0$. Fully simplify each of the following expressions:
(a) $f(x+h)$
(b) $f(x+h)-f(x)$
(c) $\frac{f(x+h)-f(x)}{h}$

Ex. A-30 Algebra/Precalculus
Consider the function $f(x)=\frac{x-6}{x^{2}-9 x+20}$.
(a) Solve the equation $f(x)=0$.
(b) List all numbers that are not in the domain of $f(x)$.
(c) Solve the inequality $f(x)>0$ and write your answer using interval notation.

Ex. A-31 Algebra/Precalculus
Sp22 Exam
Find all solutions to the following equation in the interval $[0,2 \pi)$.

$$
2 \sin (\theta) \cos (\theta)-\cos (\theta)=0
$$

Ex. A-32 Algebra/Precalculus
Sp22 Exam
Complete each of the following algebra exercises.
(a) Fully factor the polynomial $5 x^{4}+25 x^{3}-180 x^{2}$.
(b) Solve the rational equation below.

$$
\frac{4}{x+5}+\frac{9 x}{x^{2}-25}=\frac{6}{x-5}
$$

(c) Simplify the complex fraction below by writing it as a simple fraction.

$$
\frac{\frac{4}{x}-\frac{2}{x y}}{8+\frac{7}{y}}
$$

Ex. A-3
Algebra/Precalculus
Su22 Exam
Complete each of the following algebra exercises.
(a) Simplify $\left(\frac{27 x^{3 / 5}}{x^{-3} z^{15}}\right)^{-1 / 3}$, leaving positive exponents and integer coefficients.
(b) Simplify $\frac{x^{2}-9}{3-\sqrt{6-x}}$ for $x \neq-3$. (All common factors must be canceled.)
(c) Factor the expression completely: $5 x^{9}-14 x^{8}-3 x^{7}$.
(d) Fully simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for $f(x)=\frac{2}{x}-3$ and $h \neq 0$.

Ex. A-34 Algebra/Precalculus Su22 Exam
For each part, find all solutions to the given equation.
(a) $\sqrt{2 x+1}+1=x$
(b) $\left(10-x^{2}\right)^{1 / 2}-x^{2}\left(10-x^{2}\right)^{-1 / 2}=0$
(c) $2+\sin (\theta)=2 \cos (\theta)^{2}$ (find solutions in $[0,2 \pi)$ only)
Ex. A-35 Algebra/Precalculus Su22 Exam

Find the domain of the function $f(x)=\ln \left(x^{2}-20\right)$. Write your answer using interval notation.

Ex. A-36 Algebra/Precalculus Su22 Exam
The length of a rectangular box is three times its width, and the total surface area of the box is $200 \mathrm{in}^{2}$. Let W be the width of the box in inches. Find the volume of the box in terms of W.

Ex. A-37 Algebra/Precalculus Su22 Exam
For each part, write an equation for the line in the $x y$-plane that satisfies the given description.
(a) The line through the point $(-2,10)$ with slope -3 .
(b) The line through the points $(3,5)$ and $(-1,4)$.
(c) The line through the point $(5,1)$ and perpendicular to the line $x+3 y=10$.
(d) The horizontal line through the point $(-2,15)$.

Ex. A-38 Algebra/Precalculus
Su22 Exam
The number of bacteria in a certain colony grows exponentially. Recall that this means the number of bacteria N at time t is $N(t)=N_{0} e^{k t}$, where N_{0} and k are constants. Suppose there are initially 500 bacteria, and the number of bacteria triples every 2 hours. How much time must pass before the number of bacteria increases from 500 to 5000 ?

Ex. A-39 Algebra/Precalculus Su22 Exam
For each part, use the graphs of $y=f(x)$ and $y=g(x)$ below.

Algebra/Precalculus

(a) Calculate $f(2)$.
(b) Estimate the value of $g(0)-f(0)$.
(c) Find all solutions to the equation $f(x)=g(x)$.
(d) Solve the inequality $g(x)>f(x)$. Write your answer using interval notation.

Complete the following algebra exercises.
(a) Simplify the expression $\frac{x^{3}-4 x}{x^{3}-x^{2}-6 x}$ as much as possible.
(b) Write the expression $\frac{\sqrt{x y^{3}}}{\left(x^{2 / 3} y^{-5 / 2}\right)^{6}}$ in the form $x^{a} y^{b}$.
(c) Let $f(x)=3 x^{2}$. Simplify the expression $\frac{f(x+h)-f(x)}{h}$ as much as possible.
(d) Evaluate the expression $\log _{6}(9)+\log _{6}(4)$.
(e) Write the solution to the inequality $x^{2}-3 x+2<0$ using interval notation.
(f) Find all values of θ in the interval $[0,2 \pi)$ such that $2 \sin (2 \theta)=1$.
(g) Let $f(x)=\frac{1}{x}$. Simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ as much as possible.

Ex. A-41 Algebra/Precalculus Sp18 Quiz
For each part, find an equation of the described line.
(a) The line whose slope is -3 and which passes through the point $(1,4)$.
(b) The line that passes through the point $(-\pi, 1)$ with slope $\sqrt{2}$.

Ex. A-42 Algebra/Precalculus
Find all solutions to the following equation.

$$
\log _{2}(x)+\log _{2}(x-3)=2
$$

Ex. A-43 Algebra/Precalculus
Complete the following algebra exercises.
(a) Find all solutions to the given equation.

$$
2 x^{5 / 2}+x^{3 / 2}+x^{1 / 2}=0
$$

(b) Simplify the expression; assume $x \neq-10$.

$$
\frac{x^{3}+10 x^{2}}{\sqrt{15-x}-5}
$$

(c) Simplify the expression; assume any common factors are non-zero.

$$
\frac{\frac{x-1}{x+1}+\frac{6}{x}}{\frac{2}{x^{2}+x}+\frac{1}{x+1}}
$$

Ex. A-44 Algebra/Precalculus
Find all solutions to the given equation.

$$
\log _{2}(x-3)+2=\log _{2}(x+9)
$$

Ex. A-45 Algebra/Precalculus Fa22 Quiz
Fully simplify the given expression. Assume any common factors are non-zero.

$$
\frac{100}{x^{2}-25}-\frac{2 x}{x+5}
$$

Ex. A-46 Algebra/Precalculus Faz2 Quiz
Use rationalization to simplify the expression below. All common factors must be canceled.

$$
\frac{3-\sqrt{2-x}}{x+7}
$$

Ex. A-47

Algebra/Precalculus
For each of the following problems, zero or more of the choices are exact answers. Identify all of the exact answers, and explain why the other choices are wrong. If the exact value of the correct answer does not appear as one of the choices, find the exact value of the correct answer.
(a) Find all real numbers x such that $x^{2}=2$.
A. 1.41
B. $\sqrt{2}$
C. ± 1.41
D. 1.41 and -1.41
E. $\pm \sqrt{2}$
(b) Find all real numbers t such that $t^{3}+4=0$.
A. -1.59
B. ± 1.59
C. $\pm \sqrt[3]{-4}$
D. $-2^{2 / 3}$
E. no real solution
(c) Find the circumference of a circle whose radius is 1 .
A. 6.28
B. ± 6.283185
C. $\frac{44}{7}$
D. none of the above
(d) Find all real solutions to the equation $2^{x}=3$.
A. 1.585
B. ± 1.585
C. 3^{-2}
D. $\log _{2}(3)$
E. $\log _{3}(2)$
F. $\frac{\ln (3)}{\ln (2)}$
G. $\frac{1}{2} \log _{2}(9)$

Ex. A-48 Algebra/Precalculus
Simplify each of the following expressions according to the instructions.

Algebra/Precalculus

(a) Positive exponents and integer coefficients only (assume $x, y>0$): $\left(\frac{x^{8} y^{-4}}{16 y^{4 / 3}}\right)^{-1 / 4}$
(b) Positive exponents only (assume $a, b>0): \frac{(9 a b)^{3 / 2}}{\left(27 a^{3} b^{-4}\right)^{2 / 3}} \cdot\left(\frac{3 a^{-2}}{4 b^{1 / 3}}\right)^{-1}$
(c) Common factors canceled (assume $h \neq 5$): $\frac{2 h-10}{\sqrt{5}-\sqrt{h}}$
(d) Expand and fully simplify: $\left(\sqrt{9 s^{2}+4}+2\right)\left(\sqrt{9 s^{2}+4}-2\right)$
(e) Factor completely: $5 y^{2}(y-3)^{5}+10 y(y-3)^{4}$
(f) Factor completely: $3 x^{3}+x^{2}-12 x-4$
(g) Factor completely: $3 x^{-1 / 2}+4 x^{1 / 2}+x^{3 / 2}$
(h) Common factors canceled, positive exponents only $(x \neq y$ and $x, y \neq 0): \frac{y^{-1}-x^{-1}}{x^{-2}-y^{-2}}$
(i) Common factors canceled $(u \neq 1$ and $u \neq-2): \frac{\frac{4}{u-1}-\frac{4}{u+2}}{\frac{3}{u^{2}+u-2}+\frac{3}{u+2}}$

Ex. A-49 Algebra/Precalculus

For each given function $f(x)$, fully simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$. Assume $h \neq 0$.
(a) $f(x)=2 x^{2}-2 x$
(b) $f(x)=9-5 x$
(c) $f(x)=-4$
(d) $f(x)=\frac{1}{x}$

Ex. A-50

Algebra/Precalculus
Solve each equation or inequality. (Parts (b) - (d) are related!)
(a) $p^{2}=p+1$
(f) $\frac{1-x}{1+x}+\frac{1+x}{1-x}=6$
(j) $\frac{x+5}{x-2}=\frac{5}{x+2}+\frac{28}{x^{2}-4}$
(b) $2 u^{2}-3 u+1=0$
(g) $3 \cos (x)+2 \sin (x)^{2}=3$
(k) $t^{2}-4 t-5>0$
(c) $2 x^{5 / 2}-3 x^{3 / 2}+x^{1 / 2}=0$
(h) $|2 x+1|=1$
(l) $\frac{x-4}{2 x+1}<0$
(d) $2 \sin (\theta)^{2}-3 \sin (\theta)+1=0$
(i) $|3 x-5|=4 x$
(m) $\frac{x-4}{2 x+1}<5$

Ex. A-51 Algebra/Precalculus

Find an equation of each described line.
(a) line through the point $(4,-6)$ with slope 3
(b) line through the points $(1,2)$ and $(-3,4)$
(c) line through the point $(5,5)$ and perpendicular to the line described by $2 x-4 y=3$
(d) line through the point $(-1,-2)$ and parallel to the line described by $3 x+8 y=1$
(e) horizontal line through the point $(3,-1)$
(f) vertical line through the point $(2,-4)$

Ex. A-52 Algebra/Precalculus

If $f(x)$ and $g(x)$ are functions, then $f(g(x))$ is also a function, called the composition of f and g. We also write $f \circ g$ to mean $f(g(x))$. Similarly, $g \circ f$ means $g(f(x))$.
(a) Let $f(x)=\sin (3 x)+7$ and $g(x)=e^{2 x}+1$. Write expressions for both $f(g(x))$ and $g(f(x))$.
(b) Let $h(x)=\log _{10}(\sin (\sqrt{x})+1)$. Find four functions f_{1}, f_{2}, f_{3}, and f_{4} such that $h(x)=f_{4}\left(f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)\right)$. You

Algebra/Precalculus

may not use the function $f(x)=x$ for any of your choices.

Ex. A-53 Algebra/Precalculus

For each of the following function pairs, find a simplified formula for $f \circ g$ and $g \circ f$. Then find the domain of f, g, $f \circ g$, and $g \circ f$.
(a) $f(x)=\sin (x)$ and $g(x)=2 x+3$
(b) $f(x)=\frac{2+x}{1-2 x}$ and $g(x)=\frac{x-2}{2 x+1}$

Ex. A-54 Algebra/Precalculus

Find the exact value of each expression. Your final answer cannot contain "log" or "ln".
(a) $\log _{2}(48)-\log _{2}(6)$
(b) $\log _{2}(48)-\log _{4}(144)$
(c) $\ln \left(\log _{10}\left(10^{e}\right)\right)$
(d) $3^{\log _{3}(4 e)-\log _{3}(e)}$

Ex. A-55 Algebra/Precalculus
Sketch the graph of each of the following functions.
(a) $f(x)=e^{-x}$
(b) $f(x)=\log _{5}(x)$
(c) $f(x)=-2^{x}$
(d) $f(x)=\log _{1 / 3}(x)$

Ex. A-56 Algebra/Precalculus

Find all solutions to the following equations.
(a) $3^{x^{2}-x}=9$
(b) $e^{2 x+3}=1$
(c) $\log _{3}(x)+\log _{3}(2 x+1)=1$

Ex. A-57 Algebra/Precalculus

Suppose $\log _{b^{3}}(5)=\frac{1}{6}$. Find the exact value of $\sqrt{b-16}$.

Ex. A-58 Algebra/Precalculus

Write the exact values of the sine, cosine, and tangent of each of the following angles: $\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi,-\frac{\pi}{6}$, and $-\frac{3 \pi}{4}$. (You should do this without any reference or calculator.)

Ex. A-59 Algebra/Precalculus

Graph each of the following curves.
(a) $y=\sin (\theta)$
(b) $y=3 \cos (\pi \theta)$

Ex. A-60 Algebra/Precalculus

A bank pays 6% annual interest compounded continuously. How long will it take for $\$ 835$ to triple?

Ex. A-61 Algebra/Precalculus

The number of bacteria in a certian petri dish obeys a law of exponential growth. Suppose there are initially 1000 bacteria and the number of bacteria doubles every 20 minutes. When will the number of bacteria reach 5000 ?

Ex. A-62 Algebra/Precalculus

A rectangular box is constructed according to the following rules.

- the length of the box is twice its width
- the height of the box is 5 feet more than three times the length
(a) If x is the width of the box in feet, write an expression for $V(x)$, the volume of the box in cubic feet as a function of its width.
(b) Suppose the rules also require that the sum of the box's width and height to be no more than 26 feet. Under

Algebra/Precalculus

this condition, what is the domain of the function $V(x)$?

Ex. A-63 Algebra/Precalculus

The total cost (in \$) of producing q units of some product is $C(q)=30 q^{2}+400 q+500$.
(a) Compute the cost of making 20 units.
(b) Compute the cost of making the 20th unit.
(c) What is the initial setup cost?

Ex. A-64 Algebra/Precalculus

The speed of blood that is a distance r from the central axis in an artery of radius R is $v(r)=C\left(R^{2}-r^{2}\right)$, where C is some constant.
(a) What is the speed of the blood on the central axis?
(b) What is the speed halfway between the central axis and the artery wall?

Ex. A-65 Algebra/Precalculus

An account in a certain bank pays 5% annual interest, compounded continuously. An initial deposit of $\$ 200$ is made into the account. How many years does it take for the $\$ 200$ to double?

Ex. A-66 Algebra/Precalculus

A radioactive frog hops out of a pond full of nuclear waste. If its level of radioactivity declines to $\frac{1}{3}$ of its original value in 30 days, when will its level of radioactivity reach $\frac{1}{100}$ of its original value?
Hint: Use the exponential growth formula $P(t)=P_{0} e^{r t}$.

Ex. A-67 Algebra/Precalculus

Complete each of the following exercises from various topics in algebra and precalculus.
(a) Simplify the expression $\frac{|2-x|}{x-2}$ for $x>2$.
(b) Find all solutions to the equation $2^{x^{2}-2 x}=8$.
(c) Simplify the expression $2^{\log _{2}(3)-\log _{2}(5)}$.
(d) Find an equation of the line through the point $(-1,4)$ with slope 2 .
(e) Find the domain of $f(x)=\frac{\ln (x)}{x-2}$. Write your answer in interval notation.
(f) Solve the inequality $\frac{3 x+6}{x(x-4)} \leq 0$. Write your answer in interval notation.

Ex. A-68 Algebra/Precalculus * \quad Challenge

Let $f(x)=\frac{2}{3-\sqrt{x}}$. Fully simplify the difference quotient $\frac{f(4+h)-f(4)}{h}$ for $h \neq 0$ (i.e., simplify the expression all common factors of h have been canceled.)

2 Chapter 2: Limits

§2.1, 2.2: Introduction to Limits

Ex. B-1

$2.1 / 2.2$ Sp19 Exam
The graph of $y=f(x)$ is given below. Find all values of a in the interval $(-4,4)$ for which $\lim _{x \rightarrow a} f(x)$ does not exist, or determine that no such values of a exist.

Ex. B-2
$2.1 / 2.2$
Sp20 Exam
The graph of $y=f(x)$ is given below. Find all values of a in $(-4,4)$ such that $\lim _{x \rightarrow a} f(x)$ does not exist.

Ex. B-3
2.1/2.2

Su20 Exam
For each part, use the graph of $f(x)$ below.

(a) Calculate $\lim _{x \rightarrow 3} f(x)$ or determine that the limit does not exist.
(b) Find all values of a such that both $\lim _{x \rightarrow a} f(x)$ exists and this limit is not equal to $f(a)$.

Ex. B-4

2.1/2.2

Consider the function below.

$$
f(x)= \begin{cases}x^{2}+4 x-1 & x<2 \\ 11 & x=2 \\ 19-x^{3} & x>2\end{cases}
$$

A student correctly calculates that $\lim _{x \rightarrow 2} f(x)=11$ and enters this as their final answer on an online exam, initially getting full credit. However, after inspecting the student's work, the teacher overrides this score and gives no credit. The teacher writes the comment "you have not correctly justified your answer." The student wrote the following:
"Since $f(x)$ is defined for all x and $f(2)=11$, the answer is $\lim _{x \rightarrow 2} f(x)=11$."
(a) Why is the student's justification incorrect?
(b) Write a complete and correct justification for the statement $\lim _{x \rightarrow 2} f(x)=11$.

Ex. B-5

$2.1 / 2.2$ Sp21 Exam

For each part, use the graph of $y=f(x)$.

(a) Calculate $f(f(2))$.
(b) Find where $f(x)=0$.
(c) State the domain of f in interval notation.
(d) State the range of f in interval notation.
(e) For each part below, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(i) $\lim _{x \rightarrow 0^{-}} f(x)$
(ii) $\lim _{x \rightarrow 0^{+}} f(x)$
(iii) $\lim _{x \rightarrow 0} f(x)$
(iv) $\lim _{x \rightarrow 3^{-}} f(x)$
(v) $\lim _{x \rightarrow 3^{+}} f(x)$

Ex. B-6

$2.1 / 2.2,2.3,2.4,2.5$
Fa21 Exam
For each part, use the graph of $y=f(x)$.

(a) List the x-values where f is not continuous or determine that f is continuous for all x.
(b) List all vertical asymptotes of f.
(c) List all horizontal asymptotes of f.
(d) Calculate $\lim _{x \rightarrow 8} f(x)$ or determine that the limit does not exist.
(e) At $x=7$, which of the one-sided limits of f exist?

Ex. B-7
$2.1 / 2.2$
Fa21 Exam
The position of a particle (measured in feet) after t seconds is modeled by the following function.

$$
h(t)=-16 t^{2}+96 t+100
$$

(a) Calculate the average velocity of the particle (in feet per second) between $t=4$ and $t=5$.
(b) Find an equation of the secant line between $(4, h(4))$ and $(5, h(5))$.

Ex. B-8
 $2.1 / 2.2,3.7,4.3 / 4.4$

For each part, use the graph of $y=g(x)$.

(a) How many solutions does the equation $g^{\prime}(x)=0$ have?
(b) Order the following quantities from least to greatest: $g^{\prime}(-2.5), g^{\prime}(-2), g^{\prime}(0)$, and $g^{\prime}(4)$. In your answer, write these quantities symbolically; do not give a numerical estimate.
(c) What is the sign of $g^{\prime \prime}(-3)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(d) Let $h(x)=g(x)^{2}$. What is the sign of $h^{\prime}(-4)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.

Ex. B-9

2.1/2.2 Sp22 Exam

For each part, use the graph of $y=g(x)$ below to calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

(a) $\lim _{x \rightarrow 0} g(x)$
(b) $\lim _{x \rightarrow 2^{-}} g(x)$
(c) $\lim _{x \rightarrow 5^{-}} g(x)$
(d) $\lim _{x \rightarrow 5^{+}} g(x)$
(e) $\lim _{x \rightarrow 7} g(x)$

Ex. B-10
2.1/2.2

Evaluate the limits using the given graph.

(a) $\lim _{x \rightarrow-2^{+}} f(x)$
(b) $\lim _{x \rightarrow 4^{-}} f(x)$
(c) $\lim _{x \rightarrow 4^{+}} f(x)$
(d) $\lim _{x \rightarrow 6} f(x)$

Ex. B-11

On the axes below, sketch the graph of a function $f(x)$ that satisfies the following properties:

- the domain of $f(x)$ is $[-7,4) \cup(4,7]$
- $\lim _{x \rightarrow-5} f(x) \neq f(-5)$
- $\lim _{x \rightarrow-3^{-}} f(x)=f(-3)$ but $\lim _{x \rightarrow-3} f(x)$ does not exist
- $\lim _{x \rightarrow 2} f(x)=f(2)=4$
- $\lim _{x \rightarrow 4^{+}} f(x)=2$ but $\lim _{x \rightarrow 4} f(x)$ does not exist

Ex. B-12 $2.1 / 2.2$
For each part, use the graph of $y=f(x)$ below to calculate the limit or determine the limit does not exist.

(a) $\lim _{x \rightarrow-3^{-}} f(x)$
(e) $\lim _{x \rightarrow-2^{-}} f(x)$
(i) $\lim _{x \rightarrow 0^{-}} f(x)$
(m) $\lim _{x \rightarrow 1^{-}} f(x)$
(q) $\lim _{x \rightarrow 2^{-}} f(x)$
(b) $\lim _{x \rightarrow-3^{+}} f(x)$
(f) $\lim _{x \rightarrow-2^{+}} f(x)$
(j) $\lim _{x \rightarrow 0^{+}} f(x)$
(n) $\lim _{x \rightarrow 1^{+}} f(x)$
(r) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow-3} f(x)$
(g) $\lim _{x \rightarrow-2} f(x)$
(k) $\lim _{x \rightarrow 0} f(x)$
(o) $\lim _{x \rightarrow 1} f(x)$
(s) $\lim _{x \rightarrow 2} f(x)$
(d) $f(-3)$
(h) $f(-2)$
(l) $f(0)$
(p) $f(1)$
(t) $f(2)$

Ex. B-13

$2.1 / 2.2$
Suppose $\lim _{x \rightarrow 2}\left(\frac{f(x)-3}{x-2}\right)=5$ and $\lim _{x \rightarrow 2} f(x)$ exists (and is equal to $\left.f(2)\right)$. What is the value of $f(2)$? Explain your answer.

Ex. B-14
$2.1 / 2.2$
\star Challenge
Suppose $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists. Is it true that $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ also exist? Explain your answer.

§2.3: Techniques for Computing Limits

Ex. C-1
2.3
${ }^{\text {Fa17 }}$ Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 7}\left(\frac{\frac{1}{7}-\frac{1}{x}}{x-7}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin (7 x)}{\tan (2 x)}\right)$
(c) $\lim _{x \rightarrow-1}\left(\frac{|x+1|}{x+1}\right)$

Ex. C-2

2.3 Sp18 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 0}\left(\frac{(2 x+9)^{2}-81}{x}\right)$
(b) $\lim _{x \rightarrow 3^{-}}\left(\frac{|x-3|}{x-3}\right)$
(c) $\lim _{x \rightarrow 1}\left(\frac{5-\sqrt{32-7 x}}{x-1}\right)$

Ex. C-3

$2.3,3.1$
Fa18 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{u \rightarrow 4}\left(\frac{(u+6)^{2}-25 u}{u-4}\right)$
(c) $\lim _{h \rightarrow 0}\left(\frac{\sin (7+h)-\sin (7)}{h}\right)$
(b) $\lim _{s \rightarrow 1} g(s)$ where $g(s)= \begin{cases}\sqrt{1-s} & s \leq 1 \\ \frac{s^{2}-s}{s-1} & s>1\end{cases}$

Hint: Use the definition of the derivative.

Ex. C-4

2.3
(d) $\lim _{x \rightarrow 6}\left(\frac{\frac{1}{36}-x^{-2}}{x^{2}-36}\right)$

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 5}\left(\frac{x-5}{x^{2}-2 x-15}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin (9 x)}{\sin (16 x)}\right)$

Ex. C-5

2.3

Fa19 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 5}\left(\frac{x^{2}-3 x-10}{x^{2}-x-20}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin ^{2}(4 x)}{x^{2}}\right)$
(c) $\lim _{x \rightarrow 4}\left(\frac{3-\sqrt{2 x+1}}{x-4}\right)$

Ex. C-6 2.3

Sp20 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 0}\left(\frac{(4 x+1)^{2}-1}{x}\right)$
(d) $\lim _{x \rightarrow 4^{-}}\left(\frac{\left|x^{2}-16\right|}{4-x}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{9 x \cos (2 x)}{\sin (4 x)}\right)$
(c) $\lim _{x \rightarrow-1}\left(\frac{4-\sqrt{16 x+32}}{x+1}\right)$
(e) $\lim _{x \rightarrow 3} g(x)$, where $g(x)= \begin{cases}\frac{x-3}{x^{3}-9 x} & x<3 \\ 18 & x=3 \\ \frac{x-2}{x^{2}+9} & x>3\end{cases}$

Ex. C-7
2.3

Su20 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 3}\left(\frac{x^{3}+2 x^{2}-15 x}{x^{2}-9}\right)$
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin (6 x)^{2}}{x^{2} \cos (2 x)}\right)$

Ex. C-8 2.3
Su20 Exam
The parts of this problem are related.
(a) Suppose $x<3$. Write an algebraic expression that is equivalent to $|x-3|$ but without absolute value symbol.
(b) Calculate $\lim _{x \rightarrow 2}\left(\frac{|x-3|-1}{x-2}\right)$. Explain why your work to part (a) is relevant here and precisely where you use it.

Ex. C-9 2.3

Su20 Exam
The parts of this problem are related.
(a) Consider the function below.

$$
f(x)= \begin{cases}\frac{x-1}{3-\sqrt{10-x}} & x \neq 1 \\ -6 & x=1\end{cases}
$$

Show that $\lim _{x \rightarrow 1} f(x) \neq f(1)$.
(b) Now consider the similar function below.

$$
g(x)= \begin{cases}\frac{x-1}{3-\sqrt{10-x}} & x \neq 1 \\ b & x=1\end{cases}
$$

where b is an unspecified constant. Explain how to determine whether the following statement is true: $\lim _{x \rightarrow 1} g(x) \neq$ $g(1)$. How does your work for part (a) change, if at all, to determine the truth of the statement? Explain your answer.

Ex. C-10

2.3

Fa20 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 5}\left(\frac{25-x^{2}}{x-5}\right)$
(b) $\lim _{x \rightarrow 4}\left(\frac{\frac{1}{x}-\frac{1}{4}}{4-x}\right)$

Ex. C-11

2.3

Fa20 Exam
A student is asked to solve a certain limit and determines the limit does not exist. (This may or may not be the correct answer.) They write the following for their justification:
"I used the direct substitution property to evaluate the limit. I noticed the denominator gives me a zero, therefore the limit does not exist."

Explain why the student's justification is incorrect.
Note: To solve this problem, it is not necessary to be given the actual limit the student was asked to compute.

Determine whether $\lim _{x \rightarrow 0} f(x)$ exists, where $f(x)=\left\{\begin{array}{ll}3 e^{x}-7 & x<0 \\ 4+\sin (x) & x \geq 0\end{array}\right.$.

Ex. C-13
2.3

Fa20 Exam
A student is asked to calculate the following limit:

$$
L=\lim _{x \rightarrow 0}\left(\frac{x \cos x}{\sin (3 x)}\right)
$$

Analyze their work below, which contains two distinct errors. Note: The correct answer is $\frac{1}{3}$, not 0 .

$$
\begin{gather*}
L=\lim _{x \rightarrow 0}\left(\frac{x \cos (x)}{3 \sin (x)}\right) \tag{1}\\
=\left[\lim _{x \rightarrow 0}\left(\frac{1}{3}\right)\right]\left[\lim _{x \rightarrow 0}\left(\frac{x}{\sin (x)}\right)\right]\left[\lim _{x \rightarrow 0}(\cos (x))\right] \tag{2}\\
=\left(\frac{1}{3}\right)(1)(0) \tag{3}\\
=0 \tag{4}
\end{gather*}
$$

Identify the lines in which the two errors occur and describe each error.

Ex. C-14 $2.3 \quad$ Fazo Exam
Consider the function $f(x)$ below, where $g(x)$ is an unspecified function with domain $[4, \infty)$.

$$
f(x)= \begin{cases}4 & x \leq 0 \\ \frac{x-4}{\frac{1}{4}-\frac{1}{x}} & 0<x<4 \\ 16 & x=4 \\ g(x) & x>4\end{cases}
$$

(a) Show that $\lim _{x \rightarrow 4^{-}} f(x)=f(4)$.
(b) Suppose $g(4)=16$. Is it necessarily true that $\lim _{x \rightarrow 4} f(x)$ exists? Justify your response.

Ex. C-15 2.3 Fa20 Exam
A student is asked to solve a certain limit and determines the limit does not exist. (This may or may not be the correct answer.) They write the following for their justification:
"I used the direct substitution property to evaluate the limit. I obtained the expression " $\frac{0}{0}$ ", which is undefined. Therefore the limit does not exist."

Is the student's justification correct? Explain.
Note: To solve this problem, it is not necessary to be given the actual limit the student was asked to compute.
Ex. C-16
Consider the limit $\lim _{x \rightarrow 3}\left(\frac{(5 x-c)(x+4)}{x-3}\right)$, where c is an unspecified constant.
(a) For what value(s) of c does this limit exist? Explain.
(b) Suppose the limit exists. What is its value? Show all work.
Ex. C-17
Suppose $\lim _{x \rightarrow 0} f(x)=4$. Calculate $\lim _{x \rightarrow 0}\left(\frac{x f(x)}{\sin (5 x)}\right)$ or show that the limit does not exist. If the limit is " $+\infty$ " or " $-\infty$ ",
write that as your answer, instead of "does not exist".

Ex. C-18
2.3

Sp21 Exam
Consider the following limit, where a is an unspecified constant.

$$
\lim _{x \rightarrow-3}\left(\frac{x^{2}-a}{x^{3}+x^{2}-6 x}\right)
$$

(a) Find the value of a for which this limit exists.
(b) For this value of a, calculate the value of the limit.

Ex. C-19

2.3 Sp21 Exam
Consider the following function, where k is an unspecified constant.

$$
g(x)= \begin{cases}x e^{x+4}-7 \ln (x+5) & x<-4 \\ -4 \cos (\pi x) & -4<x<5 \\ 10 & x=5 \\ \sqrt{2 x-5}+k & 5<x\end{cases}
$$

Note that $g(-4)$ is undefined.
(a) Does $\lim _{x \rightarrow-4} g(x)$ exist? Choose the best answer below.
(i) Yes, $\lim _{x \rightarrow-4} g(x)$ exists and is equal to \qquad -.
(ii) Yes, $\lim _{x \rightarrow-4} g(x)$ exists but we cannot determine its value with the given information.
(iii) No, $\lim _{x \rightarrow-4} g(x)$ does not exist because the corresponding one-sided limits are not equal.
(iv) No, $\lim _{x \rightarrow-4} g(x)$ does not exist because $g(-4)$ does not exist.
(v) No, $\lim _{x \rightarrow-4} g(x)$ does not exist because the limit is infinite.
(b) Calculate the following limits. Your answer may contain k.
(i) $\lim _{x \rightarrow 5^{-}} g(x)$
(ii) $\lim _{x \rightarrow 5^{+}} g(x)$
(c) Is it possible to choose a value of k so that $\lim _{x \rightarrow 5} g(x)$ exists? If so, what is that value of k ?

Ex. B-6 $\quad 2.1 / 2.2,2.3,2.4,2.5$
For each part, use the graph of $y=f(x)$.

(a) List the x-values where f is not continuous or determine that f is continuous for all x.
(b) List all vertical asymptotes of f.
(c) List all horizontal asymptotes of f.
(d) Calculate $\lim _{x \rightarrow 8} f(x)$ or determine that the limit does not exist.
(e) At $x=7$, which of the one-sided limits of f exist?

Ex. C-20

2.3

Fa21 Exam
Suppose $\lim _{x \rightarrow 6}|f(x)|=2$. Which of the following statements must be true about $\lim _{x \rightarrow 6} f(x)$?
(i) $\lim _{x \rightarrow 6} f(x)$ does not exist.
(ii) $\lim _{x \rightarrow 6} f(x)=2$.
(iii) $\lim _{x \rightarrow 6} f(x)$ exists and is equal to either 2 or -2 , but there is not enough information to determine which of these possibilities must be true.
(iv) There is not enough information about $f(x)$ to determine whether $\lim _{x \rightarrow 6} f(x)$ exists.
(v) $\lim _{x \rightarrow 6} f(x)=-2$.

Ex. C-21 $2.3 \quad$ Fa21 Exam
Consider the following function, where k is an unspecified constant.

$$
f(x)=\frac{4 x^{2}-k x}{x^{2}+12 x+32}
$$

(a) Find the value of k for which $\lim _{x \rightarrow-4} f(x)$ exists.
(b) For the value of k described in part (a), evaluate $\lim _{x \rightarrow-4} f(x)$.
Ex. C-22 2.3 Fa21 Exam

Suppose $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x}\right)=8$. Calculate $\lim _{x \rightarrow 0}\left(\frac{f(x)}{\sin (6 x)}\right)$ or show that the limit does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

Ex. C-23 $2.3,2.4 \quad$ Sp22 Exam

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 3}\left(\frac{x-3}{10-\sqrt{x+97}}\right)$
(c) $\lim _{x \rightarrow 0}\left(\frac{x^{2} \csc (3 x)}{\cos (7 x) \sin (4 x)}\right)$
(b) $\lim _{x \rightarrow 6}\left(\frac{36-x^{2}}{\frac{1}{x}-\frac{1}{6}}\right)$
(d) $\lim _{x \rightarrow 2^{-}}\left(\frac{6 x^{2}-7 x}{x^{2}-4}\right)$

Ex. C-24

2.3

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 5}\left(\frac{6 x+10}{x^{2}-25}-\frac{4}{x-5}\right)$
(b) $\lim _{x \rightarrow 6}\left(\frac{x-\sqrt{5 x+6}}{6-x}\right)$
(c) $\lim _{x \rightarrow \infty}\left(\frac{5 e^{2 x}-3 e^{x}}{9 e^{3 x}-12}\right)$

Ex. C-25

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 8}\left(\frac{(x-2)^{2}-36}{x-8}\right)$
(b) $\lim _{x \rightarrow 5}\left(\frac{40-8 x}{\sqrt{19-3 x}-2}\right)$
(c) $\lim _{x \rightarrow 2^{-}}\left(\frac{4+x}{x^{2}+x-6}\right)$

Ex. C-26

2.3

Evaluate each of the following limits or show why it does not exist.
(a) $\lim _{x \rightarrow 2}\left(\frac{2 x^{2}-3 x-2}{x^{2}+2 x-8}\right)$
(b) $\lim _{x \rightarrow 4}\left(\frac{3-\sqrt{x+5}}{x-4}\right)$

Ex. C-27

2.3
${ }^{\text {Sp20 }}$ Quiz
Evaluate each of the following limits or show why it does not exist.
(a) $\lim _{x \rightarrow 1}\left(\frac{\sqrt{7 x+9}-4}{x-1}\right)$
(b) $\lim _{x \rightarrow 5}\left(\frac{\frac{1}{5}-\frac{1}{x}}{\frac{x}{5}-\frac{5}{x}}\right)$
(c) $\lim _{x \rightarrow 3}\left(\frac{3-\sqrt{12-x}}{x-3}\right)$

Ex. C-28

2.3

Su22 Quiz
For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 9}\left(\frac{x^{3}-81 x}{(x-4)^{2}-25}\right)$
(b) $\lim _{x \rightarrow 1}\left(\frac{\sqrt{x+3}-2}{x-1}\right)$

Ex. C-29

Calculate $\lim _{x \rightarrow 0} f(x)$ or show the limit does not exist, where $f(x)$ is the function given below. Your work must be coherent and clearly explain your answer.

$$
f(x)= \begin{cases}10 e^{x} & x<0 \\ 7 & x=0 \\ \frac{\sin (10 x)}{x} & x>0\end{cases}
$$

Ex. C-30

2.3
${ }^{\text {Fa22 }}$ Quiz
For each part, calculate the limit or determine it does not exist. You must show all work, and your work will be graded on its correctness and coherence.
(a) $\lim _{x \rightarrow 6}\left(\frac{x^{2}-36}{2 x^{2}-11 x-6}\right)$
(b) $\lim _{x \rightarrow 2}\left(\frac{\frac{3 x+1}{x-1}-7}{x-2}\right)$
Ex. C-31 2.3 Fa22 Quiz

Calculate $\lim _{x \rightarrow-3}\left(\frac{\sqrt{2 x+15}-3}{x^{2}+8 x+15}\right)$ or determine that it does not exist. If the limit is infinite, write " $+\infty$ " or " $-\infty$ " as your answer, as appropriate, instead of "DNE".
Ex. C-32 2.3

For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 2}\left(\frac{x^{2}+3 x-1}{x+\sin (\pi x)}\right)$
(i) $\lim _{x \rightarrow 8}\left(\frac{|x-8|}{x-8}\right)$
(p) $\lim _{x \rightarrow 2}\left(\frac{\sin (6-3 x)}{5 x-10}\right)$
(b) $\lim _{x \rightarrow 1}\left(x^{4}-9 x\right)^{1 / 3}$
(j) $\lim _{x \rightarrow 8^{-}}\left(\frac{\left|x^{2}-64\right|}{x-8}\right)$
(q) $\lim _{x \rightarrow \pi}\left(\frac{\tan (x-\pi)}{x-\pi}\right)$
(c) $\lim _{x \rightarrow-3}\left(\frac{x^{2}-9}{x^{3}+x^{2}-6 x}\right)$
(d) $\lim _{x \rightarrow 1}\left(\frac{\sqrt{23-7 x}-4}{x-1}\right)$
(k) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$
(l) $\lim _{x \rightarrow 0^{-}}\left(\frac{1}{x}-\frac{1}{|x|}\right)$
(e) $\lim _{h \rightarrow 0}\left(\frac{(x+h)^{-2}-x^{-2}}{h}\right)$
(f) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)$
(m) $\lim _{x \rightarrow 0}\left(\frac{\sin (\pi x)}{x}\right)$
(g) $\lim _{x \rightarrow 1}\left(\frac{\frac{1}{x}-1}{\sqrt{x}-1}\right)$
(h) $\lim _{x \rightarrow 0}|x|$
(n) $\lim _{x \rightarrow 0}\left(\frac{\sec (x)-1}{x \sec (x)}\right)$
(o) $\lim _{x \rightarrow 0}\left(\frac{1-\cos (x)}{\sin (x)}\right)$
(r) $\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)^{2} \cos (3 x)}{\tan (5 x) \sin (7 x)}\right)$
(s) $\lim _{x \rightarrow-1} g(x)$ where
$g(x)= \begin{cases}4 x-5 & \text { if } x<-1 \\ x^{3}+x & \text { if } x \geq-1\end{cases}$
(t) $\lim _{x \rightarrow 2} f(x)$ where
$f(x)= \begin{cases}\frac{x^{2}-2 x}{x-2} & \text { if } x<2 \\ \sqrt{x+2} & \text { if } x>2\end{cases}$

Ex. C-33

For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 0}\left(\frac{\sin (5 x)}{3 x} \cos (4 x)\right)$
(b) $\lim _{x \rightarrow-2}\left(\frac{x^{2}+3 x+2}{x^{2}+x-2}\right)$
(c) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{x^{2}+x}\right)$

Ex. C-34

Let $f(x)=\left\{\begin{array}{ll}\frac{3 x^{2}-15 x}{x-5} & \text { if } x<5 \\ \sqrt{a+3 x} & \text { if } x>5\end{array}\right.$, where a is an unspecified constant.
(a) For what value of a does $\lim _{x \rightarrow 5} f(x)$ exist? Explain.
(b) Given that $\lim _{x \rightarrow 5} f(x)$ exists, what is its value?

Ex. C-35

2.3

Consider the limit $\lim _{x \rightarrow-2}\left(\frac{x^{4}-a}{x^{2}-2 x-8}\right)$, where a is an unspecified constant.
(a) For what value of a does this limit exist? Explain.
(b) Given that the limit does exist, what is its value?

Ex. C-36

 2.3For each of the following, evaluate the limit or explain why it does not exist. Show all work.
(a) $\lim _{h \rightarrow 0}\left(\frac{(x+h)^{-2}-x^{-2}}{h}\right)$
(b) $\lim _{x \rightarrow 3}\left(\frac{4}{x-3}-\frac{8}{x^{2}-4 x+3}\right)$
(c) $\lim _{x \rightarrow 0}\left(\frac{\sin (7 x)^{2} \cos (9 x)}{\tan (3 x) \sin (4 x)}\right)$

Ex. C-37

2.3
\star Challenge
Calculate the following limit or determine that it does not exist.

$$
\lim _{x \rightarrow a}\left(\frac{\cos \left(\frac{\pi a}{2 x}\right)}{x-a}\right)
$$

§2.4: Infinite Limits

Ex. D-1
2.4

Sp20 Exam
Consider the following function, where a and b are unspecified constants.

$$
f(x)=\frac{x^{2}+a x+b}{x-2}
$$

Is the line $x=2$ necessarily a vertical asymptote of $f(x)$? Explain your answer. Your answer may contain either English, mathematical symbols, or both.
For example, let $a=0$ and $b=-4$. Then $f(x)=x+2$ for $x \neq 2$, and so f has no vertical asymptote at $x=2$.

Ex. D-2 $\quad 2.4,4.7$

${ }^{\text {Sp } 20}$ Exam
Which of the following limits are equal to $+\infty$? Select all that apply.
(a) $\lim _{x \rightarrow 5^{-}}\left(\frac{x^{2}+25}{5-x}\right)$
(c) $\lim _{x \rightarrow-3^{-}}\left(\frac{x^{3}}{|x+3|}\right)$
(e) $\lim _{x \rightarrow 1^{+}}\left(\frac{x^{6}-x^{2}}{x-1}\right)$
(b) $\lim _{x \rightarrow 5^{+}}\left(\frac{x^{2}+25}{5-x}\right)$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{x^{4}-2 x-5}{\sin (x)}\right)$
Ex. D-3 2.4 Sp20 Exam

Consider the function below.

$$
f(x)=\frac{x^{3}+2 x^{2}-13 x+10}{x^{2}-1}
$$

Show that $x=-1$ is a vertical asymptote of f, but $x=1$ is not a vertical asymptote of f.
Ex. D-4 2.4 Sp20 Exam

Determine which of the following limits are equal to $-\infty$. Select all that apply.
(a) $\lim _{x \rightarrow 6^{-}}\left(\frac{x^{2}-5 x-6}{x-6}\right)$
(c) $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-5 x-6}{x-6}\right)$
(b) $\lim _{x \rightarrow 6^{-}}\left(\frac{x^{2}-5 x-6}{x^{2}-12 x+36}\right)$
(d) $\lim _{x \rightarrow \infty}\left(\frac{x^{2}-5 x-6}{x^{2}-12 x+36}\right)$

Ex. D-5 2.4

Su20 Exam
Let $h(x)=\frac{f(x)}{g(x)}$, where f and g are continuous and $\lim _{x \rightarrow a} g(x)=0$. Is the following true or false?
"The line $x=a$ is necessarily a vertical asymptote of $h(x) . "$
You must justify your answer. This means that if your answer is "true", you should explain why the above statement is always true. If your answer is "false", you should give an example to show that the above statement is sometimes false.

Ex. D-6

2.4

Su20 Exam
Suppose that as x increases to 1 , the values of $f(x)$ get larger and larger, and the values stay positive. Is the following true or false?
"Therefore, $\lim _{x \rightarrow 1^{-}} f(x)=+\infty . "$
You must justify your answer. This means that if your answer is "true", you should explain why the above statement is always true. If your answer is "false", you should give an example to show that the above statement is sometimes false.

Ex. D-7
2.4, 2.6

Su20 Exam
Let $f(x)=\frac{9 x-x^{3}}{x^{2}+x-6}$.
(a) Calculate all vertical asymptotes of f. Justify your answer.
(b) Where is f discontinuous?
(c) For each point at which f is discontinuous, determine what value should be reassigned to f, if possible, to guarantee that f will be continuous there.
Ex. D-8 $2.4,2.5$ Su20 Exam

Let $f(x)=\frac{3+7 e^{2 x}}{1-e^{x}}$. Calculate each of the following limits.
(a) $\lim _{x \rightarrow-\infty} f(x)$
(b) $\lim _{x \rightarrow+\infty} f(x)$
(c) $\lim _{x \rightarrow 0^{-}} f(x)$
Ex. D-9 2.4

Fa20 Exam
Consider the function $f(x)=\frac{(a x-6)(x+1)}{x-2}$, where a is an unspecified constant.
(a) For which value(s) of a does f have a vertical asymptote? What is the equation of this vertical asymptote?
(b) For which value(s) of a does f have a horizontal asymptote? What is the equation of this horizontal asymptote?

Ex. D-10
 2.4
 Fa20 Exam

For which value(s) of n, if any, is the following statement true: $\lim _{x \rightarrow 2^{-}}(2-x)^{n}=+\infty$? Explain your answer.

Ex. D-11

2.4 Sp21 Exam
Determine whether the following statement is true or false. Explain your answer in 1 or 2 sentences. Your answer should contain English with few mathematical symbols.
"Suppose f and g are functions with $g(3)=1$. Put $H(x)=\frac{f(x)}{g(x)-1}$. Then H must have a vertical asymptote at $x=3$."
Ex. D-12
2.4
Sp21 Exam

Let $f(x)=\frac{(x+a)(x-3)}{(x-2)(x+1)}$, where a is an unspecified, positive constant. For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$

Ex. B-6 $\quad 2.1 / 2.2,2.3,2.4,2.5$

Fa21 Exam
For each part, use the graph of $y=f(x)$.

Rutgers Exam (ver. 544399) © 2021
(a) List the x-values where f is not continuous or determine that f is continuous for all x.
(b) List all vertical asymptotes of f.
(c) List all horizontal asymptotes of f.
(d) Calculate $\lim _{x \rightarrow 8} f(x)$ or determine that the limit does not exist.
(e) At $x=7$, which of the one-sided limits of f exist?

Ex. D-13

$2.4,2.5,4.7$
Fa21 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 1}\left(\frac{x^{4}-x}{\ln (77 x-76)}\right)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$, with $f(x)= \begin{cases}1+4 x & x \leq 2 \\ \frac{x^{2}-4}{x-2} & x>2\end{cases}$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{36 x^{2}+63}}{31 x}\right)$
(d) $\lim _{x \rightarrow 5^{-}}\left(\frac{\cos (\pi x)}{x^{2}-25}\right)$

Ex. D-14
$2.4,4.7$
Fa21 Exam
For each part, find all vertical asymptotes of the given function.
(a) $f(x)=\frac{x^{2}-8 x+15}{x^{2}-9}$
(b) $g(x)=\frac{e^{x+3}-1}{x^{2}-9}$

Ex. C-23 $2.3,2.4$ Sp22 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 3}\left(\frac{x-3}{10-\sqrt{x+97}}\right)$
(c) $\lim _{x \rightarrow 0}\left(\frac{x^{2} \csc (3 x)}{\cos (7 x) \sin (4 x)}\right)$
(b) $\lim _{x \rightarrow 6}\left(\frac{36-x^{2}}{\frac{1}{x}-\frac{1}{6}}\right)$
(d) $\lim _{x \rightarrow 2^{-}}\left(\frac{6 x^{2}-7 x}{x^{2}-4}\right)$

Ex. D-15
For the function f below, find its domain and all vertical and horizontal asymptotes.

$$
f(x)=\frac{x^{2}-8 x+12}{3 x^{2}-8 x+4}
$$

Ex. D-16
$2.4,2.5$
Su22 Exam
Consider the function $f(x)=\frac{x^{3}-3 x+1}{x^{2}-2 x+1}$.
(a) Find all horizontal asymptotes of f, if any.
(b) Find all vertical asymptotes of f. Then calculate $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$, where $x=a$ is the rightmost vertical asymptote of f.

Ex. D-17

2.4

Fa22 Exam
Find all vertical asymptotes of the function $f(x)=\frac{x^{3}-36 x}{x^{3}-12 x^{2}+36 x}$.
In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. D-18

$2.4,2.5$
Su22
Quiz
Calculate all of the vertical and horizontal asymptotes of $f(x)=\frac{x^{2}-100}{10 x-x^{2}}$.
Then find the two one-sided at $x=a$, where $x=a$ is the leftmost vertical asymptote of f.
Ex. D-19
2.4
Fa22 Quiz

Find all vertical asymptotes of $f(x)$. You must justify your answers precisely.

$$
f(x)=\frac{\sin (2 x)}{x^{2}-10 x}
$$

Ex. D-20

2.4

For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 0^{+}}\left(\frac{x^{2}-x+4}{2 x+\sin (x)}\right)$
(b) $\lim _{x \rightarrow 3^{-}}\left(\frac{2 x^{2}+8}{x^{2}-9}\right)$
(c) $\lim _{x \rightarrow 4^{+}}\left(\frac{\left|16-x^{2}\right|}{x-4}\right)$

Ex. D-21

2.4

For each part, find the vertical asymptotes of $f(x)$. Then find both corresponding one-sided limits at each vertical asymptote.
(a) $f(x)=\frac{(x-1)(2 x+5)}{(x+1)(3 x-6)}$
(c) $f(x)=\frac{(x-4) \sin (x)}{x^{3}-8 x^{2}+16 x}$
(e) $f(x)=\frac{2 e^{x}+3}{1-e^{x}}$
(b) $f(x)=\frac{x^{2}-18 x+81}{x^{2}-81}$
(d) $f(x)=\ln (x)$
(f) $f(x)=e^{-1 / x}$

Ex. D-22 2.4
Find all vertical asymptotes of $f(x)=\frac{x^{2}+x-2}{x^{2}-4 x+3}$. Then at each vertical asymptote, calculate the corresponding one-sided limits of $f(x)$.

Ex. D-23
 $2.4,2.5$
 *Challenge

For each function, find all horizontal asymptotes and vertical asymptotes. Then, at each vertical asymptote, calculate both one-sided limits.
(a) $f(x)=\frac{4 x^{3}+4 x^{2}-8 x}{x^{3}+3 x^{2}-4}$
(b) $f(x)=\frac{4 x^{3}-\sqrt{x^{6}+17}}{5 x^{3}-40}$

§2.5: Limits at Infinity

Ex. E-1

2.5

Sp19 Exam
Find the equation of each horizontal asymptote, if any, of $f(x)=\frac{4 x^{3}-3 x^{2}}{2 x^{3}+9 x+1}$.

Ex. E-2 $\quad 2.5,4.7$

Sp19 Exam
The parts of this problem are related!
(a) Show that $\lim _{x \rightarrow \infty}\left(\frac{x}{x-3}\right)=1$.
(b) Calculate the following limit or show it does not exist.

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{x-3}\right)^{x}
$$

Hint: First use part (a) to identify the appropriate indeterminate form.
Ex. E-3 2.5 $\quad \mathrm{Sp}_{\mathrm{s} 20}$ Exam

Find all horizontal asymptotes of

$$
f(x)=\frac{12 x+5}{\sqrt{16 x^{2}+x+1}}
$$

or determine that there are no horizontal asymptotes.

Ex. E-4

2.5

Sp20 Exam
Suppose the function f has domain $(-\infty, \infty)$. Give a brief explanation of how you would find all horizontal asymptotes of f. Note that for this problem, f is unspecified; you should not assume it has any particular form. Your answer may contain either English, mathematical symbols, or both.
Ex. E-5 2.5 Su20 Exam

Let $f(x)=\frac{(x-3)(2 x+1)}{(5 x+2)(3 x-10)}$. Calculate all horizontal asymptotes of f.

Ex. D-8
$2.4,2.5$
Su20 Exam
Let $f(x)=\frac{3+7 e^{2 x}}{1-e^{x}}$. Calculate each of the following limits.
(a) $\lim _{x \rightarrow-\infty} f(x)$
(b) $\lim _{x \rightarrow+\infty} f(x)$
(c) $\lim _{x \rightarrow 0^{-}} f(x)$

Ex. E-6

2.5 ${ }^{\text {Fa20 }}$ Exam
Calculate all horizontal asymptotes of the function $h(x)=\frac{\sqrt{3 x^{2}+x+10}}{2-5 x}$.
Ex. E-7
2.5
Fa20 Exam

Suppose the line $y=3$ is a horizontal asymptote for f. Which of the following statements MUST be true? Select all that apply.
(a) $f(x) \neq 3$ for all x in the domain of f
(d) $\lim _{x \rightarrow \infty} f(x)=3$
(b) $f(3)$ is undefined
(c) $\lim _{x \rightarrow 3} f(x)=\infty$
(e) none of the above

Ex. E-8
$2.5,2.6,3.1 / 3.2$
Sp21 Exam
Use the graph of f below to answer the following questions. Dashed lines indicate the location of asymptotes.

(a) Calculate $\lim _{x \rightarrow \infty} f(x)$.
(b) Calculate $\lim _{x \rightarrow-\infty} f(x)$.
(c) List the values of x where f is not continuous.
(d) List the values of x where f is not differentiable.
(e) What is the sign of $f^{\prime}(-1)$? (choices: positive, negative, zero, does not exist)
(f) What is the sign of $f^{\prime}(0.5)$? (choices: positive, negative, zero, does not exist)

Ex. B-6

$2.1 / 2.2,2.3,2.4,2.5$
For each part, use the graph of $y=f(x)$.

(a) List the x-values where f is not continuous or determine that f is continuous for all x.
(b) List all vertical asymptotes of f.
(c) List all horizontal asymptotes of f.
(d) Calculate $\lim _{x \rightarrow 8} f(x)$ or determine that the limit does not exist.
(e) At $x=7$, which of the one-sided limits of f exist?

Ex. E-9
2.5

Fa21 Exam
Let $f(x)=\frac{8+6 e^{x}}{9 e^{x}-\pi^{6}}$.
(a) Evaluate $\lim _{x \rightarrow \infty} f(x)$.
(b) Evaluate $\lim _{x \rightarrow-\infty} f(x)$.
(c) List all vertical asymptotes of f.

Ex. D-13

$2.4,2.5,4.7$
Fa21 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 1}\left(\frac{x^{4}-x}{\ln (77 x-76)}\right)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$, with $f(x)= \begin{cases}1+4 x & x \leq 2 \\ \frac{x^{2}-4}{x-2} & x>2\end{cases}$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{36 x^{2}+63}}{31 x}\right)$
(d) $\lim _{x \rightarrow 5^{-}}\left(\frac{\cos (\pi x)}{x^{2}-25}\right)$

Ex. E-10 2.5 Sp22 Exam
Find all horizontal asymptotes of the function $g(x)=\frac{2 e^{x}-15}{5 e^{3 x}+8}$.

Ex. D-15

$2.4,2.5$
Sp22 Exam
For the function f below, find its domain and all vertical and horizontal asymptotes.

$$
f(x)=\frac{x^{2}-8 x+12}{3 x^{2}-8 x+4}
$$

Ex. D-16

$2.4,2.5$
Su22 Exam
Consider the function $f(x)=\frac{x^{3}-3 x+1}{x^{2}-2 x+1}$.
(a) Find all horizontal asymptotes of f, if any.
(b) Find all vertical asymptotes of f. Then calculate $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$, where $x=a$ is the rightmost vertical asymptote of f.

Ex. E-11

2.5 Fa22 Exam
Find all horizontal asymptotes of the function $h(x)=\frac{6 x+5}{\sqrt{4 x^{2}-9}}$.
In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Calculate all of the vertical and horizontal asymptotes of $f(x)=\frac{x^{2}-100}{10 x-x^{2}}$.
Then find the two one-sided at $x=a$, where $x=a$ is the leftmost vertical asymptote of f.
Ex. E-12 2.5 Su22 Quiz

Calculate the limit below.

$$
\lim _{x \rightarrow-\infty}\left(\frac{2-3 e^{x}+4 e^{-x}}{5+7 e^{x}-15 e^{-x}}\right)
$$

Ex. E-13
2.5

Fa22
Quiz
Find all horizontal asymptotes of $g(x)$. You must justify your answers precisely.

$$
g(x)=\frac{3 e^{-2 x}+4 e^{5 x}-10}{6 e^{-9 x}-7 e^{8 x}+1}
$$

Ex. E-14

2.5

For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow \infty}\left(\frac{3 x-5}{x+1}\right)$
(c) $\lim _{x \rightarrow \infty}\left(\frac{(x-3)(2 x+4)(x-5)}{(3 x+1)(4 x-7)(x+2)}\right)$
(e) $\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right)$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{3 x}{\sqrt{4 x^{2}+9}}\right)$
(d) $\lim _{x \rightarrow-\infty}\left(\frac{(x-3)(2 x+4)(x-5)}{(3 x+1)(4 x-7)(x+2)}\right)$
(f) $\lim _{x \rightarrow \infty} e^{-x^{3}}$

Ex. E-15

For each function, find all horizontal asymptotes.
(a) $f(x)=\frac{(x-1)(2 x+5)}{(x+1)(3 x-6)}$
(c) $f(x)=\frac{2 e^{x}+3}{1-e^{x}}$
(b) $f(x)=\ln (x)$
(d) $f(x)=e^{-1 / x}$

Ex. E-16

Find all horizontal asymptotes of $f(x)=\frac{\sqrt[4]{16 x^{4}+7 x+5}}{3 x-8}$.

Ex. D-23

$2.4,2.5$
\star Challenge
For each function, find all horizontal asymptotes and vertical asymptotes. Then, at each vertical asymptote, calculate both one-sided limits.
(a) $f(x)=\frac{4 x^{3}+4 x^{2}-8 x}{x^{3}+3 x^{2}-4}$
(b) $f(x)=\frac{4 x^{3}-\sqrt{x^{6}+17}}{5 x^{3}-40}$

Ex. E-17

*Challenge
Find all horizontal asymptotes of $f(x)=\frac{2 x}{x-\sqrt{x^{2}+10}}$.

§2.6: Continuity

Ex. F-1

2.6

Fa17 Exam
Find the values of the constants a and b so that the following function is continuous for all x. If this is not possible, explain why.

$$
f(x)= \begin{cases}a x+b & \text { if } x<1 \\ -2 & \text { if } x=1 \\ 3 \sqrt{x}+b & \text { if } x>1\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-2 $2.6,3.1 / 3.2 \quad$ Sp 18 Exam
For each part, use the graph of $y=f(x)$ below.

(a) Find where $f(x)$ is not continuous in the interval $(-5,5)$.
(b) Find where $f(x)$ is not differentiable in the interval $(-5,5)$.
(c) Find where $f^{\prime}(x)=0$ in the interval $(-5,5)$.
(d) Find where $f^{\prime}(x)<0$ in the interval $(-5,5)$.

Ex. F-3

2.6 Sp18 Exam

Each part of this question refers to the function $f(x)$ below, where a and b are unspecified constants.

$$
f(x)= \begin{cases}\frac{\sin (a x)}{x} & \text { if } x<0 \\ 2 x+3 & \text { if } 0 \leq x<1 \\ b & \text { if } x=1 \\ \frac{x^{2}-1}{x-1} & \text { if } 1<x\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.
(a) Find the value of a so that f is continuous at $x=0$. If this is not possible, explain why.
(b) Find the value of b so that f is continuous at $x=1$. If this is not possible, explain why.

Ex. F-4

2.6

Fa18 Exam
Find the values of the constants a and b so that the following function is continuous at $x=0$. If this is not possible,
explain why.

$$
f(x)= \begin{cases}\frac{4-\sqrt{16+49 x^{2}}}{a x^{2}} & \text { if } x<0 \\ -23 & x=0 \\ \frac{\tan (2 b x)}{x} & \text { if } x>0\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.
Ex. F-5
2.6
Sp19 Exam

Find the value of k that makes $f(x)$ continuous at $x=1$. If no such value of k exists, write "does not exist".

$$
f(x)= \begin{cases}k \cos (\pi x)-3 x^{2} & \text { if } x \leq 1 \\ 8 e^{x}-k \ln (x) & \text { if } x>1\end{cases}
$$

Ex. F-6 2.6
Sp19 Exam
Consider the function $f(x)$ below.

$$
f(x)= \begin{cases}\frac{4-\sqrt{2 x+10}}{x-3} & \text { if } x \neq 3 \\ 1 & \text { if } x=3\end{cases}
$$

Is $f(x)$ continuous at $x=3$? Explain your answer. In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-7 2.6

Fa19 Exam
Find the values of a and b that make f continuous at $x=1$ or determine that no such values exist.

$$
f(x)= \begin{cases}-3 x+a x^{2} & x<1 \\ b & x=1 \\ 4 a x-1 & x>1\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-8 2.6 ${ }^{\text {sp20 }}$ Exam
Determine where f is continuous. Write your answer using interval notation.

$$
f(x)= \begin{cases}9-16 x & x<0 \\ 3 x^{2}-x^{3} & 0 \leq x \leq 3 \\ 1-e^{x-3} & x>3\end{cases}
$$

Ex. F-9 2.6
Find the value of k that makes f continuous at $x=-2$ or determine that no such value of k exists.

$$
f(x)= \begin{cases}3 x^{2}+k & x<-2 \\ -10 & x=-2 \\ k x^{3}-6 & x>-2\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-10
2.6

Sp20 Exam
Consider the function $f(x)$, where k is an unspecified constant. Find the value of k for which f continuous for all x, or show that no such value of k exists.

$$
f(x)= \begin{cases}38+k x & x<3 \\ k x^{2}+x-k & x \geq 3\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-11

2.6

Su20 Exam
In a certain parking garage, the cost of parking is $\$ 20$ per hour or any fraction thereof. For example, if you are in the garage for two hours and fifteen minutes, you pay $\$ 60$ ($\$ 20$ for the first hour, $\$ 20$ for the second hour, and $\$ 20$ for the fifteen-minute portion of the third hour). Let $P(t)$ be the cost of parking for t hours, where t is any non-negative real number. For example, $P(2.25)=60$. Is the following true or false?
" $P(t)$ is a continuous function of $t . "$
You must justify your answer.

Ex. F-12

2.6

Su20 Exam
Consider the following function, where a and b are unspecified constants.

$$
f(x)= \begin{cases}3 & x \leq-1 \\ a x^{2}+2 x+b & -1<x \leq 2 \\ 14-a x & x>2\end{cases}
$$

Find the values of a and b for which f is continuous for all x, or determine that no such values exist. In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.
Ex. D-7 $2.4,2.6 \quad$ Su20 Exam

Let $f(x)=\frac{9 x-x^{3}}{x^{2}+x-6}$.
(a) Calculate all vertical asymptotes of f. Justify your answer.
(b) Where is f discontinuous?
(c) For each point at which f is discontinuous, determine what value should be reassigned to f, if possible, to guarantee that f will be continuous there.

Ex. F-13

2.6 Fa20 Exam

Determine where the following function is continuous. In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & x<3 \\ 0 & x=3 \\ 5 x-9 & 3<x<4 \\ 11 & x=4 \\ 27-x^{2} & x>4\end{cases}
$$

Ex. F-14 2.6
Consider the function f below, where A, B, and C are unspecified constants.
2.6

$$
f(x)= \begin{cases}2 x^{3}+A x & x<-1 \\ C & x=-1 \\ B x^{2}+4 & x>-1\end{cases}
$$

(a) Calculate $\lim _{x \rightarrow-1^{-}} f(x)$.
(b) Calculate $\lim _{x \rightarrow-1^{+}} f(x)$.
(c) How must A and B be related if $\lim _{x \rightarrow-1} f(x)$ exists?
(d) Suppose $C=10$ and f is continuous for all x. Find the values of A and B.

Ex. F-15

2.6

Fa20 Exam
Which of the following equations expresses the fact that $f(x)$ is continuous at $x=6$. (There is only one correct choice.)
(a) $\lim _{x \rightarrow 6} f(6)=f(6)$
(d) $\lim _{x \rightarrow 6} f(x)=6$
(g) $\lim _{x \rightarrow \infty} f(x)=f(6)$
(b) $\lim _{x \rightarrow 6} f(6)=6$
(e) $\lim _{x \rightarrow 6} f(x)=0$
(c) $\lim _{x \rightarrow 6} f(x)=f(6)$
(f) $\lim _{x \rightarrow 6} f(x)=\infty$
(h) $\lim _{x \rightarrow \infty} f(x)=\infty$

Ex. E-8 $\quad 2.5,2.6,3.1 / 3.2$
Sp21 Exam
Use the graph of f below to answer the following questions. Dashed lines indicate the location of asymptotes.

(a) Calculate $\lim _{x \rightarrow \infty} f(x)$.
(b) Calculate $\lim _{x \rightarrow-\infty} f(x)$.
(c) List the values of x where f is not continuous.
(d) List the values of x where f is not differentiable.
(e) What is the sign of $f^{\prime}(-1)$? (choices: positive, negative, zero, does not exist)
(f) What is the sign of $f^{\prime}(0.5)$? (choices: positive, negative, zero, does not exist)

Ex. F-16

$$
2.6
$$

Consider the function g below, where a and b are unspecified constants. Assume that g is continuous for all x.

$$
g(x)= \begin{cases}b e^{x}+a+1 & x \leq 0 \\ a x^{2}+b(x+3) & 0<x \leq 1 \\ a \cos (\pi x)+7 b x & 1<x\end{cases}
$$

(a) What relation must hold between a and b for g to be continuous at $x=0$? Your answer should be an equation involving a and b.
(b) What relation must hold between a and b for g to be continuous at $x=1$? Your answer should be an equation involving a and b.
(c) Calculate the values of a and b.

Ex. F-17

2.6

Fa21 Exam
Consider the piecewise-defined function $f(x)$ below; A and B are unspecified constants and $g(x)$ is an unspecified function with domain $[94, \infty)$.

$$
f(x)= \begin{cases}A x^{2}+8 & x<75 \\ \ln (B)+6 & x=75 \\ \frac{x-75}{\sqrt{x+6}-9} & 75<x<94 \\ 19 & x=94 \\ g(x) & x>94\end{cases}
$$

(a) Find $\lim _{x \rightarrow 75^{-}} f(x)$ in terms of A and B.
(b) Find $\lim _{x \rightarrow 75^{+}} f(x)$ in terms of A and B.
(c) Find the exact values of A and B for which f is continuous at $x=75$.
(d) Suppose $g(94)=19$. What does this imply about $\lim _{x \rightarrow 94} f(x)$? Select the best answer.
(i) $\lim _{x \rightarrow 94} f(x)$ exists.
(ii) $\lim _{x \rightarrow 94} f(x)$ does not exist.
(iii) It gives no information about $\lim _{x \rightarrow 94} f(x)$.

Ex. F-18 2.6 Fa21 Exam

Consider the following function.

$$
f(x)=\frac{x^{2}-x-6}{x^{3}-2 x^{2}-3 x}
$$

(a) Where is f discontinuous?
(b) At the leftmost x-value where f is discontinuous, what type of discontinuity does f have (removable, jump, infinite (vertical asymptote), or other)?
(c) At the rightmost x-value where f is discontinuous, what type of discontinuity does f have (removable, jump, infinite (vertical asymptote), or other)?
Ex. F-19 2.6 Exa21 Exam

Let $f(x)$ be the following function, where k is an unspecified constant. Find the value of k that makes f continuous at $x=2$ or determine that no such value of k exists.

$$
f(x)= \begin{cases}27 x-k x^{2} & x<2 \\ -6 & x=2 \\ 3 x^{3}+k & x>2\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-20
2.6 Sp22 Exam

Determine where $f(x)$ is continuous. In your work, you must use limit-based methods to solve this problem. Solutions
that have work that is not based on limits will not receive full credit.

$$
f(x)= \begin{cases}\frac{(x+1)^{2}-16}{2 x-6} & \text { if } x<3 \\ 3-\ln (x-2) & \text { if } x \geq 3\end{cases}
$$

Ex. F-21 2.6 Sp22 Exam
Consider the function $f(x)$ defined below, where A and B are unspecified constants. Find the values of A and B for which f is continuous at $x=2$, or determine that no such values exist.

$$
f(x)= \begin{cases}A x+B-4 & \text { if } x<2 \\ 9 & \text { if } x=2 \\ A x^{2}-5 & \text { if } x>2\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-22

2.6

Su22 Exam
Consider the function $f(x)=\frac{\sin (7 x)}{x^{2}-5 x}$.
(a) Find the domain of f. Write your answer using interval notation.
(b) Find the x-values where f is discontinuous.
(c) For each value of x where f is discontinuous, classify the type of discontinuity as "removable", "jump", "infinite", or "essential". Clearly label your work and justify your answers.

Ex. F-23

2.6 Su22 Exam
Consider the limit $\lim _{x \rightarrow 3}\left(\frac{x^{3}-4 x^{2}+a x}{x^{2}-9}\right)$, where a is an unspecified constant.
(a) For what values of a does this limit exist? Explain your answer.
(b) Given that the limit does exist, what is its value?
Ex. F-24 2.6 Su22 Exam

Consider the function below, where a and b are unspecified constants. Find the values of a and b for which f is continuous for all x, or determine that no such values exist.

$$
f(x)= \begin{cases}a x^{2}+3 x+b & x<-1 \\ 2+a x+\sin \left(\frac{\pi x}{2}\right) & -1 \leq x<4 \\ b(x-3)^{2}+1 & x \geq 4\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.
Ex. F-25 2.6 Fa22 Exam

On the axes provided, sketch the graph of a function $f(x)$ that satisfies all of the following properties. Note: Make sure to read these properties carefully!

- the domain of $f(x)$ is $[-10,7) \cup(7,10]$
- $\lim _{x \rightarrow-8} f(x)$ exists but f is discontinuous at $x=-8$
- $\lim _{x \rightarrow-5^{+}} f(x)=f(-5)$ but $\lim _{x \rightarrow-5} f(x)$ does not exist
- $\lim _{x \rightarrow 2^{-}} f(x)=4$ and f is continuous at $x=2$
- the line $x=5$ is a vertical asymptote for f (Note: $x=5$ is in the domain of f.)
- $\lim _{x \rightarrow 7} f(x)=+\infty$ (Note: $x=7$ is not in the domain of f.)
Ex. F-26 2.6 Fa22 Exam

Consider the function below, where a and b are unspecified constants.

$$
f(x)= \begin{cases}\frac{\sin (4 x) \sin (6 x)}{x^{2}} & x<0 \\ a x+b & 0 \leq x \leq 1 \\ \frac{5 x+2}{x-1}-\frac{2 x+5}{x^{2}-x} & x>1\end{cases}
$$

(a) Calculate $\lim _{x \rightarrow 0^{-}} f(x)$.
(b) Calculate $\lim _{x \rightarrow 1^{+}} f(x)$.
(c) Find the values of a and b for which f is continuous for all x, or determine that no such values exist. In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Ex. F-27
 2.6

Sp18 Quiz
Consider the following function.

$$
f(x)= \begin{cases}x^{3}+27 & \text { if } x \leq-3 \\ \frac{x+3}{2-\sqrt{1-x}} & \text { if }-3<x<1 \\ 4 & \text { if } x=1 \\ x^{2}+2 x-1 & \text { if } 1<x\end{cases}
$$

(a) Find all points where f is discontinuous. Be sure to give a full justification here.
(b) For each x-value you found in part (a), determine what value should be assigned to f, if any, to guarantee that f will be continuous there. Justify your answer.
(For example, if you claim f is discontinuous at $x=a$, then you should determine the value that should be assigned to $f(a)$, if any, to guarantee that f will be continuous at $x=a$.)

Ex. F-28

2.6
${ }^{\text {Sp20 }}$ Quiz
Find the values of a and b for which f is continuous for all x, or show that no such values of a and b exist. You must use proper calculus methods and clearly explain your work using limits.

$$
f(x)= \begin{cases}a x^{2}-b x-6 & \text { if } x<3 \\ b & \text { if } x=3 \\ 10 x-x^{3} & \text { if } x>3\end{cases}
$$

Ex. F-29
Determine where $f(x)$ is continuous. Write your answer using interval notation.

$$
f(x)= \begin{cases}4 x^{2}-10 & \text { if } x<-1 \\ 6 \sin \left(\frac{\pi x}{2}\right) & \text { if }-1 \leq x \leq 4 \\ x-4^{x-3} & \text { if } x>4\end{cases}
$$

Ex. F-30 2.6
Consider the function $f(x)$ below, where a and b are unspecified constants.

$$
f(x)= \begin{cases}a x^{2}-7 x+b & x<2 \\ 10 & x=2 \\ a e^{x-2}+b \ln (x-1) & x>2\end{cases}
$$

Find the values of a and b for which f is continuous for all x, or determine that no such values exist. Write "NONE" in the answer boxes if no such values exist.

In your work, you must use proper notation and limit-based methods to solve this problem. Solutions that have work that does not have proper notation or which is not based on limits will not receive full credit.
Ex. F-31 2.6

Let $f(x)=\frac{x^{3}-7 x^{2}+10 x}{x^{2}-6 x}$.
(a) Find the domain of f. Write your answer using interval notation.
(b) Find all values of x where f is discontinuous.
(c) For each value of x where f is discontinuous, classify the type of discontinuity as "removable", "jump", "infinite", or "essential". Clearly label your work and justify your answers.

Ex. F-32

Find the value of A that makes $f(x)$ continuous for all x, or determine that no such value exists. Write "DNE" if no such value of A exists. Your solution must be based on limits to receive full credit.

$$
f(x)= \begin{cases}\frac{\sin (A x)}{x}-2 & \text { if } x<0 \\ 9 & \text { if } x=0 \\ 3 x^{3}-A \cos (x)+10 & \text { if } x>0\end{cases}
$$

Ex. F-33

Determine where $f(x)$ is continuous.

$$
f(x)= \begin{cases}3 x^{2}-x+1 & \text { if } x<-2 \\ 15+\sin (2 \pi x) & \text { if }-2 \leq x<3 \\ 2 x-4 & \text { if } 3 \leq x\end{cases}
$$

Ex. F-34

Let $f(x)=\frac{x^{3}-9 x}{x+3}$.
(a) What is the domain of f ?
(b) Find all points where f is discontinuous.
(c) For each point where f is discontinuous, classify the type of discontinuity as removable, jump, infinite, or other.

Ex. F-35

2.6

Let $f(x)=\frac{\sqrt{2 x^{2}+1}-1}{x^{2}(x-3)}$.
(a) What is the domain of f ?
(b) Find all points where f is discontinuous.
(c) For each point where f is discontinuous, classify the type of discontinuity as removable, jump, infinite, or other.

Ex. F-36

2.6

Find the values of the constants a and b that make f continuous for all real numbers.

$$
f(x)= \begin{cases}a x^{2}-x & \text { if } x<4 \\ 6 & \text { if } x=4 \\ x^{3}+b x & \text { if } x>4\end{cases}
$$

Ex. F-37

Find the values of the constants a and b that make f continuous for all real numbers.

$$
f(x)= \begin{cases}a x+2 b & \text { if } x \leq 0 \\ x^{2}+3 a-b & \text { if } 0<x \leq 2 \\ 3 x-5 & \text { if } x>2\end{cases}
$$

Ex. F-38

The figure below shows the graph of $y=f(x)$. Find all values of x in the interval $(-4,4)$ at which f is not continuous.

Ex. F-39

2.6

Find the values of the constants a and b that make f continuous at $x=9$.

$$
f(x)= \begin{cases}\sin (2 \pi x)-2 a x & \text { if } x<9 \\ b & \text { if } x=9 \\ \frac{x-9}{\sqrt{x}-3} & \text { if } x>9\end{cases}
$$

Ex. F-40
2.6

Consider the function $f(x)$, where a and b are unspecified constants.

$$
f(x)= \begin{cases}\frac{2 x}{\sin (a x)} & \text { if } x<0 \\ x-4 & \text { if } 0 \leq x<5 \\ b & \text { if } x=5 \\ \frac{4-\sqrt{3 x+1}}{x-5} & \text { if } x>5\end{cases}
$$

(a) Find the value of a so that f is continuous at $x=0$, or show that no such value exists.
(b) Find the value of b so that f is continuous at $x=5$, or show that no such value exists.

Ex. F-41

2.6

Consider the function

$$
f(x)= \begin{cases}a x^{2}-3 b & \text { if } x \leq-1 \\ \cos (\pi x)+a x & \text { if }-1<x<2 \\ 2 b-x^{3} & \text { if } x \geq 2\end{cases}
$$

where a and b are unspecified constants. For what values of a and b, if any, is f continuous for all x ?

Ex. F-42 $\quad 2.6 \quad \star$ Challenge

Consider $f(x)=\frac{\tan (2 x)}{|5 x|}$.
(a) Where is f not continuous?
(b) Is it possible to redefine f at $x=0$ to make f continuous there? Explain your answer.

Hint: For the limit of f as $x \rightarrow 0$, examine the one-sided limits first.

Ex. F-43 $\quad 2.6 \quad \star$ Challenge
Find the values of the constants a and b that make f continuous at $x=0$. You may assume $a>0$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1-\cos (a x)}{x^{2}} & ,
\end{array} \quad x<0\right.
$$

3 Chapter 3: Derivatives

§3.1, 3.2: Introduction to the Derivative

Ex. G-1

$3.1 / 3.2$
Sp18 Exam
The parts of this question are independent of each other.
(a) Given the function $g(x)$, state the definition of $g^{\prime}(4)$.
(b) Let $F(x)=\frac{1}{3 x-5}$. Calculate $F^{\prime}(2)$ directly from the definition. Show all work. If you simply quote a rule, you will receive no credit. You must use the definition of derivative.

Ex. F-2 $\quad 2.6,3.1 / 3.2$

 Sp18 ExamFor each part, use the graph of $y=f(x)$ below.

(a) Find where $f(x)$ is not continuous in the interval $(-5,5)$.
(b) Find where $f(x)$ is not differentiable in the interval $(-5,5)$.
(c) Find where $f^{\prime}(x)=0$ in the interval $(-5,5)$.
(d) Find where $f^{\prime}(x)<0$ in the interval $(-5,5)$.

Ex. G-2 $3.1 / 3.2$ Exam

Find an equation of each line that is both tangent to the graph of $f(x)=4 x^{2}-3 x-1$ and parallel to the line $y=13 x-5$.
Ex. G-3 $3.1 / 3.2 \quad$ Sp 19 Exam

Let $g(x)=6-\frac{9}{x}$. Calculate $g^{\prime}(3)$ directly from the limit definition of the derivative. If you simply quote a rule, you will receive no credit. You must use the definition of derivative.
Ex. G-4
$3.1 / 3.2$
Sp20 Exam

Let $f(x)=\frac{x+8}{x-3}$. Use the limit definition of derivative to calculate $f^{\prime}(2)$. If you simply quote a rule, you will receive no credit. You must use the definition of derivative.

Ex. G-5

$3.1 / 3.2$
Sp20 Exam
Which statement is true about the graph of $f(x)=|x|+91$ at the point $(0,91)$?
(a) The graph has a tangent line at $y=91$.
(b) The graph has infinitely many tangent lines.
(c) The graph has no tangent line.
(d) The graph has two tangent lines: $y=x+91$ and $y=-x+91$.
(e) None of the above statements is true.

Ex. G-6
$3.1 / 3.2,4.1,4.9$
${ }^{\text {Sp } 20}$ Exam
Suppose the derivative of f is $f^{\prime}(x)=3 x^{2}-6 x-9$ and that $f(1)=10$.
(a) Find an equation of the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Find the critical points of f.
(c) Where does f have a local minimum value? local maximum value?
(d) Calculate $f(0)$.
(e) Calculate the absolute maximum value of f on the interval $[0,6]$. At what x-value does it occur?

Ex. G-7
$3.1 / 3.2$
Su20 Exam
Explain the relationship between $f^{\prime}(3)$ and the line tangent to the graph of $y=f(x)$ at $x=3$.

Ex. G-8
$3.1 / 3.2$
Su20 Exam
Suppose $f^{\prime}(7)$ exists. What can be said about the limit $\lim _{x \rightarrow 7} f(x)$?

Ex. G-9

3.1/3.2

Su20 Exam
Consider the following limit.

$$
\lim _{h \rightarrow 0}\left(\frac{(4+h)^{3 / 2}-8}{h}\right)
$$

Use the limit definition of derivative to identify this limit as the derivative of some function $f(x)$ at the point $x=a$. Then calculate the value of the limit.

Ex. G-10
$3.1 / 3.2$
Su20 Exam
Use the graph of $y=f(x)$ below to answer the following questions.

(a) In the interval $(-6,10)$, where is f not differentiable?
(b) Calculate a reasonable estimate of $f^{\prime}(0)$. Explain your reasoning.
(c) In the interval $(-6,10)$, where is $f^{\prime}(x)=0$?
(d) In the interval $(-6,10)$, where is $f^{\prime}(x)<0$?
(e) In the interval $(-6,10)$, where is $f^{\prime}(x)>0$?

Ex. G-11
3.1/3.2

Fa20 Exam
Consider the graph of $y=f(x)$ below.

(a) For which values of x is $f^{\prime}(x) \geq 0$? Choose from $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}. Select all that apply.
(b) For which values of x does $f^{\prime}(x)$ not exist? Choose from $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}. Select all that apply.
(c) Give a brief, one-sentence explanation of your answer to part (b).

Ex. G-12 $\quad 3.1 / 3.2$
Fa20 Exam
Consider the following limit.

$$
\lim _{x \rightarrow \frac{\pi}{8}}\left(\frac{\tan (2 x)-1}{x-\frac{\pi}{8}}\right)
$$

(a) Use the limit definition of derivative to identify this limit as the derivative of some function $f(x)$ at the point $x=a$. You must explicitly identify f and a.
(b) Use your identifications in part (a) to calculate the given limit. Show all work.

Ex. G-13 $\quad 3.1 / 3.2$
Sp21 Exam
The following limit represents the derivative of a function f at a point a.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{5 \ln \left(e^{4}+h\right)-20}{h}\right)
$$

(a) Find a possible function $f(x)$.
(b) For your choice of f in part (a), find a possible value of a.
(c) Calculate the value of the limit. Explain your calculation briefly in one sentence.

Ex. E-8 $\quad 2.5,2.6,3.1 / 3.2$
Sp21 Exam
Use the graph of f below to answer the following questions. Dashed lines indicate the location of asymptotes.
$2.5,2.6,3.1 / 3.2$
sp21 Exam

(a) Calculate $\lim _{x \rightarrow \infty} f(x)$.
(b) Calculate $\lim _{x \rightarrow-\infty} f(x)$.
(c) List the values of x where f is not continuous.
(d) List the values of x where f is not differentiable.
(e) What is the sign of $f^{\prime}(-1)$? (choices: positive, negative, zero, does not exist)
(f) What is the sign of $f^{\prime}(0.5)$? (choices: positive, negative, zero, does not exist)

Ex. G-14 3.1/3.2, 3.3/3.4/3.5/3.9
Fa21 Exam
The following limit represents the derivative of a function f at a point a.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{9 \tan \left(\frac{\pi}{6}+h\right)-\frac{9}{\sqrt{3}}}{h}\right)
$$

(a) Find a possible pair for f and a.
(b) Calculate the value of the limit.

Ex. G-15 $3.1 / 3.2 \quad$ Fa21 Exam
For each part, use the graph of $y=f(x)$ to determine whether the value exists. If the value exists, state its sign (negative, positive, or zero).
(a) $f^{\prime}(1)$
(b) $f^{\prime}(2)$
(c) $f^{\prime}(3.5)$
(d) $f^{\prime}(7)$

Let $f(x)$ and $g(x)$ be functions such that $f^{\prime}(-8)=g^{\prime}(-8)$ and the line tangent to the graph of f at $x=-8$ is $y=-7 x+6$. For each part, compute the desired value, if possible.
(a) $f(-8)$
(b) $f^{\prime}(-8)$
(c) $g(-8)$
(d) $g^{\prime}(-8)$

Ex. G-17

$3.1 / 3.2$
Sp22 Exam
For each part, use the graph of $y=f(x)$ to determine whether the value exists. If the value exists, state its sign (negative, positive, or zero).
(a) $f^{\prime}(-4)$
(b) $f^{\prime}(-2)$
(c) $f^{\prime}(0)$
(d) $f^{\prime}(5)$
(e) $f^{\prime}(8)$

Ex. G-18
$3.1 / 3.2$
Sp22 Exam
For both parts below, $f(x)=\sqrt{2 x+1}$.
(a) Use the limit definition of the derivative to calculate $f^{\prime}(4)$.
(b) Find an equation for the line tangent to the graph of $y=f(x)$ at $x=4$.

Ex. G-19

$3.1 / 3.2$
Su22 Exam
Find the x-coordinate of each point on the graph of $y=6 x^{3}-9 x^{2}-16 x+5$ at which the tangent line is perpendicular to the line $x+20 y=10$.

Ex. G-20

$3.1 / 3.2,3.3 / 3.4 / 3.5 / 3.9$ Su22 Exam

Suppose that an equation to the tangent line to $y=f(x)$ at $x=9$ is $y=3 x-20$. Let $g(x)=x f\left(x^{2}\right)$.
(a) Calculate $f(9)$ and $f^{\prime}(9)$. Explain.
(b) Calculate $g^{\prime}(x)$.
(c) Find the tangent line to $y=g(x)$ at $x=-3$.

Ex. G-21

$3.1 / 3.2$
Su22 Exam
Let $f(x)=\frac{4}{x-6}+3$. Use the limit definition of derivative to calculate $f^{\prime}(8)$. If you simply quote a rule, you will receive no credit. You must use the definition of derivative.

For each part, use the graph of $y=f(x)$ to determine whether the value exists. If the value exists, state its sign (negative, positive, or zero).
(a) $f^{\prime}(-3)$
(b) $f^{\prime}(-2)$
(c) $f^{\prime}(-1)$
(d) $f^{\prime}(1)$
(e) $f^{\prime}(3)$

Ex. G-23
$3.1 / 3.2$
Fa22 Exam
Let $f(x)=\frac{8 x}{x+5}$.
(a) Calculate $f^{\prime}(x)$ by any method.
(b) Use the limit definition of derivative to calculate $f^{\prime}(3)$. Hint: Use your answer from part (a) to check your final answer.
Ex. G-24 $\quad 3.1 / 3.2 \quad$ Sp18 Quiz

Let $f(x)=\frac{3-x}{1+x}$. Use the limit definition of derivative to calculate $f^{\prime}(1)$.
If you simply quote a rule, you will receive zero credit. You must use the definition of derivative.
Ex. G-25 $3.1 / 3.2$ Sp20 Quiz

Let $f(x)=x^{-1}-3 x^{-2}$. Use the limit definition of the derivative to calculate $f^{\prime}(1)$. (If you simply use shortcut rules, you will receive no credit.)

Ex. G-26
$3.1 / 3.2$
$\mathrm{Sp} 20^{\text {Quiz }}$
Let $f(x)=3 x^{2}-5$. Use the limit definition of derivative to find $f^{\prime}(x)$.

Ex. G-27
$3.1 / 3.2$
Su22 Quiz
Let $f(x)=\frac{x^{2}-3}{x-1}$. Use the limit definition of derivative to calculate $f^{\prime}(2)$.

Ex. G-28
$3.1 / 3.2$
Su22 Quiz
Use the limit definition of derivative to find an equation of the tangent line to $f(x)=2 x^{2}+x+5$ at $x=-1$.

Ex. G-29

$3.1 / 3.2$
${ }^{\text {Fa22 }}$ Quiz
The limit below is equal to the derivative of some function $f(x)$ at some point $x=a$. Identify both the function f
and the value of a. No work is required.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{\frac{1}{(3+h)^{2}+1}-\frac{1}{10}}{h}\right)
$$

Ex. G-30 $\quad 3.1 / 3.2 \quad$ Fa22 Quiz

Let $f(x)=2 x^{2}-6 x+10$.
(a) Use the limit definition of derivative to calculate $f^{\prime}(-1)$.
(b) Find the tangent line to $y=f(x)$ at $x=-1$.

Ex. G-31 $3.1 / 3.2$

Suppose the line described by $y=5 x-9$ is tangent to the graph of $y=f(x)$ at $x=4$. For each part, calculate the value or explain why there is not enough information to do so.

Note: The function $f(x)$ is unknown. You can't assume that $f(x)=5 x-9$.
(a) $f(4)$
(b) $f(3)$
(c) $f^{\prime}(4)$
(d) $f^{\prime}(3)$

Ex. G-32 $3.1 / 3.2$

For each part, use the limit definition of the derivative to calculate the derivative of f at $x=5$. Then find an equation for the line tangent to the graph of $y=f(x)$ at $x=5$.
(a) $f(x)=2 x-1$
(c) $f(x)=\sqrt{2 x-1}$
(e) $f(x)=\frac{1}{\sqrt{2 x-1}}$
(b) $f(x)=(2 x-1)^{2}$
(d) $f(x)=\frac{1}{2 x-1}$
$3.1 / 3.2$
Let $f(x)=3 \sqrt{x}$. Use the limit definition of the derivative to find $f^{\prime}(x)$. Show all work.

Ex. G-34
 $3.1 / 3.2$

Let $f(x)=\frac{x+2}{x-3}$. Use the limit definition of derivative to find $f^{\prime}(2)$.

Ex. G-35 $3.1 / 3.2$

Let $f(x)=\frac{3 x+12}{x^{2}-1}$. Calculate $f^{\prime}(2)$ directly from the definition of the derivative. You are not allowed to use any shortcut rules.

Ex. G-36 $\quad 3.1 / 3.2 \quad \star$ Challenge

The graph of $y=f(x)$ is given below. Sketch a graph of $y=f^{\prime}(x)$. Only the general shape is important. The graph does not have to be to scale.

Ex. G-37
$3.1 / 3.2$
\star Challenge
Consider the following function, where c is an unspecified constant

$$
f(x)= \begin{cases}-x^{2} & \text { if } x<0 \\ x^{2}+2 x & \text { if } 0 \leq x<1 \\ 6 x-x^{2}+c & \text { if } x \geq 1\end{cases}
$$

(a) Show precisely that $f^{\prime}(0)$ does not exist.
(b) Find the value of c that makes f differentiable at $x=1$ or show that no such value exists.

Ex. G-38

$3.1 / 3.2$
\star Challenge
Use the limit definition of derivative to find the derivative of $f(x)=x^{2 / 3}$.

§3.3, 3.4, 3.5, 3.9: Rules for Computing Derivatives

Ex. H-1 $\quad 3.3 / 3.4 / 3.5 / 3.9,3.7$
Sp18 Exam
For each part, calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer.
(a) $f(x)=\frac{x^{-1} x^{8 / 3}}{4 \sqrt[3]{x^{2}}}$
(b) $f(x)=(x+\sqrt{5 x-6})^{1 / 4}$
(c) $f(x)=\frac{x^{2} e^{x}}{\ln (x)-\cos (x)}$

Ex. H-2

$3.3 / 3.4 / 3.5 / 3.9$
Fa18 Exam
Calculate $f^{\prime}(x)$ where f is the function below.

$$
f(x)=\left(\frac{x^{8} \sin (3 x)}{\ln (x)-\ln (11)}\right)^{2 / 3}
$$

After calculating the derivative, do not simplify your answer.

Ex. H-3 $\quad 3.3 / 3.4 / 3.5 / 3.9,3.7$

Fa18 Exam
Suppose f and g are differentiable for all x. For each part, use the table below or explain why there is not enough information.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	-1	-4	4	2
1	-1	-3	2	-4
2	-4	3	1	-1

(a) Let $F(x)=\frac{f(x)}{g(x)}$. Calculate $F^{\prime}(0)$.
(b) Let $G(x)=f(x g(x))$. Calculate $G^{\prime}(1)$.

Ex. H-4
$3.3 / 3.4 / 3.5 / 3.9$
Sp19 Exam
For each part, calculate $f^{\prime}(x)$. Do not simplify your answers.
(a) $f(x)=e^{x} \sin (x)$
(b) $f(x)=\frac{\ln \left(e^{4 x}+6\right)}{9 \tan (x)-\pi^{9}}$

Ex. H-5

$3.3 / 3.4 / 3.5 / 3.9$
Sp19 Exam
Find the slope of the line tangent to the graph of $y=3 \ln (x)-6 \sqrt{x}$ at $x=3$.

Ex. H-6

$3.3 / 3.4 / 3.5 / 3.9$
Fa19 Exam
For each part, calculate $f^{\prime}(x)$. Do not simplify your answers.
(a) $f(x)=\frac{\ln (x)}{10-x^{3}}$
(b) $f(x)=\sqrt{\cos \left(3+x^{5}\right)}$

Ex. H-7

$3.3 / 3.4 / 3.5 / 3.9$
Fa19 Exam
Find all points on the graph of $f(x)=x \ln (x)$ where the tangent line is horizontal.

Ex. H-8

$3.3 / 3.4 / 3.5 / 3.9$
Sp20 Exam
For each part, calculate $f^{\prime}(x)$. Do not simplify your answers.
(a) $f(x)=2 x^{2}-\frac{1}{5 x}-8 \sqrt{x}+14 \pi^{3 / 2}$
(c) $f(x)=\sin \left(12 x-x^{9}\right) \ln (x)$
(b) $f(x)=\left(\frac{x^{4}-20 x}{x^{3}+20}\right)^{2 / 3}$
(d) $f(x)=\frac{e^{5 \sec (6 x)+1}}{7}$

Ex. H-9

$3.3 / 3.4 / 3.5 / 3.9$
Sp20
Exam
Find the x-coordinate of each point on the graph of $f(x)=3 x+\frac{10}{x}$ where the tangent line is parallel to the line $y=20-2 x$.
Ex. H-10 $3.3 / 3.4 / 3.5 / 3.9 \quad$ Su20 Exam

Let $f(x)=x^{15} e^{2-5 x}$. Find the x-coordinate of each point where the tangent line to f is horizontal.
Ex. H-11 $3.3 / 3.4 / 3.5 / 3.9 \quad$ Su20 Exam
Let $f(x)=3 x^{5}-2 x^{3}+7 x-16$. Find an equation of the tangent line to f at $x=-1$.

Ex. H-12 Fa20 Exam

Consider the function $f(x)=x^{3}-6 x+c$, where c is an unspecified constant. Suppose the line $102 x-y=609$ is tangent to the graph of $y=f(x)$ at the point P in the first quadrant.
(a) What is the value of $f^{\prime}(x)$ at the point P ? Give a brief, one-sentence explanation.
(b) Find the x-coordinate of P.
(c) Find the y-coordinate of P.
(d) Find the value of c.

Let $f(x)=\frac{8 e^{x}}{x-3}$. Find the equation of each horizontal tangent line of f.
Ex. H-14 $3.3 / 3.4 / 3.5 / 3.9 \quad$ Fazo Exam

Suppose $f(1)=-8$ and $f^{\prime}(1)=12$. Let $F(x)=x^{3} f(x)+10$. Find an equation of the tangent line to F at $x=1$.

Ex. H-15

$3.3 / 3.4 / 3.5 / 3.9$
Sp21 Exam
Suppose that an equation of the tangent line to f at $x=5$ is $y=3 x-8$. Let $g(x)=\frac{f(x)}{x^{2}+10}$.
(a) Calculate $f(5)$ and $f^{\prime}(5)$.
(b) Calculate $g(5)$ and $g^{\prime}(5)$.
(c) Write down an equation of the tangent line to g at $x=5$.
Ex. H-16 $3.3 / 3.4 / 3.5 / 3.9,3.7 \quad$ Sp21 Exam

Suppose $f(2)=-7$ and $f^{\prime}(2)=3$.
(a) Let $g(x)=\cos (x) f(x)$. Calculate $g^{\prime}(2)$.
(b) Let $h(x)=e^{2 f(x)+3}$. Calculate $h^{\prime}(2)$.
Ex. H-17 $3.3 / 3.4 / 3.5 / 3.9 \quad$ Sp21 Exam

Let $f(x)=x^{2}+b x+c$, where b and c are unspecified constants. An equation of the tangent line to f at $x=3$ is $12 x+y=10$.
(a) Calculate $f(3)$ and $f^{\prime}(3)$. Your answers must not contain the letters b or c.
(b) Calculate the value of b.
(c) Calculate the value of c.

Ex. G-14 3.1/3.2, 3.3/3.4/3.5/3.9
The following limit represents the derivative of a function f at a point a.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{9 \tan \left(\frac{\pi}{6}+h\right)-\frac{9}{\sqrt{3}}}{h}\right)
$$

(a) Find a possible pair for f and a.
(b) Calculate the value of the limit.

Ex. H-18 $\quad 3.3 / 3.4 / 3.5 / 3.9,3.7$

Sp22 Exam
For each part, calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer.
(a) $f(x)=3 x^{13}+7 \sqrt{x}-\frac{5}{x^{3}}+12$
(b) $f(x)=\frac{e^{x}-2 \sin (x)}{\ln (x)+x^{3}}$
(c) $f(x)=2 x^{4} \cos \left(3 e^{x}\right)$

Ex. H-19

$3.3 / 3.4 / 3.5 / 3.9$
Sp22 Exam
For both parts below, suppose the line tangent to the graph of $y=f(x)$ at $x=5$ is $y=2 x-3$.
(a) Calculate $f(5)$ and $f^{\prime}(5)$.
(b) Let $g(x)=x f(x)+14$. Find an equation of the line tangent to the graph of $y=g(x)$ at $x=5$.

Ex. H-20 3.3/3.4/3.5/3.9, 3.7
Su22 Exam
For each part, calculate the derivative. After calculating the derivative, do not simplify your answer.
(a) $\frac{d}{d x}\left(\tan \left(\frac{\ln (x)}{2 x-5}\right)\right)$
(b) $\frac{d}{d x}\left(3 x^{7} \cos (x)-8 e^{3 x}\right)$
(c) $\frac{d}{d x}\left(10 x^{12}-\frac{3}{x^{3}}+\sqrt[4]{x}\right)$

Ex. G-20 3.1/3.2, 3.3/3.4/3.5/3.9

Suppose that an equation to the tangent line to $y=f(x)$ at $x=9$ is $y=3 x-20$. Let $g(x)=x f\left(x^{2}\right)$.
(a) Calculate $f(9)$ and $f^{\prime}(9)$. Explain.
(b) Calculate $g^{\prime}(x)$.
(c) Find the tangent line to $y=g(x)$ at $x=-3$.

Ex. H-21

$3.3 / 3.4 / 3.5 / 3.9$
Let $g(x)=x^{2} \ln (x)$. Find an equation of the tangent line at $x=e$.

Ex. H-22

$3.3 / 3.4 / 3.5 / 3.9$
Sp20
Quiz
Let $f(x)=\frac{50 e^{x}}{x^{2}+1}$. Find an equation of the line tangent to the graph of $y=f(x)$ at $x=3$.

Ex. H-23 $\quad 3.3 / 3.4 / 3.5 / 3.9,3.7$
Calculate each derivative below. Do not simplify your answer.
(a) $\frac{d}{d x}\left(\frac{x \sin (x)}{\pi^{3}+\ln (x)}\right)$
(b) $\frac{d}{d x}\left(\left(\sqrt{5 x-8}+x^{2}\right)^{1 / 3}\right)$

Ex. H-24 3.3/3.4/3.5/3.9
${ }^{\text {Fa22 }}$ Quiz
For each part, calculate the derivative. You do not have to show work and there is no partial credit.
(a) $\frac{d}{d x}\left(\cos (x)-\frac{5}{x^{7}}\right)$
(b) $\frac{d}{d x}(8 \sin (x) \ln (x))$
(c) $\frac{d}{d x}\left(\frac{2 x^{4}}{10-3 x}\right)$

For each part, calculate the derivative. Do not simplify your answer.
(a) $\frac{d}{d x}\left(\sqrt[5]{4 \sin (x)+e^{3 x-7}}\right)$
(b) $\frac{d}{d x}\left(\frac{2 x^{4} \tan (x)}{3 x+10}\right)$

Ex. H-26

$3.3 / 3.4 / 3.5 / 3.9$
Find the x-coordinate of each point on the graph of $y=3 x^{2}+\frac{60}{x}$ where the tangent line is horizontal.

Ex. H-27 $\quad 3.3 / 3.4 / 3.5 / 3.9$

For each part, calculate $f^{\prime}(x)$. Do not simplify your answer.
(a) $f(x)=\sqrt{2 x}+3 x^{2}+e^{4}$
(e) $f(x)=x^{3} e^{x}$
(b) $f(x)=\frac{4}{x}+\ln (4)$
(f) $f(x)=\sqrt{x} \cos (x)-e^{x} \sin (x)$
(c) $f(x)=\frac{8 x^{4}-5 x^{1 / 3}+1}{x^{2}}$
(g) $f(x)=\frac{\tan (x)+9 x^{2}}{\ln (x)-4 x}$
(d) $f(x)=\frac{x^{2}+3}{x-1}$
(h) $f(x)=\frac{x \sin (x)}{1-e^{x} \cos (x)}$

Ex. H-28 $\quad 3.3 / 3.4 / 3.5 / 3.9$

Use the quotient rule to prove that $\frac{d}{d x}(\cot (x))=-\csc (x)^{2}$.

Ex. H-29 $\quad 3.3 / 3.4 / 3.5 / 3.9$

Find the x-coordinate of each point on the graph of the given function where the tangent line is horizontal.
(a) $f(x)=\frac{1}{x^{2}}-\frac{1}{x^{3}}$
(c) $f(x)=\frac{1}{\sqrt{x}}(x+9)$
(b) $f(x)=\left(x^{2}-8\right) e^{x}$
(d) $f(x)=(1-\sin (x)) \sin (x)$

Ex. H-30 $3.3 / 3.4 / 3.5 / 3.9$
Find an equation for each line tangent to the graph of $f(x)=\frac{3 x+5}{x+1}$ that is perpendicular to the line $2 x-y=1$.

Ex. H-31 3.3/3.4/3.5/3.9

For each part, calculate $f^{\prime}(x)$. Do not simplify your answer after computing the derivative.
(a) $f(x)=\frac{\tan (x)}{\pi-\sec (x)}$
(c) $f(x)=\sqrt{\ln \left(x^{2}+4\right)+x \sin (2 x)}$
(b) $f(x)=\cos \left(e^{-3 x}\right)$
(d) $f(x)=\frac{e^{1 / x}}{x^{2 / 3}+x^{1 / 3}}$

Ex. H-32 3.3/3.4/3.5/3.9, 3.7

Some values of g, h, g^{\prime}, and h^{\prime} are given below. Use this table to answer parts (a) and (b).

x	$g(x)$	$g^{\prime}(x)$	$h(x)$	$h^{\prime}(x)$
0	1	7	2	3
2	-3	-9	1	5
4	5	-1	1	-6

(a) Let $f(x)=3 g(x) h(x)$. Calculate $f^{\prime}(2)$.
(b) Let $F(x)=g(\sqrt{x})$. Calculate $F^{\prime}(4)$.

Ex. H-33

$3.3 / 3.4 / 3.5 / 3.9$
Find an equation of the line normal to the graph of $f(x)=2 x^{2}-\ln (x)+3$ at $x=1$. (Recall that the normal line is perpendicular to the tangent line.)

Ex. H-34

$3.3 / 3.4 / 3.5 / 3.9$
Find the x-coordinate of each point on the graph of $y=\frac{1}{\sqrt{x}}\left(x^{3}+15\right)$ where the tangent line is perpendicular to the line $x+5 y=1$.

Ex. H-35 $3.3 / 3.4 / 3.5 / 3.9,3.7$

Suppose $f(4)=7, f^{\prime}(4)=-5, g(4)=4$, and $g^{\prime}(4)=-3$. Let $F(x)=f\left(\frac{x^{2}}{g(x)}\right)$. Calculate $F^{\prime}(4)$.

Ex. H-36 $3.3 / 3.4 / 3.5 / 3.9,3.7$

Find an equation of the tangent line to $f(x)=4 x \cos (\pi x)$ at $x=\frac{1}{4}$.

Ex. H-37 $\quad 3.3 / 3.4 / 3.5 / 3.9$

Find the x-coordinate of each point on the graph of $y=x^{3}-7 x^{2}+x+4$ such that the tangent line there is parallel to the line $6 x-y=1$.

Ex. H-38 $\quad 3.3 / 3.4 / 3.5 / 3.9 \quad \star$ Challenge
Find all points on the graph of $y=\frac{2}{x}+3 x$ such that the tangent line there passes through $(6,17)$.

Find all points P on the graph of $y=4 x^{2}$ with the property that the tangent line at P passes through the point $(2,0)$.

§3.7: The Chain Rule

Ex. H-1 $3.3 / 3.4 / 3.5 / 3.9,3.7$

Sp18 Exam
For each part, calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer.
(a) $f(x)=\frac{x^{-1} x^{8 / 3}}{4 \sqrt[3]{x^{2}}}$
(b) $f(x)=(x+\sqrt{5 x-6})^{1 / 4}$
(c) $f(x)=\frac{x^{2} e^{x}}{\ln (x)-\cos (x)}$

Ex. H-3

$3.3 / 3.4 / 3.5 / 3.9,3.7$
Fa18 Exam
Suppose f and g are differentiable for all x. For each part, use the table below or explain why there is not enough information.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	-1	-4	4	2
1	-1	-3	2	-4
2	-4	3	1	-1

(a) Let $F(x)=\frac{f(x)}{g(x)}$. Calculate $F^{\prime}(0)$.
(b) Let $G(x)=f(x g(x))$. Calculate $G^{\prime}(1)$.

Ex. I-1 $3.7 \quad$ Sp 19 Exam

Suppose $f(4)=-8$ and $f^{\prime}(4)=3$. Let $g(x)=f\left(\frac{1}{4} x^{2}\right)$. Find $g^{\prime}(4)$ or explain why it is impossible to do so with the given information.
Ex. I-2 $3.7 \quad$ Fa19 Exam

Find an equation of the line tangent to the graph of $f(x)=\tan (2 x)$ at $x=\frac{\pi}{8}$.

Ex. I-3

3.7

Sp20 Exam
Find an equation of the line tangent to the graph of $f(x)=5 e^{2 \cos (x)}$ at $x=3 \pi / 2$.

Ex. I-4

Su20 Exam
For each part, calculate the derivative by any valid method.
(a) $f(x)=x^{2} \cos (3 x)+\frac{1}{5 x}$
(b) $f(x)=\sqrt{\sin \left(\frac{e^{x}}{x+1}\right)}$

Ex. H-16 3.3/3.4/3.5/3.9, 3.7
Suppose $f(2)=-7$ and $f^{\prime}(2)=3$.
(a) Let $g(x)=\cos (x) f(x)$. Calculate $g^{\prime}(2)$.
(b) Let $h(x)=e^{2 f(x)+3}$. Calculate $h^{\prime}(2)$.
Ex. I-5 $3.7 \quad$ Fa21 Exam

Let $f(x)=x^{9} e^{4 x}$.
(a) Find $f^{\prime}(x)$.
(b) Explain how to find where the tangent line to the graph of f is horizontal.
(c) Find where the graph of f has a horizontal tangent line.

Selected values of the functions f and g and their derivatives are given in the table below. Use these values to complete the questions.

x	1	2	3	4
$f(x)$	4	3	2	1
$f^{\prime}(x)$	-4	-1	-9	-3
$g(x)$	2	1	3	4
$g^{\prime}(x)$	1	2	4	5

(a) Suppose $h(x)=5 f(x)-8 g(x)$. Find $h^{\prime}(1)$.
(b) Suppose $p(x)=x^{2} f(x)$. Find $p^{\prime}(2)$.
(c) Suppose $q(x)=f\left(x^{2}\right)$. Find $q^{\prime}(2)$.

Ex. I-7

3.7 Fa21 Exam

Suppose f is differentiable at x and $g(x)=\frac{16 \ln (15 x)}{6 f(x)-\sqrt{x+17}}$. Find $g^{\prime}(x)$.

Ex. B-8 $\quad 2.1 / 2.2,3.7,4.3 / 4.4$

 Fa21 ExamFor each part, use the graph of $y=g(x)$.

(a) How many solutions does the equation $g^{\prime}(x)=0$ have?
(b) Order the following quantities from least to greatest: $g^{\prime}(-2.5), g^{\prime}(-2), g^{\prime}(0)$, and $g^{\prime}(4)$. In your answer, write these quantities symbolically; do not give a numerical estimate.
(c) What is the sign of $g^{\prime \prime}(-3)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(d) Let $h(x)=g(x)^{2}$. What is the sign of $h^{\prime}(-4)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.

Ex. H-18 3.3/3.4/3.5/3.9, 3.7

Sp22 Exam
For each part, calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer.
(a) $f(x)=3 x^{13}+7 \sqrt{x}-\frac{5}{x^{3}}+12$
(b) $f(x)=\frac{e^{x}-2 \sin (x)}{\ln (x)+x^{3}}$
(c) $f(x)=2 x^{4} \cos \left(3 e^{x}\right)$

Ex. I-8 3.7
Sp22 Exam
Let $h(x)=\frac{f\left(x^{2}\right)}{g(x)}$. Use the table of values below to calculate $h^{\prime}(1)$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	-4	6	2	3
2	5	-2	-1	9

Ex. H-20

$3.3 / 3.4 / 3.5 / 3.9,3.7$
For each part, calculate the derivative. After calculating the derivative, do not simplify your answer.
(a) $\frac{d}{d x}\left(\tan \left(\frac{\ln (x)}{2 x-5}\right)\right)$
(b) $\frac{d}{d x}\left(3 x^{7} \cos (x)-8 e^{3 x}\right)$
(c) $\frac{d}{d x}\left(10 x^{12}-\frac{3}{x^{3}}+\sqrt[4]{x}\right)$

Ex. I-9

3.7

For each part, calculate the indicated derivative. Do not simplify your answer.
(a) $\frac{d}{d x}\left(7 x^{10}+\sqrt[3]{x}-\frac{8}{x^{20}}+\sec (8 x)\right)$
(b) $\frac{d}{d x}\left(\frac{\ln \left(x^{3}+30\right)}{8 x}\right)$
(c) $\frac{d}{d x}\left(\sin \left(x e^{-5 x}\right)\right)$

Ex. I-10

3.7

Fa22 Exam
Find the coordinates of all points on the graph of $f(x)=x \sqrt{14-x^{2}}$ where the tangent line is horizontal. You must give both the x - and y-coordinate of each such point.

Ex. I-11

3.7

Fa22 Exam
The graph of $y=f(x)$ is given below.

(a) Calculate $f^{\prime}(6)$. Briefly explain how you found your answer.
(b) Let $g(x)=9 x f(2 x)$. Find an equation of the line tangent to the graph of $y=g(x)$ at $x=3$.

Ex. I-12

3.7
${ }^{\text {Sp1 }}$ Quiz
Calculate $\frac{d}{d x}\left(4 x^{3} e^{\sin (2 x)}\right)$. After computing the derivative, do not simplify your answer.

Ex. I-13
For each part, find $f^{\prime}(x)$. After computing the derivative, do not simplify your answer.
(a) $f(x)=\sqrt{\tan \left(x^{3}\right)}$
(b) $f(x)=x^{3 / 4} \ln \left(\sin (x)+x+e^{3}\right)$

Ex. I-14

Let $f(x)=x^{12} e^{5-3 x}$. Find the x-coordinate of each point at which the graph of $y=f(x)$ has a horizontal tangent line.
Ex. I-15 3.7 Su22 Quiz

Find the x-coordinate of each point on the graph of $y=x^{3} e^{-5 x}$ where the tangent line is horizontal.

Ex. H-23 3.3/3.4/3.5/3.9, 3.7
Su22 Quiz
Calculate each derivative below. Do not simplify your answer.
(a) $\frac{d}{d x}\left(\frac{x \sin (x)}{\pi^{3}+\ln (x)}\right)$
(b) $\frac{d}{d x}\left(\left(\sqrt{5 x-8}+x^{2}\right)^{1 / 3}\right)$

Ex. I-16 3.7 Fa22 Quiz

Find the x-coordinate of each point on the graph $y=\left(x^{2}+x-1\right) e^{3 x}$ where the tangent line is horizontal.

Ex. I-17

3.7

For each part, calculuate $f^{\prime}(x)$ Do not simplify your answer.
(a) $f(x)=\sqrt{\sin (x)}$
(h) $f(x)=\frac{\ln (2 x+1)}{(2 x+1)^{2}}$
(m) $f(x)=\sqrt{\frac{x^{2}-1}{x^{3}+x}}$
(b) $f(x)=\sin (\sqrt{x})$
(i) $f(x)=(\tan (x)+1)^{4} \cos (2 x)$
(n) $f(x)=\ln (\ln (x))$
(c) $f(x)=\sqrt{\sin (\sqrt{x})}$
(j) $f(x)=\left(\frac{6}{9-2 x}\right)^{8}$
(o) $f(x)=\sin (\sin (\sin (x)))$
(d) $f(x)=\left(x^{3}-3 x+2\right)^{2}$
(k) $f(x)=\left(\sin \left((4 x-5)^{2}\right)\right)^{4}$
(p) $f(x)=\left(x+\left(x+\sin (x)^{2}\right)^{3}\right)^{4}$
(Some authors write this func-
(f) $f(x)=(2 x+\sec (x))^{2}$ tion as $f(x)=\sin ^{4}(4 x-5)^{2}$.)
(q) $f(x)=|x|$
(l) $f(x)=\sqrt[3]{\sin (x) \cos (x)}$
(Hint: Recall $|x|=\sqrt{x^{2}}$.)

Ex. I-18

3.7

Find the x-coordinate of each point at which the graph of $y=f(x)$ has a horizontal tangent line.
(a) $f(x)=\left(2 x^{2}-7\right)^{3}$
(c) $f(x)=\ln \left(3 x^{4}+6 x^{2}-4 x^{3}-12 x+6\right)$
(b) $f(x)=x^{2} e^{1-3 x}$
(d) $f(x)=\frac{\left(e^{3 x}+e^{-3 x}\right)^{2}}{e^{3 x}}$

Ex. I-19

3.7

Suppose g and h are differentiable functions. Selected values of g, h, and their derivatives are given below.

x	$g(x)$	$g^{\prime}(x)$	$h(x)$	$h^{\prime}(x)$
2	1	7	2	3
4	-3	-9	1	5
16	5	-1	1	-6

Define the function f by the formula

$$
f(x)=g(\sqrt{x}) h\left(x^{2}\right)
$$

(a) Calculate $f(4)$ or explain why there is not enough information to do so.
(b) Calculate $f^{\prime}(4)$ or explain why there is not enough information to do so.

Ex. H-32 3.3/3.4/3.5/3.9, 3.7

Some values of g, h, g^{\prime}, and h^{\prime} are given below. Use this table to answer parts (a) and (b).

x	$g(x)$	$g^{\prime}(x)$	$h(x)$	$h^{\prime}(x)$
0	1	7	2	3
2	-3	-9	1	5
4	5	-1	1	-6

(a) Let $f(x)=3 g(x) h(x)$. Calculate $f^{\prime}(2)$.
(b) Let $F(x)=g(\sqrt{x})$. Calculate $F^{\prime}(4)$.

Ex. I-20
For each part, calculate $f^{\prime}(x)$.
(a) $f(x)=\tan \left(3 x^{2}+e\right)$
(b) $f(x)=e^{x /(x+1)}$

Ex. I-21

3.7

For each part, calculate $f^{\prime}(x)$.
(a) $f(x)=\sin \left(7 x e^{-3 x}\right)$
(b) $f(x)=\sqrt{\frac{2 \ln (x)}{\tan (3 x)-\tan (3)}}$

Ex. H-35 $\quad 3.3 / 3.4 / 3.5 / 3.9,3.7$

Suppose $f(4)=7, f^{\prime}(4)=-5, g(4)=4$, and $g^{\prime}(4)=-3$. Let $F(x)=f\left(\frac{x^{2}}{g(x)}\right)$. Calculate $F^{\prime}(4)$.

Ex. H-36 $3.3 / 3.4 / 3.5 / 3.9,3.7$

Find an equation of the tangent line to $f(x)=4 x \cos (\pi x)$ at $x=\frac{1}{4}$.

§3.8: Implicit Differentiation

Ex. J-1

3.8
${ }^{\text {Fa17 }}$ Exam
Find all points on the following curve at which the tangent line is horizontal.

$$
2 x^{2}-4 x y+7 y^{2}=45
$$

$\boldsymbol{H i n t}$: Find a second equation that such points must satisfy. Then solve a system of two equations for x and y.

Ex. J-2

3.8

Sp18 Exam
Find an equation of the line tangent to the following curve at the point $(2,0)$.

$$
x^{3}+e^{x y}=3 y+9
$$

Ex. J-3 3.8 Fa18 Exam
Find an equation of the line tangent to the following curve at $(8,1)$.

$$
\sin \left(\frac{\pi x}{y}\right)=x-8 y
$$

Ex. J-4
3.8

Sp19 Exam
Find an equation of the line tangent to the following curve at the point $(1,1)$.

$$
\frac{5 x}{y}=4 x+y^{3}
$$

Ex. J-5 3.8 Fa19 Exam
Find an equation of the line tangent to the following curve at the origin.

$$
\sin (x+2 y)+9 x+1=e^{y}
$$

Ex. J-6 $3.8 \quad$ Fa19 Exam

Find $\frac{d y}{d x}$ for a general point on the curve described by the following equation. Do not simplify your answer.

$$
x^{3} y^{2}+(x+y)^{2}=100
$$

Ex. J-7 3.8
${ }^{\text {Sp20 }}$ Exam
A particle in the fourth quadrant is moving along a path described by the equation

$$
x^{2}+x y+2 y^{2}=16
$$

such that at the moment its x-coordinate is 2 , its y-coordinate is decreasing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$. At what rate is its x-coordinate changing at that time?

Ex. J-8

3.8
$\mathrm{Sp}_{\mathrm{p} 20}$ Exam
Find an equation of line tangent to the following curve at the origin.

$$
\sin (x+3 y)+9 x+1=e^{y}
$$

Ex. J-9 3.8
Sp20 Exam
Consider the curve described by the equation

$$
3 x^{2}+2 x y+4 y^{2}=132
$$

At any point on this curve, we have

$$
\frac{d y}{d x}=\frac{-3 x-y}{x+4 y}
$$

(a) Describe in two or three sentences the steps you should take to find the points on the curve where the tangent line is horizontal. Your answer may contain either English, mathematical symbols, or both.
(b) What is the rightmost (i.e., greatest x-coordinate) point on the curve where the tangent line is horizontal?
(c) Describe in one or two sentences how parts (a) and (b) would change if instead you wanted to find the points where the tangent line is vertical. You do not have to solve the problem again, but only describe generally what you would do differently. Your answer may contain either English, mathematical symbols, or both.

Ex. J-10 3.8
 Sp20 Exam

Find an equation of the line tangent to the following curve at $(1,7)$.

$$
\ln (x y+x-7)=2 x+4 y-30
$$

Ex. J-11

3.8

Sp20 Exam
Consider the curve described by the equation

$$
5 x^{2}-4 x y+y^{2}=8
$$

At any point on this curve, we have

$$
\frac{d y}{d x}=\frac{-5 x+2 y}{-2 x+y}
$$

(a) Describe in two or three sentences the steps you should take to find each point on the curve where the tangent line is parallel to the line $y=x$. Your answer may contain either English, mathematical symbols, or both.
(b) What is the leftmost (i.e., least x-coordinate) point on the curve where the tangent line is parallel to $y=x$?
(c) Describe in one or two sentences how parts (a) and (b) would change if instead you wanted to find the points where the tangent line is perpendicular to the line $y=4$. You do not have to solve the problem again, but only describe generally what you would do differently. Your answer may contain either English, mathematical symbols, or both.

Ex. J-12
3.8

Sp20 Exam
Consider the curve described by the following equation.

$$
e^{12 x+2 y}=6 y-3 x y+1
$$

(a) Find $\frac{d y}{d x}$ at a general point on this curve.
(b) Calculate the slope of the line tangent to the curve at $(2,-12)$.
(c) There is a point on the curve close to the origin with coordinates $(0.07, b)$, and the line tangent to the curve at the origin is $y=3 x$. Use linear approximation to estimate the value of b.

Ex. J-13

3.8

Su20 Exam
Consider the curve described by the equation

$$
x^{4}-x^{2} y+y^{4}=1
$$

(a) Find $\frac{d y}{d x}$ at a general point on the curve.
(b) Find an equation of the line tangent to the curve at the point $(-1,1)$.

Ex. J-14
3.8

Su20 Exam
On an online exam, a student uses logarithmic differentiation to find the first derivative of

$$
f(x)=(3+\sin (x))^{2+x^{2}}
$$

They type the following two lines for their work.

$$
\begin{aligned}
y & =(3+\sin (x))^{2+x^{2}} \\
\ln (y) & =\ln (\cdots
\end{aligned}
$$

Unfortunately, the student runs out of time and is unable to submit the rest of their work. Oh no! Find $f^{\prime}(x)$ by completing the student's work.

Ex. J-15

3.8

Fa20 Exam
Consider the following curve, where a and b are unspecified constants.

$$
a x^{2} y-3 x y^{2}+4 x=b
$$

(a) Show that $\frac{d y}{d x}=\frac{3 y^{2}-2 a x y-4}{a x^{2}-6 x y}$.
(b) Suppose the tangent line to the curve at the point $(1,1)$ is $y=1+5(x-1)$. Use part (a) to find the value of a.
(c) Use your answer to part (b) to find the value of b.

Ex. J-16 3.8
 Sp21 Exam

Consider the curve defined by the equation below, where a and b are unspecified constants.

$$
\sqrt{x y}=a y^{3}+b
$$

Suppose the equation of the tangent line to the curve at the point $(3,3)$ is $y=3+4(x-3)$.
(a) What is the value of $\frac{d y}{d x}$ at $(3,3)$?
(b) Calculate a and b.

Ex. J-17

3.8

Fa21 Exam
Consider the curve defined by the following equation, where A and B are unspecified constants.

$$
A x^{2}-8 x y=B \cos (y)+3
$$

(a) Find a formula for $\frac{d y}{d x}$.
(b) Suppose the point $(8,0)$ is on the curve. Find an equation that A and B must satisfy.
(c) Suppose the tangent line to the curve at the point $(8,0)$ is $y=6 x-48$. Find the values of A and B.
Ex. J-18 3.8 Sp22 Exam

Consider the curve described by the following equation:

$$
12 x^{2}+6 x y+y^{2}=20
$$

Find all points on the curve where the tangent line is horizontal. Write your answer as a comma-separated list of coordinate pairs.
Hint: Find a second equation that such points must satisfy.

Ex. J-19
3.8

Su22 Exam
Find all points on the graph of the following equation where the tangent line is vertical.

$$
x^{2}-2 x y+10 y^{2}=450
$$

Ex. J-20 3.8

Consider the following curve.

$$
\cos (5 x+y-5)=8 x e^{y}+y-7
$$

(a) Calculate $\frac{d y}{d x}$ for a general point on the curve.
(b) Find an equation of the line tangent to the curve at the point $(1,0)$.

Ex. J-21 3.8 Sp20 Quiz

Find an equation of the line tangent to the graph of $x e^{y}=x^{3}+(y-1)^{2}-1$ at the point $(0,2)$.
Ex. J-22
3.8
Su22 Quiz

Suppose x and y are implicitly related by the following equation.

$$
5+x y^{2}=\frac{y}{2-x^{3}}
$$

Find $\frac{d y}{d x}$ for a general point on the curve.

Ex. J-23

3.8

Su22 Quiz
Suppose x and y are implicitly related by the following equation.

$$
6 x^{2}-3 x y+2 y^{2}=52
$$

Find all points (both x - and y-coordinates) on the curve where the tangent line is horizontal.

Ex. J-24

3.8
${ }^{\text {Fa22 }}$ Quiz
Find $\frac{d y}{d x}$ for a general point on the following curve.

$$
x \sin (y)+10=\ln \left(y^{2}+x\right)
$$

Ex. J-25 3.8
Find the slope of the line tangent to the given curve at the point $\left(1, \frac{1}{4}\right)$.

$$
x \tan (\pi y)=16 y^{2}+3 \ln (x)
$$

Ex. J-26 3.8

For each part, find $\frac{d y}{d x}$ for a general point on the curve described by the given equation.
(a) $x^{2}+y^{4}=12 x+y$
(c) $\sin (x+y)=x+\cos (y)$
(e) $6 x^{2}+3 x y+2 y^{2}+17 y=6$
(b) $y+\frac{1}{x y}=x^{2}$
(d) $\ln \left(\frac{x-y}{x y}\right)=\frac{1}{y}$

Ex. J-27
3.8

Find an equation of the line tangent to the following curve at $\left(\frac{1}{e-2}, 1\right)$.

$$
x e^{y}=2 x y+y^{3}
$$

Ex. J-28

3.8

Find an equation of the line tangent to the following curve at $(0, \pi)$.

$$
\sin (x-y)=x y
$$

Ex. J-29

3.8

Consider the curve given by the following equation.

$$
x^{2}+x y+3 y^{2}=99
$$

(a) Find all points on the graph of the curve where the tangent line is horizontal.
(b) Find all points on the graph of the curve where the tangent line is vertical.

Ex. J-30
 3.8

Find the slope of the tangent line to the curve $x^{3}-y^{3}=y-1$ at the point $(1,1)$.

Ex. J-31

3.8

Find the slope of the tangent line to the curve $x^{3}+x y+y^{2}=7$ at $(1,2)$.

Ex. J-32

3.8

Find an equation of the line normal to the curve $5 x^{2} y+2 y^{3}=22$ at the point $(2,1)$.

Ex. J-33

Find an equation of the line tangent to the curve $2 x^{2}-x y+5 y^{2}=24$ at the point $(-1,2)$.

Ex. J-34

3.8

Find an equation of the line tangent to the curve $\sin (x-y)=4 e^{x y}-4 e^{9}$ at the point $(3,3)$.

Ex. J-35 $\quad 3.8$ Challenge

Find all tangent lines to the graph of $9 x^{2}-18 x y+y^{2}=1800$ that are perpendicular to the line $x+3 y=10$.

Ex. J-36 $\quad 3.8,4.6 \quad \star$ Challenge

Consider the curve described by the equation

$$
\frac{x-y^{3}}{y+x^{2}}=x-12
$$

(a) Find an equation for the line tangent to this curve at $(-1,4)$.
(b) There is a point on the curve with coordinates $(-1.1, b)$. Use linear approximation to estimate b. Round to three decimal places.
(c) There is a point on the curve with coordinates ($a, 4.2$). Use linear approximation to estimate a. Round to three decimal places.

Ex. J-37

3.8
\star Challenge
Suppose $x^{2}+y^{2}=R^{2}$, where R is a constant. Find $\frac{d^{2} y}{d x^{2}}$ and fully simplify your answer as much as possible.

§3.11: Related Rates

Ex. K-1 3.11

Fa17 Exam
A camera is located 5 feet from a straight wire along which a bead is moving at 6 feet per second. The camera automatically turns so that it is pointed at the bead at all times. How fast is the camera turning when the bead is 12 feet from passing closest to the camera?
You must give correct units as part of your answer.

Ex. K-2 3.11 Sp18 Exam
The total surface area of a cube is changing at a rate of $12 \mathrm{in}^{2} / \mathrm{s}$ when the length of one of the sides is 10 in . At what rate is the volume of the cube changing at that time?
Ex. K-3 Fa18 Exam

A person 6 feet tall stands 10 feet from point P, which is directly beneath a lantern hanging 30 feet above the ground. At the moment when the lantern is 9 feet above the ground, the lantern is falling at a rate of $4 \mathrm{ft} / \mathrm{sec}$. At what rate is the length of the person's shadow changing at that moment?

Ex. K-4

3.11

Sp19 Exam
A child flies a kite at a constant height of 30 feet and the wind is carrying the kite horizontally away from the child at a rate of $5 \mathrm{ft} / \mathrm{sec}$. At what rate must the child let out the string when the kite is 50 feet away from the child?
You must give correct units as part of your answer.

>	Ex. K-5	Fa19 Exam

A spherical snowball melts in such a way that it always remains a sphere, and its volume decreases at $8 \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the surface area of the snowball changing when its surface area is $40 \pi \mathrm{~cm}^{2}$? You must give correct units as part of your answer.

Ex. K-6

3.11

Sp20 Exam
A 6 - ft tall person is initially standing 12 ft from point P directly beneath a lantern hanging 42 ft above the ground, as shown in the diagram below. The person then begins to walk towards point P at $5 \mathrm{ft} / \mathrm{sec}$. Let D denote the distance between the person's feet and the point P. Let S denote the length of the person's shadow.

(a) Write an equation that relates D and S.
(b) Write an equation that expresses the English sentence "The person then begins to walk towards point P at 5 $\mathrm{ft} / \mathrm{sec}$."
(c) Is the length of the person's shadow increasing, decreasing or remaining constant?
(d) At what rate is the length of the person's shadow changing when the person is 8 ft from point P ? Include correct units as part of your answer.

Ex. K-7

3.11

Sp20 Exam
The volume of a cube is decreasing at the rate of $300 \mathrm{~cm}^{3} / \mathrm{sec}$ at the moment its total surface area is $150 \mathrm{~cm}^{2}$. What is the rate of change of the length of one edge of the cube at this moment?

Ex. K-8

3.11

Sp20 Exam
A boat is pulled toward a dock by a rope through a ring on the dock 4 ft above the front of the boat. The rope is hauled in at the rate of $12 \mathrm{ft} / \mathrm{sec}$.

(a) Which of the marked variables $(x, y, L$, and $\theta)$ are changing over time?
(b) Write a mathematical equation that expresses the English sentence "The rope is hauled in at the rate of 12 $f t / s e c$ ".
(c) Is $\cos (\theta)$ increasing, decreasing, or constant?
(d) Write a mathematical expression for "the rate at which the boat approaches the dock".
(e) How fast in $\mathrm{ft} / \mathrm{sec}$ is the boat approaching the dock when the rope is 5 ft long?

Ex. K-9

3.11
${ }^{\text {Sp20 }}$ Exam
A farmer's tractor pulls a rope of length 12 m attached to a bale of hay through a pulley is 8 m above the ground. The vertical distance between the tractor and the pulley (the distance from P to Q) is 7 m . The tractor is moving to the left at rate of $2 \mathrm{~m} / \mathrm{sec}$, which causes the bale of hay to rise off the ground.

(a) The rate of change (with respect to time) of which variable is equal to the speed of the tractor?
(b) Use the Pythagorean theorem to find an equation that holds for all time and involves only the variables x and z.
(c) Use the fact that the length of the rope is constant to find an equation that holds for all time and involves only the variables z and y.
(d) Use the fact that the height of the pulley is constant to find an equation that holds for all time and involves only the variables h and y.
(e) Combine the equations from parts (b), (c), and (d) to find an equation that holds for all time and involves only the variables x and h.
(f) The rate of change (with respect to time) of which variable is equal to the rate at which the bale of hay is rising?
(g) Find the rate at which the bale of hay is rising off the ground when the horizontal distance between the tractor and the bale of hay is 8 m .
Ex. K-10 Su20 Exam

In a right triangle, the base is decreasing in length by $3 \mathrm{~cm} / \mathrm{sec}$ and the area is increasing by $15 \mathrm{~cm}^{2} / \mathrm{sec}$. (The triangle always remains a right triangle.) At the time when the base is 15 cm in length and the height is 20 cm in length...
(a) ... at what rate is the height changing? (Give a number only.)
(b) ... at what rate is the length of the hypotenuse changing? (Give a number only.)
(c) What are the units of your answer in part (a)?
(d) In part (b), is the length of the hypotenuse increasing, decreasing, or staying constant?

Ex. K-11

At a certain moment, a race official is watching a race car approach the finish line along a straight track at some constant, positive speed. Suppose the official is sitting still at the finish line, 20 m from the point where the car will cross.

For parts (a)-(e), the allowed answers are "positive", "negative", "zero", or "not enough information".
(a) At the moment described, what is the sign of $\frac{d x}{d t}$?
(b) At the moment described, what is the sign of $\frac{d y}{d t}$?
(c) At the moment described, what is the sign of $\frac{d L}{d t}$?
(d) At the moment described, what is the sign of $\frac{d(\cos (\theta))}{d t}$?
(e) At the moment described, what is the sign of $\frac{d^{2} x}{d t^{2}}$?
(f) Suppose the speed of the car is $70 \mathrm{~m} / \mathrm{sec}$. At what rate is the distance between the car and the race official changing when the car is 60 m from the finish line? Your answer must have the correct units. Your answer must be exact. No decimal approximations.

Ex. K-12 3.11 Sp21 Exam

A local gym has two cylindrical swimming pools. The larger pool has radius 20 meters and is filled with water. The smaller pool has radius 12 meters and is empty. Water is drained from the large pool and immediately emptied into the small pool. The height of the water in the small pool increases at a rate of $0.2 \mathrm{~m} / \mathrm{min}$.
Let V_{L}, V_{S}, h_{L}, and h_{S} refer to the volume of the large pool, volume of the small pool, height of the large pool, and height of the small pool, respectively.
(a) How are $\frac{d V_{L}}{d t}$ and $\frac{d V_{S}}{d t}$ related?
(b) What is the sign of $\frac{d h_{L}}{d t}$?
(c) Find $\frac{d V_{S}}{d t}$.
(d) Find $\frac{d h_{L}}{d t}$.
Ex. K-13 Far Exam

The base of a right triangle is decreasing at a constant rate of $10 \mathrm{~cm} / \mathrm{sec}$ and in such a way that the triangle always remains a right triangle. At the time when the base is 15 cm and the height is 22 cm , the area of the triangle is increasing by $25 \mathrm{~cm}^{2} / \mathrm{sec}$. Use this information to answer the questions below. Let B denote the base of the triangle.
(a) At the described time, what is the sign of $\frac{d B}{d t}$?
(b) At the described time, what is the sign of $\frac{d^{2} B}{d t^{2}}$?
(c) At the described time, at what rate is the height changing?
(d) What are the units of the answer to part (c)?
Ex. K-14 3.11 Fa21 Exam

A hot-air balloon is floating directly above the point Q on the ground and is descending at a constant rate of $10 \mathrm{ft} / \mathrm{sec}$. A camera is on the ground at point P, which is 500 feet from point Q. See the figure below.

(a) What is the sign of $\frac{d h}{d t}$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(b) How is $\cos (\theta)$ changing over time? Circle your answer below.
(i) increasing over time
(iv) sometimes increasing and sometimes decreasing
(ii) decreasing over time
(iii) constant over time
(v) not enough information to determine
(c) What is the rate of change of the distance between the camera and the balloon when the balloon is 600 feet above the ground? You must give correct units as part of your answer.

Ex. K-15
3.11

Sp22 Exam
A house sits at point P, which is 20 m from point Q on a straight road. A car travels along the road toward the point Q at $19 \mathrm{~m} / \mathrm{s}$. Let x be the distance between the car and point Q, and let θ be the angle between the road and the line of sight from the car to the house. See the figure below.

(a) What is the sign of $\frac{d x}{d t}$?
(b) What is the sign of $\frac{d \theta}{d t}$?
(c) Find the rate of change of the distance between the car and the house when the car is 45 m from point Q. You must include correct units in your answer. You may leave unsimplified radicals in your answer.

A rocket is launched so that it rises vertically. A camera is positioned 5000 feet from the launch pad and turns so that it stays forces on the rocket. At the moment when the rocket is 12,000 feet above the launch pad, its velocity is 600 feet/sec. Let h be the height of the rocket above the launch pad and let θ be the viewing angle of the camera. See the figure below.

(a) Determine the sign of $\frac{d}{d t}(\cos (\theta))$ at the moment described or determine that there is not enough information to do so.
(b) Determine the sign of $\frac{d^{2} h}{d t^{2}}$ at the moment described or determine that there is not enough information to do so.
(c) At the moment described, what is the rate at which the camera is turning? That is, what is the rate at which θ is changing over time? You must include proper units as part of your answer.

Ex. K-17 3.11 Fa22 Exam
A solid 14-foot tall garage door opens via a pulley mechanism. As the pulley opens the garage door, the top of the garage door (point P in the figure) moves to the right at $5 \mathrm{ft} / \mathrm{s}$. At the same time, the bottom of the garage door (point Q in the figure) moves straight up.
As shown in the figure, the point R is the fixed point at the top of the garage door frame, x represents the distance between P and R, and y represents the distance between Q and R.

(a) What is the sign of $\frac{d x}{d t}$?
(b) What is the sign of $\frac{d y}{d t}$?
(c) What is the rate of change of the distance between the points Q and R when the distance between them is 9 feet? You must include correct units in your answer. You may leave unsimplified radicals in your answer.
Ex. K-18 3.11 Sp20 Quiz

The image of a certain rectangle of area $30 \mathrm{~cm}^{2}$ is changing in such a way that its length is decreasing at a rate of 2 $\mathrm{cm} / \mathrm{sec}$. and its area remains constant. At what rate is its width changing when its length is 6 cm ?

A 2-meter tall person is initially standing 4 meters from point P directly beneath a lantern hanging 14 meters above the ground, as shown in the figure below. The person then begins to walk towards point P at $1.5 \mathrm{~m} / \mathrm{sec}$. Let x denote the distance between the person's feet and the point P. Let y denote the length of the person's shadow.

(a) Write an equation that relates x and y.
(b) Write an equation that expresses the English sentence "The person begins to walk towards point P at $1.5 \mathrm{~m} /$ sec."
(c) At what rate is the length of the person's shadow changing when the person is 3 meters from point P ? You must include correct units as part of your answer.

Ex. K-20

3.11

${ }^{\text {Fa22 }}$ Quiz
A pebble is dropped into a lake and an expanding circular ripple results. When the radius of the ripple is 8 inches, the area enclosed by the ripple is changing at a rate of $48 \pi \mathrm{in}^{2} / \mathrm{sec}$. What is the rate at which the radius is changing at this time? You must include correct units as part of your answer.

Ex. K-21

3.11

A rock is dropped into a lake to create an expanding, circular ripple. When the radius of the ripple is 8 inches, the radius is increasing at a rate of $3 \mathrm{in} / \mathrm{sec}$. At what rate is the area enclosed by the ripple changing at this time?

Ex. K-22 3.11

Every day, a flight to Los Angeles flies directly over a man's home at a constant altitude of 4 miles and at a constant speed of 400 miles per hour. At what rate is the angle of elevation of the man's line of sight changing with respect to time when the horizontal distance between the approaching plane and the man's location is exactly 3 miles?

Ex. K-23
 3.11

The volume of a spherical balloon is increasing at constant rate of $3 \mathrm{in}^{3} / \mathrm{s}$. At what rate is the radius of the balloon changing when the radius is 2 in.?

Ex. K-24
 3.11

Recall that a baseball diamond is a square of side length 90 ft . The corners of the diamond are labeled, in anti-clockwise order, home plate, first base, second base, and third base. A player runs from home plate to first base at a speed of $20 \mathrm{ft} / \mathrm{s}$. How fast is the player's distance from second base changing when the player is halfway to first base?

Ex. K-25 3.11

A particle moves along the elliptical path given by $x^{2}+9 y^{2}=13$ in such a way that when it is at the point $(-2,1)$, its x-coordinate is decreasing at the rate of 7 units per second. How fast is the y-coordinate changing at that instant?

Ex. K-26

The surface area of a sphere is changing at a rate of $16 \pi \mathrm{in}^{2} / \mathrm{s}$ when its radius is 3 in . At what rate is the volume of the sphere changing at that time?

Ex. K-27

3.11

A car traveling north at $40 \mathrm{mi} / \mathrm{hr}$ and a truck traveling east at $30 \mathrm{mi} / \mathrm{hr}$ leave an intersection at the same time. At what rate will the distance between them be changing 4 hours later?

Ex. K-28

3.11

The altitude of a triangle is increasing at a rate of $1 \mathrm{ft} / \mathrm{min}$. while the area is increasing at a rate of $2 \mathrm{ft} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 10 ft . and the area is $100 \mathrm{ft}^{2}$?

Ex. K-29
3.11
\star Challenge !!!
A water tank in the shape of an inverted cone has height 10 meters and base radius 8 meters. Water flows into the tank at the rate of $32 \pi \mathrm{~m}^{3} / \mathrm{min}$. At what rate is the depth of the water in the tank changing when the water is 5 meters deep?

4 Chapter 4: Applications of the Derivative

§4.1: Maxima and Minima

Ex. L-1

4.1

Sp18 Exam
Find the minimum and maximum values of $f(x)=2 x^{3}-3 x^{2}-12 x+18$ on the interval $[-3,3]$.
Hint: You may use the factorization $f(x)=\left(x^{2}-6\right)(2 x-3)$ to make any required arithmetic easier.

Ex. L-2

4.1

Fa18 Exam
Let $f(x)=4(x-3)^{1 / 3}-\frac{1}{3} x+1$. Note: The domain of f is $(-\infty, \infty)$.
(a) Calculate all critical points of f. For each number you find, you must clearly indicate in your work why it is a critical point.
(b) What are the absolute extreme values of f on the interval $[2,30]$?
Ex. L-3 4.1 Sp19 Exam

Find all critical points of $f(x)=x-\frac{3}{2}(x-8)^{2 / 3}$ or explain why f has no critical points.

Ex. L-4
4.1

Sp19 Exam
Find the absolute extreme values of $f(x)=\frac{20 x}{x^{2}+4}$ on $[-4,0]$.

Ex. L-5

4.1 Fa19 Exam

Find all critical points of $f(x)=2-\left(x^{2}-2 x\right)^{1 / 3}$ or explain why f has no critical points.
Note: The domain of f is $(-\infty, \infty)$.
Ex. L-6 4.1
Fa19 Exam
For each part, find the absolute extreme values of $f(x)$ on the given interval.
(a) $f(x)=x+\frac{9}{x}$ on $[1,18]$.
(b) $f(x)=(6-x) e^{x}$ on $[0,6]$.
(Hint: $2<e<3$.)

Ex. L-7 4.1
Determine from the given graph whether the function has any absolute extreme values on (a, b).

Ex. L-8
$4.1,4.3 / 4.4$
${ }^{\text {Sp } 20}$ Exam
Consider the following function

$$
g(x)=\frac{3}{2} x^{4}+8 x^{3}-36 x^{2}
$$

(a) Where does g have a local minimum on $(-7,3)$? local maximum?
(b) Where does g have a global minimum on $[-7,3]$? global maximum?
Ex. L-9 4.1 Sp20 Exam

Find all critical points of the function

$$
f(x)=2 x^{4 / 3}-16 x^{2 / 3}+24
$$

Note: The function f is continuous on the interval $(-\infty, \infty)$.

Ex. G-6 $3.1 / 3.2,4.1,4.9 \quad$ Sp 20 Exam
Suppose the derivative of f is $f^{\prime}(x)=3 x^{2}-6 x-9$ and that $f(1)=10$.
(a) Find an equation of the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Find the critical points of f.
(c) Where does f have a local minimum value? local maximum value?
(d) Calculate $f(0)$.
(e) Calculate the absolute maximum value of f on the interval $[0,6]$. At what x-value does it occur?

Ex. L-10

u20 Exam
Suppose $f(x)$ is continuous on $[0,10]$. The figure below shows the graph of $y=f^{\prime}(x)$ on $[0,10]$.
Note: The figure does not show a graph of $f(x)$ but rather its derivative.)

Use the graph to answer the following questions. Read each question carefully. Some questions ask about f and others ask about the derivative f^{\prime}.
(a) Find the absolute maximum of $f^{\prime}(x)$ on $(0,10)$ or determine that it does not exist.
(b) Find the absolute minimum of $f^{\prime}(x)$ on $(0,10)$ or determine that it does not exist.
(c) Find all critical points of $f(x)$ in $(0,10)$.
Ex. L-11 4.1 Su20 Exam

Let $f(x)=\frac{1-2 x}{6+x^{2}}$. Find the absolute extrema of f on $[-3,2]$ and where they occur.

Ex. L-12
4.1

Su20 Exam
Let $f(x)=x^{1 / 3}(x-16)^{1 / 5}$. Find all critical points of f. You must be clear why each of your answers really is a critical point. Note: The domain of f is $(-\infty, \infty)$.

Ex. L-13

4.1

Fa20 Exam
For each part, use the graph of $y=f(x)$. Assume that the domain of f is $(-\infty, \infty)$.
(a) Where does f have a local minimum on the interval $(-1,6) ?$
(b) List all of the critical points of f.
(c) Estimate the absolute maximum of f on $[0,3]$ or explain why f has no such maximum.

Ex. L-14

4.1 Fa20 Exam
(You may need a basic calculator for this problem.)
Consider the function

$$
f(t)=\frac{a}{t^{2}-3 t+25}
$$

where a is an unspecified positive constant. Suppose the absolute minimum of f on $[0,6]$ is 3 .
(a) Find the value of a. Hint: First find the absolute minimum of f on $[0,6]$ in terms of a.
(b) Calculate the absolute maximum of f on $[0,6]$.
Ex. L-15 4.1 Sp21 Exam

Consider the function below, where A is an unspecified, positive constant.

$$
f(x)=\frac{A}{x-8 \sqrt{x}+60}
$$

For parts (c) and (d) only, assume the absolute minimum of f on $[0,21]$ is 8 .
(a) List all x-values that must be tested to find the absolute extrema of f on $[0,21]$.
(b) At which x-value does the absolute minimum of f occur on $[0,21]$?
(c) Find the value of A.
(d) Find the absolute maximum of f on $[0,21]$ and all x-values at which it occurs.
Ex. L-16 4.1 Sp21 Exam

Use the graph of $y=f(x)$ on $[0,14]$ below to answer the questions.

(a) List the critical points of f in $(0,14)$.
(b) How many local extrema does f have on $(0,14)$?
(c) Find the absolute maximum of f and the x-value at which it occurs.
(d) Find the absolute minimum of f and the x-value at which it occurs.

Ex. L-17
4.1

Fa21 Exam
Find the absolute extreme values of $f(x)=x^{3}-6 x^{2}+9 x+20$ on $[-3,2]$ and the x-value(s) at which they occur.

Ex. L-18 $4.1,4.3 / 4.4 \quad$ Fa21 Exam
Let $f(x)=x^{3}(3 x-4)$.
(a) Find where relative extrema of f occur (if any). Classify each as a local minimum or a local maximum.
(b) Find the absolute extrema of f on $[-1,2]$ and the x-values at which they occur.
Ex. L-19 $4.1,4.6 \quad$ Fa21 Exam

The parts of this problem are not related.
(a) Suppose that when x units are produced, the total cost is $C(x)=2 x^{2}+10 x+18$ and the selling price per unit is $p(x)=46-x$. Find the level of production that maximizes total profit.
(b) Suppose the total cost of producing q units is $C(q)=q^{3}+20 q^{2}+200 q+2000$. Use marginal analysis to estimate the cost of the 3rd unit.

Ex. L-20

4.1 Sp22 Exam

Find the absolute extreme values of $f(x)=x(x-8)^{5 / 3}$ on the interval $[0,9]$ and the x-values at which they occur.

Ex. L-21

$4.1,4.3 / 4.4$
Su22 Exam
Let $f(x)=A x^{B} \ln (x)$, where A and B are unspecified constants. Suppose that $\left(e^{5}, 10\right)$ is a point of local extremum for $f(x)$.
(a) Calculate the values of A and B.
(b) Determine whether $\left(e^{5}, 10\right)$ is a point of local minimum or a point of local maximum for $f(x)$. Explain your answer.

For each part, find the absolute extreme values of the given function on the given interval. If a particular extreme value does not exist, write "DNE" as your answer, and explain why that extreme value does not exist.
(a) $f(x)=\frac{e}{x}+\ln (x)$ on $\left[1, e^{3}\right]$
(b) $g(x)=12 x-x^{3}$ on $[0, \infty)$

Ex. L-23

4.1
${ }^{\text {Sp1 } 18}$ Quiz
Find the absolute maximum and absolute minimum values of $f(x)=\frac{10 x}{x^{2}+1}$ on the interval $[0,2]$.

Ex. L-24 4.1

Su22 Quiz
Find the absolute extrema of $f(x)=10+8 x^{2}-x^{4}$ on the interval $[-1,3]$.
Ex. L-25 4.1 Su22 Quiz

Let $f(x)=x^{2}(5 x+9)^{1 / 5}$. Observe that the domain of f is $(-\infty, \infty)$. Calculate the critical numbers of f. For each critical number you find, explain precisely why your answer is a critical number.
Ex. L-26 4.1 Fa22 Quiz

Let $f(x)=3 x^{4 / 3}-300 x^{1 / 3}$. Find all critical points of f. You must make clear why each of your answers is a critical point.
Ex. L-27 4.1 Fa22 Quiz

Find the absolute extrema of $f(x)=\sqrt{2} \sin (x)+\cos ^{2}(x)$ on the interval $[0, \pi]$. Hint: You will need the approximation $\sqrt{2} \approx 1.4$.

Ex. L-28

4.1

For each part, find the absolute extreme values of $f(x)$ on the given interval. You may use a scientific calculator for parts (j) and (k) only.
(a) $f(x)=x^{4}-8 x^{2}$ on $[-3,3]$
(g) $f(x)=\frac{1-x}{x^{2}+3 x}$ on $[1,4]$
(b) $f(x)=x^{3}+3 x^{2}-24 x-72$ on $[-4,4]$
(h) $f(x)=x-2 \sin (x)$ on $[0,2 \pi]$
(c) $f(x)=\sqrt{x}(x-5)^{1 / 3}$ on $[0,6]$
(i) $f(x)=\left(x-x^{2}\right)^{1 / 3}$ on $[-1,2]$
(d) $f(x)=e^{-x} \sin (x)$ on $[0,2 \pi]$
(j) $f(x)=x^{3}-24 \ln (x)$ on $\left[\frac{1}{2}, 3\right]$
(e) $f(x)=x(\ln (x)-5)^{2}$ on $\left[e^{-4}, e^{4}\right]$
(k) $f(x)=3 e^{x}-e^{2 x}$ on $\left[-\frac{1}{2}, 1\right]$

Ex. L-29

4.1

Find the absolute extreme values of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}$ on $[-2,1]$.

Ex. L-30

4.1

Find the absolute extreme values of $f(x)=x^{2}(x+5)^{3}$ on $[-6,0]$.

Ex. L-31

Find the absolute minimum and maximum of $f(x)=(6 x+1) e^{3 x}$ on the interval $[-1000,1000]$.

Ex. L-32

$4.1,4.9$
The marginal revenue of a certain product is $R^{\prime}(x)=-9 x^{2}+17 x+30$, where x is the level of production. Assume $R(0)=0$. Find the market price that maximizes revenue.

Ex. L-33 4.1

Calculate the absolute extreme values of $f(x)=\frac{225-75 x^{2}}{5 x+x^{3}}$ on $[-5,-1]$.

§4.3, 4.4: What Derivatives Tell Us and Graphing Functions

Ex. M-1
$4.3 / 4.4$
Fa17 Exam

Consider the function $f(x)=(x-5)(x+10)^{2}=x^{3}+15 x^{2}-500$.
(a) Calculate all x - and y-intercepts of f.
(b) Find where f is increasing and find where f is decreasing. Then calculate the x - and y-coordinates of all local extrema, classifying each as either a local minimum or a local maximum.
(c) Find where f is concave up and find where f is concave down. Then calculate the x - and y-coordinates of all inflection points.
(d) Sketch the graph of $y=f(x)$ on the provided grid. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.

Ex. M-2

4.3/4.4

Sp18 Exam
Suppose $f(x)$ satisfies all of the following properties. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.

domain of $f:$	$[-8,8]$
specific points on graph:	$f(-2)=-3$ and $f^{\prime}(-6)=0$
asymptotes of $f:$	$x=-2$ and $y=-3$
f is decreasing on:	$[-8,-2),(-2,2)$
f is increasing on:	$(2,8]$
f is concave down on:	$(-1,1)$
f is concave up on:	$[-8,-1),(1,8]$

Ex. M-3
$4.3 / 4.4$
Sp18 Exam
Consider the function f and its derivatives below.

$$
f(x)=\frac{x^{2}}{x^{2}-1} \quad, \quad f^{\prime}(x)=\frac{-2 x}{\left(x^{2}-1\right)^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{6 x^{2}+2}{\left(x^{2}-1\right)^{3}}
$$

(a) Find all horizontal asymptotes of f.
(b) Find all vertical asymptotes of f. Then at each vertical asymptote you find, calculate the corresponding one-sided limits of f.
(c) Find where f is decreasing and find where f is increasing. Then calculate all points of local extrema, classifying each as either a local minimum, a local maximum, or neither.
(d) Find where f is concave down and find where f is concave up. Then calculate all points of inflection.
Ex. M-4 $4.3 / 4.4 \quad$ Fa18 Exam

Consider the function f and its derivatives below.

$$
f(x)=\frac{2 x^{3}+3 x^{2}-1}{x^{3}} \quad, \quad f^{\prime}(x)=\frac{3-3 x^{2}}{x^{4}} \quad, \quad f^{\prime \prime}(x)=\frac{6 x^{2}-12}{x^{5}}
$$

For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
(a) Find all horizontal asymptotes of f.
(b) Find all vertical asymptotes of f. Then for each asymptote, find the corresponding one-sided limits of f.
(c) Find where f is decreasing, where f is increasing, and where f has a local extremum.
(d) Find where f is concave down, where f is concave up, and where f has an inflection point.

Consider the function f and its derivatives below.

$$
f(x)=2 x+\frac{8}{x^{2}} \quad, \quad f^{\prime}(x)=\frac{2\left(x^{3}-8\right)}{x^{3}} \quad, \quad f^{\prime \prime}(x)=\frac{48}{x^{4}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

You do not have to show work, and each table item will be graded with no partial credit.

equation(s) of vertical asymptote(s) of f	
equation(s) of horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-6
4.3/4.4

Exam
Find the x-coordinate of each inflection point, if any, of $f(x)=x^{3}-12 x^{2}+5 x-10$.

Ex. M-7

$4.3 / 4.4$
Fa19 Exam
Consider the function f and its derivatives below.

$$
f(x)=\frac{3 x^{3}-2 x+48}{x} \quad, \quad f^{\prime}(x)=\frac{6\left(x^{3}-8\right)}{x^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{6\left(x^{3}+16\right)}{x^{3}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

equation(s) of vertical asymptote(s) of f	
equation(s) of horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-8

4.3/4.4

Sp20 Exam
For each part, sketch the graph of a function that satisfies the given properties.
(a) $f(x)$ is decreasing for all x; $f^{\prime \prime}(x)<0$ for $x<13 ; f^{\prime \prime}(x)>0$ for $x>13$.
(b) $f(x)$ has a local minimum at $x=a$ where $f^{\prime}(a)=0$.
(c) $f(x)$ has a local maximum at $x=b$ where $f^{\prime}(b)$ is undefined.

Ex. M-9

4.3/4.4
${ }^{\text {Sp } 20}$ Exam
The first two derivatives of the function f are given below.

$$
f^{\prime}(x)=\frac{x}{(x-6)^{2}(x+48)} \quad, \quad f^{\prime \prime}(x)=\frac{-2(x+12)^{2}}{(x-6)^{3}(x+48)^{2}}
$$

(Do not attempt to find a formula for $f(x)$.)
Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Consider the following function

$$
g(x)=\frac{3}{2} x^{4}+8 x^{3}-36 x^{2}
$$

(a) Where does g have a local minimum on $(-7,3)$? local maximum?
(b) Where does g have a global minimum on $[-7,3]$? global maximum?
Ex. M-10 $4.3 / 4.4 \quad$ Sp20 Exam

Consider the function f and its first two derivatives below.

$$
f(x)=\frac{99 e^{x}}{(x-25)^{47}}+98 \quad, \quad f^{\prime}(x)=\frac{99 e^{x}(x-72)}{(x-25)^{48}} \quad, \quad f^{\prime \prime}(x)=\frac{99 e^{x}\left((x-72)^{2}+47\right)}{(x-25)^{49}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

You do not have to show work, and each table item will be graded with no partial credit.

equation(s) of vertical asymptote(s) of f	
equation(s) of horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-11 $4.3 / 4.4$
Exam
Suppose f is continuous for all x and its first derivative is given by $f^{\prime}(x)=(x-4)^{2}(x+2)$.
(a) Where is f decreasing?
(b) A student writes "since $f^{\prime}(4)=0$, there is a local extremum (either min or max) at $x=4$ ". Is the student correct? Explain.
(c) Where is f concave up?
(d) Find the x-coordinate of each inflection point of f.

Ex. M-12
$4.3 / 4.4$
Su20 Exam
Suppose $f(x)$ satisfies all of the following properties.

- $f(x)$ is continuous and differentiable on $(-\infty, 3) \cup(3, \infty)$
- $x=3$ is a vertical asymptote of $f(x)$
- $\lim _{x \rightarrow \infty} f(x)=1$
- the only x-values for which $f^{\prime}(x)=0$ are $x=0$ and $x=5$
- the only x-values for which $f^{\prime \prime}(x)=0$ are $x=0$ and $x=7$

A sign chart for the first and second derivatives of f are given below.

Use this information to answer the following questions about $f(x)$. Note: Do not attempt to find a formula for $f(x)$.
(a) Where is f increasing?
(b) Where is f concave down?
(c) At which x-value(s) does f have a local minimum?
(d) At which x-value(s) does f have a local maximum?
(e) Calculate $\lim _{x \rightarrow 3^{+}} f(x)$ or determine there is not enough information to do so.
(f) Calculate $\lim _{x \rightarrow-\infty} f(x)$ or determine there is not enough information to do so.
(g) Sketch a possible graph of $y=f(x)$. Clearly mark and label all of the following: local minima, local maxima, inflection points, vertical asymptotes, horizontal asymptotes. Your graph does not have to be to scale, but the shape must be correct.

Ex. M-13 4.3/4.4

The figure below shows the graphs of f, f^{\prime}, and $f^{\prime \prime}$. Identify which graph is that of $f^{\prime \prime}$.

Ex. M-14
$4.3 / 4.4$
Fa20 Exam
The figure below shows the graphs of f, f^{\prime}, and $f^{\prime \prime}$. Identify which graph is which.

4.3/4.4

Fa20 Exam
Suppose $f(x)$ satisfies all of the following properties. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.
Information from $f(x)$:

- $\lim _{x \rightarrow-\infty} f(x)=1$
- $\lim _{x \rightarrow \infty} f(x)=6$
- $x=-3$ is a vertical asymptote for f

Information from $f^{\prime}(x)$:

- $f^{\prime}(x)>0$ on $(2, \infty)$
- $f^{\prime}(x)<0$ on $(-\infty,-3)$ and $(-3,2)$
- $f^{\prime}(2)=0$

Information from $f^{\prime \prime}(x)$:

- $f^{\prime \prime}(x)>0$ on $(-3,5)$
- $f^{\prime \prime}(x)<0$ on $(-\infty,-3)$ and $(5, \infty)$
- $f^{\prime \prime}(5)=0$

Ex. M-16

$$
4.3 / 4.4
$$

The first and second derivative of f are given below. You may assume that $f(x)$ has a vertical asymptote at $x=25$ only, but do not attempt to calculate $f(x)$ explicitly.

$$
f^{\prime}(x)=\frac{(x+2)^{1 / 5}}{(x-25)^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{-9(x+5)}{5(x-25)^{3}(x+2)^{4 / 5}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-17

$4.3 / 4.4$
Sp21 Exam
Consider the function $f(x)$ whose second derivative is given.

$$
f^{\prime \prime}(x)=\frac{(x-2)^{2}(x-5)^{3}}{(x-9)^{5}}
$$

You may assume the domain of $f(x)$ is $(-\infty, 9) \cup(9, \infty)$.
Find where $f(x)$ is concave down, where $f(x)$ is concave up, and where $f(x)$ has an inflection point. Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
Ex. M-18
4.3/4.4
Sp21 Exam

Use the graph of $y=f^{\prime}(x)$ below to answer the questions. You may assume that $f^{\prime}(x)$ has a vertical asymptote at $x=14$ and that the domain of f is $(0,14) \cup(14,20)$.

Note: You are given a graph of the first derivative of f, not a graph of f.
(a) Find the critical points of f.
(b) Find where f is decreasing, where f is increasing, where f has a local minimum, and where f has a local maximum. Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

Ex. M-19
$4.3 / 4.4$
Sp21 Exam
The figure below shows the graphs of two functions. One function is $f(x)$ and the other is $f^{\prime}(x)$, but you are not told which is which.

(a) Which graph is that of $y=f(x)$?
(b) Explain your answer to part (a) based on the behavior of the graphs at $x=4$ only.
(c) Explain your answer to part (a) based on the behavior of the graphs near $x=3.5$ only.

Ex. M-20

$4.3 / 4.4$
Fa21 Exam
Consider the function f and its derivatives below.

$$
f(x)=\frac{x-3}{x^{2}-6 x-16} \quad, \quad f^{\prime}(x)=\frac{-(x-3)^{2}-25}{\left(x^{2}-6 x-16\right)^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{2(x-3)\left((x-3)^{2}+75\right)}{\left(x^{2}-6 x-16\right)^{3}}
$$

Find where f is concave down and where f is concave up; write your answers using interval notation. Also find the x-coordinate of each inflection point of f.
Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

Ex. M-21

4.3/4.4

Fa21 Exam
Suppose f is differentiable on $(-\infty, 1) \cup(1, \infty)$ and satisfies all of the following properties. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.
(i) $\lim _{x \rightarrow-\infty} f(x)=-3 ; \quad \lim _{x \rightarrow \infty} f(x)=\infty ; \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 1^{+}} f(x)=\infty$;
(ii) $f^{\prime}(x)>0$ on $(-\infty,-2)$ and $(5, \infty) ; \quad f^{\prime}(x)<0$ on $(-2,1)$ and $(1,5) ; \quad f^{\prime}(-2)=f^{\prime}(5)=0$
(iii) $f^{\prime \prime}(x)>0$ on $(-\infty,-7)$ and $(1, \infty) ; \quad f^{\prime \prime}(x)<0$ on $(-7,1) ; \quad f^{\prime \prime}(-7)=0$

Ex. M-22

$4.3 / 4.4$
Fa21 Exam
Let $f(x)=-e^{-x}\left(x^{2}-5 x-23\right)$. Find all critical points of f. Then find where f is decreasing and where f is increasing; write your answers using interval notation. Also find where relative extrema of f occur.
Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

Ex. B-8 $\quad 2.1 / 2.2,3.7,4.3 / 4.4$
Fa21 Exam
For each part, use the graph of $y=g(x)$.

(a) How many solutions does the equation $g^{\prime}(x)=0$ have?
(b) Order the following quantities from least to greatest: $g^{\prime}(-2.5), g^{\prime}(-2), g^{\prime}(0)$, and $g^{\prime}(4)$. In your answer, write these quantities symbolically; do not give a numerical estimate.
(c) What is the sign of $g^{\prime \prime}(-3)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(d) Let $h(x)=g(x)^{2}$. What is the sign of $h^{\prime}(-4)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.

Ex. L-18 4.1, 4.3/4.4
Fa21 Exam
Let $f(x)=x^{3}(3 x-4)$.
(a) Find where relative extrema of f occur (if any). Classify each as a local minimum or a local maximum.
(b) Find the absolute extrema of f on $[-1,2]$ and the x-values at which they occur.

Ex. M-23

$4.3 / 4.4$
${ }^{\text {Fa21 }}$ Exam
Consider the function $g(x)$, whose first two derivatives are given below. Note: Do not attempt to calculate $g(x)$. Also assume that $g(x)$ has the same domain as $g^{\prime}(x)$.

$$
g^{\prime}(x)=\frac{8 x^{17}}{x-32} \quad g^{\prime \prime}(x)=\frac{128 x^{16}(x-34)}{(x-32)^{2}}
$$

Fill in the table below with information about the graph of $y=g(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

where g is decreasing	
where g is increasing	
x-coordinate(s) of local minima of g	
x-coordinate(s) of local maxima of g	
where g is concave down	
where g is concave up	
x-coordinate(s) of inflection point(s) of g	

Ex. M-24

$4.3 / 4.4$
Sp22 Exam
Let $f(x)=4 x^{5}-20 x^{4}+7 x+32$. Find where f is concave down and where f is concave up; write your answer using interval notation. Also find where inflection points of f occur.

Ex. M-25

$4.3 / 4.4$
Sp22 Exam
Suppose $f(x)$ satisfies all of the following properties. Sign charts for f^{\prime} and $f^{\prime \prime}$ are also given below. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.
(i) f is continuous and differentiable on $(-\infty, 2) \cup(2, \infty)$
(ii) $\lim _{x \rightarrow-\infty} f(x)=\infty ; \quad \lim _{x \rightarrow \infty} f(x)=\infty ; \quad \lim _{x \rightarrow 2^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 2^{+}} f(x)=\infty$
(iii) the only x-value for which $f^{\prime}(x)=0$ is $x=5$
(iv) the only x-value for which $f^{\prime \prime}(x)=0$ is $x=-3$

Ex. M-26

4.3/4.4 Sp22 Exam

Let $f(x)=\frac{x^{2}+21}{x-2}$. Find where f is decreasing and where f is increasing; write your answer using interval notation. Also find where the local extrema of f occur.

Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

Ex. L-21
$4.1,4.3 / 4.4$
Su22 Exam
Let $f(x)=A x^{B} \ln (x)$, where A and B are unspecified constants. Suppose that $\left(e^{5}, 10\right)$ is a point of local extremum for $f(x)$.
(a) Calculate the values of A and B.
(b) Determine whether $\left(e^{5}, 10\right)$ is a point of local minimum or a point of local maximum for $f(x)$. Explain your answer.

For each part, find the absolute extreme values of the given function on the given interval. If a particular extreme value does not exist, write "DNE" as your answer, and explain why that extreme value does not exist.
(a) $f(x)=\frac{e}{x}+\ln (x)$ on $\left[1, e^{3}\right]$
(b) $g(x)=12 x-x^{3}$ on $[0, \infty)$

Ex. M-27

$4.3 / 4.4$
Su22 Exam
Consider the function f and its derivatives below.

$$
f(x)=\frac{x^{2}}{x-7} \quad f^{\prime}(x)=\frac{x(x-14)}{(x-7)^{2}} \quad f^{\prime \prime}(x)=\frac{98}{(x-7)^{3}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

You do not have to show work, and each table item will be graded with no partial credit.

equation(s) of vertical asymptote(s) of f	
equation(s) of horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-28 $4.3 / 4.4,4.7 \quad$ Su22 Exam

Let $f(x)=x^{2} e^{x}$.
(a) Calculate the vertical and horizontal asymptotes of f.
(b) Calculate the critical points of f. Then use the Second Derivative Test to classify each critical point of f as a local minimum or a local maximum. Show your work and label your answers clearly. Hint: The second derivative of f is $f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}$.

Ex. M-29

$4.3 / 4.4$
Su22 Quiz
Consider the function g and its derivatives below.

$$
g(x)=x^{2}-\frac{27}{x} \quad g^{\prime}(x)=2 x+\frac{27}{x^{2}} \quad g^{\prime \prime}(x)=2-\frac{54}{x^{3}}
$$

Fill in the table below with information about the graph of $y=g(x)$. For each part, write "NONE" as your answer if appropriate. (You may use the bottom or back of this page for scratch work.) You do not have to show work, and each part of the table will be graded with no partial credit.

$4.3 / 4.4$	
vertical asymptote(s) of $g:$	
horizontal asymptote(s) of $g:$	
g is increasing on:	
g is decreasing on:	
g is concave up on:	
g is concave down on:	
x-coordinate(s) of relative maxima	
x-coordinate(s) of relative minima	
x-coordinate(s) of inflection point(s)	

Ex. M-30 $4.3 / 4.4$ Fa22 Quiz
Consider the function f and its derivatives below.

$$
f(x)=\frac{x^{4}}{3-x} \quad f^{\prime}(x)=\frac{x^{3}(12-3 x)}{(3-x)^{2}} \quad f^{\prime \prime}(x)=\frac{6 x^{2}\left((x-4)^{2}+2\right)}{(3-x)^{3}}
$$

Fill in the table below with information about the graph of $y=f(x)$. Write your answers using interval notation if appropriate. For each part, write "NONE" as your answer if appropriate.

vertical asymptote(s) of f	
horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

Ex. M-31

4.3/4.4

For each part, do all of the following.
(i) Find all vertical asymptotes and horizontal asymptotes of $f(x)$.
(ii) Find where $f(x)$ is decreasing and where $f(x)$ is increasing. Also find and classify all local extrema of $f(x)$.
(iii) Find where $f(x)$ is concave down and where $f(x)$ is concave up. Also find all inflection points of $f(x)$.
(iv) Sketch a graph of $y=f(x)$.
(a) $f(x)=\frac{1}{3} x^{3}-9 x+2$
(b) $f(x)=(x+1)^{2}(x-5)$
(d) $f(x)=x-\sin (2 x)$ (on $[0, \pi]$ only)
(f) $f(x)=1-\frac{x}{4-x}$
(i) $f(x)=\frac{x^{3}}{x-1}$
(c) $f(x)=\frac{x}{x^{2}+1}$
(e) $f(x)=1+2 x+18 x^{-1}$
(g) $f(x)=10 x^{3}-x^{5}$
(h) $f(x)=\frac{1}{x^{3}+8}$
(j) $f(x)=\frac{1}{x^{3}-3 x}$

Ex. M-32
 $4.3 / 4.4$

Sketch the graph of a function f that satisfies all of the following conditions.

- $f^{\prime}(x)>0$ when $x<2$ and when $2<x<5$
- $f^{\prime}(x)<0$ when $x>5$
- $f^{\prime}(2)=0$
- $f^{\prime \prime}(x)<0$ when $x<2$ and when $4<x<7$
- $f^{\prime \prime}(x)>0$ when $2<x<4$ and when $x>7$

Ex. M-33 $4.3 / 4.4$

Sketch the graph of a function f that satisfies all of the following conditions.

- the lines $y=1$ and $x=3$ are asymptotes
- f is increasing for $x<3$ and $3<x<5$, and f is decreasing elsewhere
- the graph of $y=f(x)$ is concave up for $x<3$ and for $x>7$
- the graph of $y=f(x)$ is concave down for $3<x<7$
- $f(0)=f(5)=4$ and $f(7)=2$

Ex. M-34 $4.3 / 4.4$

Consider the function

$$
f(x)=e^{-x^{2} / 2}
$$

Find where f is concave down and find where f is concave up. Then find all inflection points (x - and y-coordinates). Write "NONE" for your answer if appropriate.

Ex. M-35

$$
4.3 / 4.4
$$

Consider the function

$$
f(x)=\frac{1}{x^{2}-6 x}
$$

Find all vertical asymptotes of f. Then find where f is decreasing and find where f is increasing. Finally determine the x-coordinates of all local extrema of f (and classify them as either a local minimum or a local maximum). Write "NONE" for your answer if appropriate.

Ex. M-36 $\quad 4.3 / 4.4$

Consider the function f and its derivatives below.

$$
f(x)=\frac{(x-1)^{2}}{(x+2)(x-4)} \quad, \quad f^{\prime}(x)=\frac{-18(x-1)}{(x+2)^{2}(x-4)^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{54\left((x-1)^{2}+3\right)}{(x+2)^{3}(x-4)^{3}}
$$

Find the vertical and horizontal asymptotes of f. Then find where f is decreasing, where f is increasing, where f is concave down, and where f is concave up. Calculate the x-coordinates of all local minima, local maxima, and points of inflection.

Ex. M-37
$4.3 / 4.4$
Consider the function f and its derivatives given below.

$$
f(x)=\frac{1}{(x+4)^{2}(x-6)^{2}} \quad f^{\prime}(x)=\frac{-4(x-1)}{(x+4)^{3}(x-6)^{3}} \quad f^{\prime \prime}(x)=\frac{20\left((x-1)^{2}+5\right)}{(x+4)^{4}(x-6)^{4}}
$$

(i) Find all vertical asymptotes and horizontal asymptotes of $f(x)$.
(ii) Find where $f(x)$ is decreasing and where $f(x)$ is increasing. Also find and classify all local extrema of $f(x)$.
(iii) Find where $f(x)$ is concave down and where $f(x)$ is concave up. Also find all inflection points of $f(x)$.
(iv) Sketch a graph of $y=f(x)$.

Ex. M-38 $\quad 4.3 / 4.4 \quad \star$ Challenge

Consider the function $f(x)=a x^{6} e^{-b x}$, where a and b are unspecified constants. Suppose f has a point of local maximum at $\left(2,64 e^{-2}\right)$. Find the values of a and b.

Ex. M-39

$4.3 / 4.4$

\star Challenge
!!!
Consider the function $f(x)=(x-3 a)(x+2 a)^{4}$, where a is an unspecified positive constant. Answer all of the following in terms of a.
(a) where is f decreasing?
(e) where is f concave down?
(b) where is f increasing?
(f) where is f concave up?
(c) where does f have a local minimum?
(g) where does f have an inflection point?

Finally, sketch a graph of $y=f(x)$. Your horizontal scale should be in terms of a and your vertical scale should be in terms of a^{5}.
Ex M 40 $\quad 4.3 / 4.4$ Challenge $!1!$

Let $f(x)=\frac{e^{x}}{4+x^{3}}$. Answer all of the following.
(a) what are the vertical asymptotes of f ?
(d) where is f increasing?
(b) what are the horizontal asymptotes of f ?
(e) where does f have a local minimum?
(c) where is f decreasing?
(f) where does f have a local maximum?

Ex. M-41 $\quad 4.3 / 4.4 \quad \star$ Challenge

Let $f(x)=\sqrt[3]{x^{3}-48 x}$.
(i) Find all vertical asymptotes and horizontal asymptotes of $f(x)$.
(ii) Find where $f(x)$ is decreasing and where $f(x)$ is increasing. Also find and classify all local extrema of $f(x)$.
(iii) Find where $f(x)$ is concave down and where $f(x)$ is concave up. Also find all inflection points of $f(x)$.
(iv) Sketch a graph of $y=f(x)$.

§4.5: Optimization Problems

Ex. N-1
4.5
${ }^{\text {Fa17 Exam }}$

A wire of length 51 cm is cut into two pieces. One piece is bent into a square. The other piece is bent into a rectangle whose length is two times its width. How should the wire be cut and the pieces assembled so that the total area enclosed by both pieces is a minimum?
You must use calculus-based methods in your work. You must also justify that your answer really does give the minimum.
Ex. N-2
4.5
Sp18 Exam

You are constructing a rectangular box with a total surface area (six sides) of $450 \mathrm{in}^{2}$. The length of the box is three times its width. Find the dimensions of the box, measured in inches, with the largest possible volume.
You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.
Ex. N-3 4.5 Exam

Find the maximum possible area of a rectangle inscribed in the region between the graph of $f(x)=e^{-x^{2} / 12}$ and the x-axis. You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

Ex. N-4

4.5

The cost of producing x units is $C(x)=2 x^{2}+5 x+8$. Find the level of production (value of x) that minimizes the average cost. Hint: Average cost is $A C(x)=\frac{C(x)}{x}$.
Ex. N-5 4.5 Sp 4

According to postal regulations, the sum of the girth and length of a parcel may not exceed 90 inches. What are the dimensions (in inches) of the parcel with the largest possible volume that can be sent, if the parcel is a rectangular box with two square sides?
You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

Ex. N-6
4.5

Fa19 Exam
When x units of a certain product are produced, the total cost is $C(x)=5 x^{2}+104 x+80$. Find the level of production which minimizes the average cost per unit.

Ex. N-7
4.5

Fa19 Exam
A rectangular container with a closed top and a square base is to be constructed. The top and all four sides of the container are to be made of material that costs $\$ 2 / \mathrm{ft}^{2}$, and the bottom is to be made of material that costs $\$ 3 / \mathrm{ft}^{2}$. Find the container with the largest volume that can be constructed for a total cost of $\$ 60$.
You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.
Ex. N-8 4.5 Sp20 Exam

Let x be the level of production for a certain commodity. The marginal cost is modeled by the function

$$
\frac{d C}{d x}=3 x^{2}+2 x
$$

and the market price is modeled by the function

$$
p(x)=144-2 x
$$

Suppose that the cost of producing the 1st unit of the commodity is 70 .
(a) What is the cost of producing the first 3 units of the commodity?
(b) What is the level of production that maximizes the total profit?
Ex. N-9 4.5 Sp20 Exam

Suppose the local post office has a policy that all packages must be shaped like a rectangular box with a sum of length, width, and height not exceeding 144 inches. You plan to construct such a package whose length is 2 times its width. Find the dimensions of the package with the largest volume. For this problem, let L, W, and H be the length, width, and height of the package, respectively.
(a) What is the objective function for this problem in terms of L, W, and H ?
(b) There are two constraints for this problem. In terms of L, W, and H, give the constraint equation which corresponds to...
(i) ...the policy set by the post office.
(ii) ...your specific plan to construct such a package.
(c) Find the objective function in terms of W only.
(d) What is the interval of interest for the objective function?
(e) Find the values of L, W, and H that give the largest volume.
(f) Suppose the post office adds the additional requirement that the width W of the package must be no smaller than 36 inches and no larger than 40 inches. With this additional policy, what is the width of the package with the largest volume?

Ex. N-10

4.5

Sp20 Exam
A local park has hired you to construct a rectangular flower garden surrounded by a grass border that is 1 m wide on two sides and 2 m wide on the other two sides. (See the figure below.) The area of the garden only (the small rectangle) must be $126 \mathrm{~m}^{2}$.
Your primary task is to find the dimensions of the garden that give the smallest possible combined area of the garden and the grass border. For this problem, let W be the horizontal width of the garden and let H be the vertical height of the garden.

(a) What is the objective function for this problem in terms of W and H ?
(b) What is the constraint equation for this problem in terms of W and H ?
(c) Find the objective function in terms of W only.
(d) What is the interval of interest for the objective function?
(e) Find the values of W and H that minimize the total combined area.
(f) What horizontal width W of the garden will maximize the total area?
Ex. N-11 4.5 Su20 Exam

Farmer Brown wants to create a rectangular pen that must enclose exactly $1800 \mathrm{ft}^{2}$. The fencing along the north and south sides of the fence costs $\$ 10 / \mathrm{ft}$ and the fencing along the east and west sides costs $\$ 5 / \mathrm{ft}$. (The cost is different because some parts of the fence have to be taller than other parts.) Let x denote the length of the north side and let y denote the length of the east side.
(a) What are the dimensions and total cost of the cheapest pen?
(b) Justify that your answer really does give the cheapest pen.
Ex. N-12 4.5 Su20 Exam

In a certain video game, the player may adjust the values of their character's Intelligence (denoted by x) and Dexterity (denoted by y). These power values must be non-negative but can be any real number (they need not be whole numbers). The player cannot arbitrarily adjust their power, but rather these values must satisfy the equation $x^{2}+y^{2}=$ 100. The total damage done (denoted by D) by the spell Thunderbolt is given by $D=x+3 y$.
(a) How should the player adjust their power so that Thunderbolt does the most possible damage?
(b) What is the minimum possible damage that Thunderbolt will do, regardless of how the player adjusts their character's power? How should a player adjust these power values to achieve the minimum possible damage?

Ex. N-13

A rectangular box with a square base and no top is being constructed to hold a volume of $150 \mathrm{~cm}^{3}$. The material for the base of the container costs $\$ 6 / \mathrm{cm}^{2}$ and the material for the sides of the container costs $\$ 2 / \mathrm{cm}^{2}$. Find the dimensions of the cheapest possible container.
You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

An airline policy states that all baggage must be shaped like a rectangular box with the sum of the length, width, and height not exceeding 122 inches. You plan to purchase a bag from a company that makes customized bagged whose height must be 3 times its width. Find the dimensions of the baggage with the largest volume. (Let L, W, and H be the length, width, and height of the baggage, respectively.)
(a) Before using any constraints particular to this problem, find the objective function in terms of L, W, and H.
(b) There are two constraints for this problem. One constraint is from the airline and the other is from the baggage company. Find these constraints.
(c) Write the objective function in terms of W only.
(d) Find the interval of interest for the objective function in part (c).
(e) Find the dimensions of the baggage with the largest volume.
Ex. N-15 4.5 Fa21 Exam

A storage shed with a volume of $1500 \mathrm{ft}^{3}$ is to be built in the shape of a rectangular box with a square base. The material for the base costs $\$ 6 / \mathrm{ft}^{2}$, the material for the roof costs $\$ 9 / \mathrm{ft}^{2}$, and the material for the sides costs $\$ 2.50 / \mathrm{ft}^{2}$. Find the dimensions of the cheapest shed. As you work, fill in the answer boxes below. Let x represent the length of the base of the shed.

objective function in terms of $x:$	
interval of interest:	
dimensions of cheapest shed (in ft):	$\frac{}{\text { length of base }} \times \frac{\text { width of base } \times \frac{\text { height of shed }}{}}{}$

Ex. N-16

4.5
${ }^{\text {Fa21 }}$ Exam
Farmer Green is building an enclosure that must have a total area of $48 \mathrm{~m}^{2}$. The pen will also be subdivided into 6 pens of equal area, as shown on the right. Find the dimensions of the enclosure that will require the least amount of fencing. As you work, fill in the answer boxes below. You must use calculus-based methods in your work. You must also justify that your answer really does give the least fencing.

constraint equation in terms of x and $y:$	
objective function in terms of x only:	
interval of interest:	
dimensions of desired enclosure (in meters):	$\frac{}{\text { total length }(x)} \times \frac{}{\text { total width }(y)}$

Ex. N-17

4.5

Sp22 Exam
A rectangle (with base $2 x$ and height y) is constructed with its base on the diameter of a semicircle with radius 5 and with its two other vertices on the semicircle. Find the dimensions of the rectangle with the maximum possible area. As you work, fill in the answer boxes below. You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

constraint equation in terms of x and $y:$	
objective function in terms of x only:	
interval of interest:	$\frac{2 x \text { (base) }}{} \times \frac{y \text { (height) }}{}$
dimensions of rectangle:	

Ex. N-18

4.5

Su22 Exam
A rancher plans to make four identical and adjacent rectangular pens against a barn, each with an area of $100 \mathrm{~m}^{2}$ (see the figure below). What are the dimensions of each pen that minimize the amount of fence that must be used? Note: No fencing is needed on the side of the pen that borders the barn (the north side of the pen).
As you work, fill in the answer boxes below. You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

constraint equation(s):	
objective function in one variable only:	
interval of interest:	
dimensions of one pen:	
horizontal dimension $\times \overline{\text { vertical dimension }}$	

Ex. N-19
4.5

Su22
An airline policy states that all carry-on baggage must be box-shaped with a sum of length, width, and height not exceeding 60 in . Suppose the length of a particular carry-on is three times its width. Under the airline's policy, what are the dimensions of such a carry-on with the greatest volume?

You must use calculus-based methods to solve this problem, and you must demonstrate that your answer really does give the greatest volume.

Ex. N-20

4.5
${ }^{\text {Fa22 }}$ Quiz
A rectangle is constructed with its lower two vertices on the x-axis and its upper two vertices on the parabola $y=75-3 x^{2}$. Find the dimensions of the rectangle with the greatest area.
In your work, you must clearly define your variables, identify any constraint equations, and identify your objective function (in terms of one variable). You must also verify that your answer really does give a maximum.

Ex. N-21

4.5

Find the largest possible product of two numbers whose sum is 180 .

Ex. N-22

4.5

The sum of two numbers is 10 . Find the smallest possible value for the sum of their squares.

Ex. N-23

4.5

Find the dimensions of the rectangle of largest area that can be inscribed in a semicircle of radius 4 , assuming that one side of the rectangle lies on the diameter of the semicircle.

Ex. N-24

4.5

A farmer is constructing a rectangular fence along a straight river. The side of the rectangle bordering the river does not need any fencing. If the farmer has 1000 feet of fencing, what is the largest possible area he may enclose?

Ex. N-25

4.5

A farmer with 1600 feet of fencing wants to enclose a rectangular area and then divide it into four equal-area pens with fencing parallel to one side of the rectangle. What is the largest possible area that a single pen can enclose?

Ex. N-26
 4.5

Consider the construction of a rectangular aquarium that must hold a volume of $4000 \mathrm{in}^{3}$. The length of the base must be twice the width of the base. The top and bottom bases of the tank cost $\$ 1.50 / \mathrm{in}^{2}$. Each of the sides of the tank costs $\$ 3 / \mathrm{in}^{2}$. Find the dimensions (length, width, height) of the tank with the least cost.

Ex. N-27 4.5

Suppose that the total cost of producing s widgets is $C(x)=x^{3}+9 x^{2}+18 x+200$ and the selling price per unit is $p(x)=45-2 x^{2}$. At what price should the widgets be sold to maximize total profit?

Ex. N-28 4.5

Suppose the total cost of manufacturing x widgets is $C(x)=3 x^{2}+5 x+75$. What level of production minimizes the average cost per unit?

Ex. N-29 4.5

The total cost of producing x widgets is

$$
C(x)=x^{3}-6 x^{2}+15 x
$$

and the selling price per unit is fixed at $p(x)=6$. Show that if you want to set a level of production to maximize total profit, the best you can do is break even.

Ex. N-30

4.5

If x units are produced, then the total cost is $C(x)=x^{3}+4 x^{2}+60 x+200$ and the selling price per unit is $p(x)=100-3 x$. Find the level of production that maximizes the total profit.

Ex. N-31

A poster is to have a total area of $150 \mathrm{in}^{2}$, which includes a central printed area, 1-inch margins at the bottom and sides, and a 2-inch margin at the top. What poster dimensions (in inches) will give the largest printed area? Use calculus to justify your answer.
You must demonstrate that your answers really are the optimal dimensions.

Ex. N-32

4.5

A piece of cardboard that is 24 inches wide and 15 inches long is to be used to construct a box with an open top. To do this, congruent squares are cut from each corner of the cardboard, and the flaps are folded up and taped to form the sides of the box. What is the largest possible volume of such a box? Use calculus to justify your answer.
You must demonstrate that your answers really are the optimal dimensions.

Ex. N-33

4.5

A cylindrical can must have a volume of $32 \pi \mathrm{~cm}^{3}$. The cost of each of the top and bottom is $\$ 6 / \mathrm{cm}^{2}$ and the cost of the curved side surface is $\$ 3 / \mathrm{cm}^{2}$. Find the radius and height of the least expensive can. Justify that your answer does, in fact, give the minimum cost.

Ex. N-34

4.5

Find the maximum possible area of a rectangle inscribed in the region below the graph of $y=\frac{4}{(x+2)^{2}}$ and in the
first quadrant.

Ex. N-35 4.5 *Challenge !!!
Find the equation of the line through $(2,4)$ that cuts off the least area from the first quadrant. (Observe that this cut off region is a triangle.)
Ex. N-36 4.5 Challenge !!!

Two poles, one 6 meters tall and one 15 meters tall, are 20 meters apart. A length of wire is attached to the top of each pole and it is also staked to the ground somewhere between the two poles. Where should the wire be staked so that the minimum amount of wire is used?

§4.6: Linear Approximation and Differentials

Ex. O-1 4.6 Exa17 Exam

Use a linear approximation to estimate $\sqrt{33}$.
Ex. O-2
4.6
Sp 18 Exam

At a certain factory, the daily output is

$$
Q(L)=1500 L^{2 / 3}
$$

where L denotes the size of the labor force measured in worker-hours. Currently 1,000 worker-hours of labor are used each day. Use a linear approximation to estimate the effect on the daily output if the labor force is cut to 975 worker-hours.

$$
\text { Ex. O-3 } 4.6 \quad \text { Fa18 Exam }
$$

The concentration of a certain drug in the bloodstream t hours after the drug is injected is modeled by the following formula.

$$
C(t)=\frac{100 t}{t^{2}+1}
$$

(The concentration is measured in micrograms per milliliter.) Use a linear approximation to estimate the change in the concentration over the time period from 2 to 2.1 hours after injection. Also indicate whether the concentration increases or decreases.
Ex. O-4 $4.6 \quad$ Sp19 Exam

Use a linear approximation to estimate $\sqrt{35.9}$. Do not simplify your answer.

Ex. O-5

4.6

Sp19 Exam
The cost of producing x units is $C(x)=3 x^{2}+4 x+1000$. Use marginal analysis to estimate the cost of producing the 41st unit.
Ex. O-6 $4.6 \quad$ Fa19 Exam

Note: The parts of this problem are not related!
(a) Use linear approximation to estimate the value of $\sqrt{79}$.
(b) A manufacturer's total cost to produce x units is $C(x)=25 \ln \left(x^{2}+16\right)$. Use marginal analysis to estimate the cost of the 4th unit.

Ex. O-7 4.6 Sp20 Exam
Use linear approximation or differentials to estimate the value of $\frac{1}{\sqrt[3]{8.48}}$.
Ex. O-8 4.6 Sp20 Exam

Suppose the cost of manufacturing x units is given by $C(x)=x^{3}+5 x^{2}+12 x+50$.
(a) What is the exact cost of producing the 3rd unit?
(b) Using marginal analysis, estimate the cost of producing the 3rd unit.
Ex. O-9 4.6 Sp20 Exam

Use linear approximation to estimate the value of $(0.98)^{3}-5(0.98)^{2}+4(0.98)+10$.

Ex. O-10
4.6

Sp20 Exam
If x units are produced, the total cost is $C(x)=x^{2}+15 x+24$ and the selling price per unit is

$$
p(x)=\frac{156}{x^{2}-4 x+16}
$$

(a) What is the exact cost of producing the 3rd unit?
(b) Using marginal analysis, estimate the revenue from the 3rd unit sold.

Ex. O-11

4.6

Sp20 Exam
Suppose the cost (in dollars) of manufacturing q units is given by

$$
C(q)=6 q^{2}+34 q+112
$$

Use marginal analysis to estimate the cost of producing the 5 th unit.

Ex. O-12

4.6

Su20 Exam
Given that x units of a commodity are sold, the selling price per unit is $p(x)=\frac{5000}{x^{2}+64}$.
(a) Calculate the revenue function.
(b) Calculate the exact revenue derived from the 7th unit.
(c) Using marginal analysis, estimate the revenue derived from the 7th unit.

Ex. O-13 4.6 Su20 Exam

The total number of gallons in a water tank at t hours is given by $N(t)=40 t^{2 / 5}$. Use a linear approximation to estimate the number of gallons added to the water between $t=32$ and $t=35$.
Ex. O-14 4.6 Exam

Suppose f is differentiable on $(-\infty, \infty), f(5)=3$, and $f^{\prime}(5)=-7$. Use linear approximation to estimate $f(5.1)$.
Ex. O-15 4.6 Fa20 Exam

Use linear approximation to estimate $\sqrt[3]{29}-\sqrt[3]{27}$. Your final answer must be exact and may not contain any radicals.
Ex. O-16
4.6
Sp21 Exam

Use the identity $4^{2}+\sqrt{4}=18$ and linear approximation to estimate $(3.81)^{2}+\sqrt{3.81}$.

Ex. O-17

4.6

Sp21 Exam
The total cost (in dollars) of producing x items is modeled by the function $C(x)=x^{2}+4 x+3$, and the price per item (in dollars) is $p(x)=\frac{98 x+49}{x+3}$.
(a) Calculate the exact cost of producing the 5 th item.
(b) Using marginal analysis, estimate the revenue derived from producing the 5th item.

Ex. O-18 4.6
 Fa21 Exam

Use linear approximation to estimate $\tan \left(\frac{\pi}{4}+0.12\right)-\tan \left(\frac{\pi}{4}\right)$.

Ex. L-19
$4.1,4.6$
Fa21 Exam
The parts of this problem are not related.
(a) Suppose that when x units are produced, the total cost is $C(x)=2 x^{2}+10 x+18$ and the selling price per unit is $p(x)=46-x$. Find the level of production that maximizes total profit.
(b) Suppose the total cost of producing q units is $C(q)=q^{3}+20 q^{2}+200 q+2000$. Use marginal analysis to estimate the cost of the 3rd unit.

Ex. O-19

4.6

Sp18 Quiz
Use a linear approximation to estimate the value of $\frac{1}{\sqrt[4]{0.96}}$.
Ex. O-20 4.6
${ }^{\text {Sp20 }}$ Quiz
Use a linear approximation to estimate the value of $(2.01)^{5}-5 \cdot(2.01)^{3}+9$.

Ex. O-21
4.6 $\mathrm{Sp}_{\mathrm{sp}}$ Quiz
The total cost of producing x units is $C(x)=10 x^{3}+500 x^{2}+1000 x+24000$.
(a) Write a numerical expression equal to the exact cost of the 11 th unit.
(b) Use marginal analysis to estimate the cost of the 11th unit. Write your answer as an exact decimal or as a fraction of integers.
Ex. O-22 4.6 Su22 Quiz

Use linear approximation to estimate the number $\frac{1}{(2.9)^{2}}$. Do not simplify your answer.

Ex. O-23
4.6

Su22 Quiz
The position of a particle at time t is given by $x(t)=5+20 t^{3 / 5}+t$. Use linear approximation to estimate the change in the particle's position between $t=32$ and $t=35$. Do not simplify your answer.
Ex. O-24
4.6
Su22 Quiz

If x units of a certain product are being produced, the marginal cost is

$$
\frac{d C}{d x}=5+12 x+20 x^{3 / 2}
$$

Suppose the total cost of producing 1 unit is 100 (measured in thousands of dollars). Calculate the total cost of producing 4 units.

Ex. O-25

4.6

For each part, use a linear approximation to estimate the given value. Each answer should be an exact rational number.
(a) $e^{0.1}$
(c) $\frac{1}{\sqrt[3]{25}}$
(e) $\sqrt{96}$
(b) $\ln (1.04)$
(d) $\left(\sec \left(\frac{\pi}{4}-0.02\right)\right)^{2}$
(f) $(5.01)^{3}-2(5.01)+3$

Ex. O-26

When the level of production is q units, the total cost (in dollars) is $C(q)=q^{5}-2 q^{3}+3 q^{2}-2$. The current level of production is 3 units, and the manufacturer is planning to increase this to 3.01 units. Use a linear approximation to estimate how the total cost will change as a result.

Ex. O-27

4.6

When the level of production is q units, the total cost (in dollars) is $C(q)=3 q^{2}+q+500$.
(a) What is the exact cost of manufacturing the 41st unit?
(b) Use marginal analysis to estimate the cost of manufacturing the 41st unit.

Ex. O-28

4.6

The total revenue from selling x units of a certain product is $R(x)=40-\frac{200}{x+5}$. Using marginal analysis, estimate the revenue from selling the 6 th unit.

Ex. O-29 4.6
Use a linear approximation to estimate the value of $(16.32)^{1 / 4}$.

Ex. O-30

4.6

Use linear approximation to estimate $(33.6)^{1 / 5}$.

Ex. O-31

4.6

Use linear approximation to estimate $\sec \left(\frac{\pi}{6}+0.12\right)-\sec \left(\frac{\pi}{6}\right)$.
Ex. J-36 $\quad 3.8,4.6 \quad \star$ Challenge

Consider the curve described by the equation

$$
\frac{x-y^{3}}{y+x^{2}}=x-12
$$

(a) Find an equation for the line tangent to this curve at $(-1,4)$.
(b) There is a point on the curve with coordinates $(-1.1, b)$. Use linear approximation to estimate b. Round to three decimal places.
(c) There is a point on the curve with coordinates ($a, 4.2$). Use linear approximation to estimate a. Round to three decimal places.

Ex. O-32

4.6
*Challenge
The acceleration (measured in $\mathrm{m} / \mathrm{s}^{2}$) of a particle moving along the x-axis is given by

$$
a(t)=14 t^{3 / 4}-6 t^{2}+1
$$

and the particle is at rest (zero velocity) when $t=1$. Use a linear approximation to estimate the particle's change in position between $t=16$ and $t=16.02$.

§4.7: L'Hôpital's Rule

Ex. P-1

4.7

Fa17 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 0}(1-\sin (4 x))^{6 / x}$
(b) $\lim _{x \rightarrow 1}\left(\frac{x e^{4 x}+4 e^{4}-5 e^{4} x}{(x-1)^{2}}\right)$

Ex. P-2

4.7

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 1}\left(\frac{x^{1 / 4}-1}{e^{2 x}-e^{2}}\right)$
(b) $\lim _{x \rightarrow 1}\left((x-1) \tan \left(\frac{\pi x}{2}\right)\right)$

Ex. P-3

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 0}\left(\frac{1-\cos (9 x)}{x^{2}}\right)$
(b) $\lim _{x \rightarrow 0}(1-3 x)^{5 / x}$

Ex. E-2 $\quad 2.5,4.7$
Sp19 Exam
The parts of this problem are related!
(a) Show that $\lim _{x \rightarrow \infty}\left(\frac{x}{x-3}\right)=1$.
(b) Calculate the following limit or show it does not exist.

$$
\lim _{x \rightarrow \infty}\left(\frac{x}{x-3}\right)^{x}
$$

Hint: First use part (a) to identify the appropriate indeterminate form.

Ex. P-4

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow \pi}\left(\frac{1+\cos (x)}{(x-\pi)^{2}}\right)$
(c) $\lim _{x \rightarrow 1}\left(\frac{x^{3}-2 x^{2}-5 x+6}{x^{3}+x^{2}+x-3}\right)$
(b) $\lim _{x \rightarrow \infty}\left(1-\frac{12}{x}\right)^{5 x}$
(d) $\lim _{x \rightarrow 4^{+}}\left(\frac{2 x-x^{2}}{x-4}\right)$

Ex. P-5 4.7

Calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

$$
\lim _{x \rightarrow 0^{+}}(\sqrt{12 x+9}-\sqrt{2 x+4})^{1 / x}
$$

Ex. P-6

4.7

Sp20 Exam
Suppose you want to compute a limit that is in the form of a quotient, i.e., a limit of the form:

$$
\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)
$$

Suppose you have already determined that L'Hospital's Rule is applicable. Explain the next step in your calculation, i.e., how do you apply L'Hospital's Rule? Your answer may contain either English, mathematical symbols, or both.

Ex. P-7

Each of the following limits is written in the form of a quotient. Which limits can be calculated using L'Hospital's Rule directly, i.e., by applying L'Hospital's Rule as the immediately next step without any other algebra or modification? Select all that apply.
(a) $\lim _{x \rightarrow \pi}\left(\frac{\sin (7 x)}{x}\right)$
(c) $\lim _{x \rightarrow \infty}\left(\frac{x^{-1}+5}{x^{-2}+8}\right)$
(e) $\lim _{x \rightarrow \infty}\left(\frac{e^{x}+10}{e^{x}-3}\right)$
(b) $\lim _{x \rightarrow 2}\left(\frac{x^{3}+3 x-14}{x^{2}-5 x+6}\right)$
(d) $\lim _{x \rightarrow 9^{-}}\left(\frac{x^{3 / 2}+x-36}{x-\sqrt{x}-6}\right)$
(f) $\lim _{x \rightarrow-\infty}\left(\frac{e^{x}+10}{e^{x}-3}\right)$

Ex. D-2

$2.4,4.7$
${ }^{\text {Sp20 }}$ Exam
Which of the following limits are equal to $+\infty$? Select all that apply.
(a) $\lim _{x \rightarrow 5^{-}}\left(\frac{x^{2}+25}{5-x}\right)$
(c) $\lim _{x \rightarrow-3^{-}}\left(\frac{x^{3}}{|x+3|}\right)$
(e) $\lim _{x \rightarrow 1^{+}}\left(\frac{x^{6}-x^{2}}{x-1}\right)$
(b) $\lim _{x \rightarrow 5^{+}}\left(\frac{x^{2}+25}{5-x}\right)$
(d) $\lim _{x \rightarrow 0^{-}}\left(\frac{x^{4}-2 x-5}{\sin (x)}\right)$
Ex. P-8 4.7 Sp20 Exam

Calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

$$
\lim _{x \rightarrow \infty}\left(5 x^{3}+2 x^{2}+8\right)^{1 / \ln (x)}
$$

Ex. P-9 4.7 Sp20 Exam

Suppose you have determined

$$
\lim _{x \rightarrow a} f(x)=0 \text { and } \lim _{x \rightarrow a} g(x)=\infty
$$

and you want to calculate the following limit:

$$
L=\lim _{x \rightarrow a}(f(x) g(x))
$$

You recall that to calculate L, you have to use L'Hospital's Rule. What is the next step you must take before you are able to apply L'Hospital's Rule directly to the limit L? Your answer may contain either English, mathematical symbols, or both.

Ex. P-10
4.7

Sp20 Exam
Which of the following are indeterminate forms? Recall that in this course, we have learned that limits with indeterminate forms may often be computed using L'Hospital's Rule.
(a) $\frac{0}{0}$
(d) $\frac{0}{\infty}$
(g) $\infty \cdot(-\infty)$
(b) $0 \cdot \infty$
(e) 2^{∞}
(h) ∞^{0}
(c) $\frac{\infty}{-\infty}$
(f) $3 \cdot(-\infty)$
(i) ∞^{∞}

Ex. P-11

A student is asked to calculate the following limit using l'Hospital's Rule and to show all their work.

$$
L=\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)+17 x^{2}+2 x}{4 x^{2}+\tan (x)}\right)
$$

The student decides to cheat, so they find the solution online (shown below) and they submit the work as their own!

$$
\begin{align*}
L & =\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)+17 x^{2}+2 x}{4 x^{2}+\tan (x)}\right) \tag{1}\\
& =\lim _{x \rightarrow 0}\left(\frac{2 \cos (2 x)+34 x+2}{8 x+\sec (x)^{2}}\right) \tag{2}\\
& =\lim _{x \rightarrow 0}\left(\frac{-4 \sin (2 x)+34}{8+2 \sec (x)^{2} \tan (x)}\right) \tag{3}\\
& =\frac{-4 \sin (0)+34}{8+2 \sec (0)^{2} \tan (0)} \tag{4}\\
& =\frac{0+34}{8+0} \tag{5}\\
& =\frac{17}{4} \tag{6}
\end{align*}
$$

Unfortunately, this solution contains an error, and so the student lost all credit for the problem. The student was also later determined to be responsible for cheating, and so they earned a grade of 0 on the entire exam!
Your task is to find and correct the error(s). Answer the following questions.
(a) There may be several errors in this solution. Which line is the first incorrect line?
(b) Explain the error in the first incorrect line in your own words.
(c) Calculate the correct value of L (the original limit).

Ex. P-12

4.7

Su 20 Exam
Calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

$$
\lim _{x \rightarrow 1}\left(\frac{\tan (\pi x)}{\sqrt{2+x^{3}}-\sqrt{2+x}}\right)
$$

Ex. P-13 4.7 Su20 Exam

Consider the following limit.

$$
L=\lim _{x \rightarrow-3}(4+x)^{7 /(6+2 x)}
$$

(a) What indeterminate form does this limit have?
(b) Explain why l'Hospital's rule cannot be used on this limit in its current form.
(c) Calculate the value of L.

Ex. P-14 4.7 Fa20 Exam
Consider the limit $L=\lim _{x \rightarrow 2^{-}}((x-2) \ln (2-x))$.
(a) Does this limit have an indeterminate form? If so, which indeterminate form?
(b) Explain why l'Hospital's rule cannot be used on this limit in its current form.
(c) Write the limit in an equivalent form to which l'Hospital's rule may be applied.

Note: You are not required to calculate the limit; do not attempt to do so.

Suppose $f^{\prime}(x)$ is continuous with $f(3)=2$ and $f^{\prime}(3)=-8$. Calculate the following limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

$$
\lim _{x \rightarrow 1}\left(\frac{2 x^{4}-f\left(3 x^{1 / 4}\right)}{x^{2}-4 x+3}\right)
$$

Suppose $f^{\prime \prime}(x)$ is continuous. You are also given the following values:

$$
f\left(\frac{1}{8}\right)=20 \quad, \quad f^{\prime}\left(\frac{1}{8}\right)=-22
$$

Calculate the following limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".

$$
\lim _{x \rightarrow 8}\left(\frac{20-f\left(\frac{1}{x}\right)}{x^{2}+x-72}\right)
$$

Ex. D-13

$2.4,2.5,4.7$
Fa21 Exam
For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 1}\left(\frac{x^{4}-x}{\ln (77 x-76)}\right)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$, with $f(x)= \begin{cases}1+4 x & x \leq 2 \\ \frac{x^{2}-4}{x-2} & x>2\end{cases}$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{36 x^{2}+63}}{31 x}\right)$
(d) $\lim _{x \rightarrow 5^{-}}\left(\frac{\cos (\pi x)}{x^{2}-25}\right)$

Ex. D-14

$2.4,4.7$
Fa21 Exam
For each part, find all vertical asymptotes of the given function.
(a) $f(x)=\frac{x^{2}-8 x+15}{x^{2}-9}$
(b) $g(x)=\frac{e^{x+3}-1}{x^{2}-9}$
Ex. P-17 $4.7 \quad$ Sp22 Exam

For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow \pi}\left(\frac{\cos (6 x)-1}{(x-\pi)^{2}}\right)$
(b) $\lim _{x \rightarrow 0}\left(e^{2 x}+3 x\right)^{1 / x}$
Ex. M-28 4.3/4.4, 4.7 Su22 Exam

Let $f(x)=x^{2} e^{x}$.
(a) Calculate the vertical and horizontal asymptotes of f.
(b) Calculate the critical points of f. Then use the Second Derivative Test to classify each critical point of f as a local minimum or a local maximum. Show your work and label your answers clearly. Hint: The second derivative of f is $f^{\prime \prime}(x)=\left(x^{2}+4 x+2\right) e^{x}$.

Ex. P-18

$$
4.7
$$

Su22 Exam
Let $f(x)=\frac{x \sin (A x)}{\sin ^{2}(2 x)}$, where A is a constant. Suppose $\lim _{x \rightarrow 0} f(x)=-6$. Calculate A.
Ex. P-19 4.7 Sp18 Quiz

Calculate the following limit or show it does not exist.

$$
\lim _{x \rightarrow 0}\left(\frac{x-\ln (1+x)}{1-\cos (2 x)}\right)
$$

For each part, calculate the limit or show that it does not exist. If the limit is infinite, your answer should be " $+\infty$ " or " $-\infty$ ".
(a) $\lim _{x \rightarrow e}\left(\frac{1-\ln (x)}{x^{2} \ln (x)-e^{2}}\right)$
(b) $\lim _{x \rightarrow 2^{+}}\left(\frac{\cos (\pi x)}{x^{2}-6 x+8}\right)$

Ex. P-21 4.7

 Su22 QuizCalculate the limit or show that it does not exist. If the limit is infinite, write " $+\infty$ " or " $-\infty$ " as your answer, instead of "does not exist", as appropriate.

$$
\lim _{x \rightarrow 0}\left(\frac{x e^{-2 x}+\cos (x)-1-x}{x^{2}}\right)
$$

Ex. P-22 4.7

Compute $\lim _{x \rightarrow 0}\left(\frac{e^{-5 x}-1}{\ln (1+13 x)}\right)$. If the limit is infinite, write " $+\infty$ " or " $-\infty$ " instead of "DNE".

Ex. P-23

4.7
${ }^{\text {Fa22 }}$ Quiz
Calculate the limit below or determine it does not exist.

$$
\lim _{x \rightarrow 0}\left(\frac{\cos (5 x)-\cos (4 x)}{3 x^{2}}\right)
$$

Ex. P-24

For each part, calculate the limit or show that it does not exist.
(a) $\lim _{x \rightarrow 0}\left(\frac{e^{2 x}-1-2 x-2 x^{2}}{x^{3}}\right)$
(g) $\lim _{x \rightarrow 0^{+}}(\sin (2 x) \ln (x))$
(m) $\lim _{x \rightarrow 0}(\cos (x))^{3 / x^{2}}$
(b) $\lim _{x \rightarrow 1}\left(\frac{x^{3}-1}{x^{4}-x}\right)$
(h) $\lim _{x \rightarrow 0^{+}}\left(x^{-4} \ln (x)\right)$
(n) $\lim _{x \rightarrow \infty}\left(\frac{x}{\sqrt{3 x^{2}+4}}\right)$
(c) $\lim _{x \rightarrow 2}\left(\frac{x^{3}-8}{x^{4}-x}\right)$
(i) $\lim _{x \rightarrow 4}\left(\frac{1}{\sqrt{x}-2}-\frac{4}{x-4}\right)$
(o) $\lim _{x \rightarrow \infty}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)$
(d) $\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+2}\right)$
(j) $\lim _{x \rightarrow 3}\left(\frac{\sqrt{x+1}-2}{x^{3}-7 x-6}\right)$
(p) $\lim _{x \rightarrow 0}(1-\sin (2 x))^{1 / \tan (3 x)}$
(e) $\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+2}\right)^{x}$
(k) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)$
(q) $\lim _{x \rightarrow 0}\left(\frac{x \sin (x)}{1-\cos (x)}\right)$
(f) $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sec (x)}{\tan (x)}\right)$
(l) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin (x)}-\frac{1}{x}\right)$
(r) $\lim _{x \rightarrow \frac{\pi}{2}}\left(\left(x-\frac{\pi}{2}\right) \tan (x)\right)$

Ex. P-25

4.7

Find the equation of each horizontal asymptote of $f(x)=\frac{2 e^{x}-5}{3 e^{x}+2}$.

Ex. P-26

4.7

For each part, calculate the limit or show that it does not exist. If the limit is infinite, write " ∞ " or " $-\infty$ " as your answer, as appropriate.
(a) $\lim _{x \rightarrow 3^{-}}\left(\frac{x^{2}+6}{3-x}\right)$
(b) $\lim _{x \rightarrow 0}(1-\sin (3 x))^{1 / x}$
(c) $\lim _{x \rightarrow-3}\left((x+3) \tan \left(\frac{\pi x}{2}\right)\right)$

Ex. P-27

Calculate each limit.
(a) $\lim _{x \rightarrow 0}\left(\frac{\sin (x)^{2}}{\sin \left(2 x^{2}\right)}\right)$
(b) $\lim _{x \rightarrow 1}\left(\frac{\ln \left(x^{2}+2\right)-\ln (3)}{x-1}\right)$

Ex. P-28

4.7

For each part, calculate the limit or show it does not exist.
(a) $\lim _{x \rightarrow 2}\left(\frac{\sqrt{x+2}-\sqrt{2 x}}{x^{2}-2 x}\right)$
(b) $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{3 x}$
(c) $\lim _{x \rightarrow 0}\left(\frac{\sin (5 x)-5 x}{x^{3}}\right)$

Ex. P-29 4.7 *Challenge
Suppose $f^{\prime \prime}$ is continuous for all x. Calculate $\lim _{h \rightarrow 0}\left(\frac{f(x+5 h)+f(x-5 h)-2 f(x)}{h^{2}}\right)$.

Ex. P-30
\star Challenge
Suppose f^{\prime} is continuous for all x and $f(0)=0$. Calculate $\lim _{x \rightarrow 0^{+}}(1+f(2 x))^{4 / x}$.

§4.9: Antiderivatives

Ex. G-6 $\quad 3.1 / 3.2,4.1,4.9$

sp20 Exam
Suppose the derivative of f is $f^{\prime}(x)=3 x^{2}-6 x-9$ and that $f(1)=10$.
(a) Find an equation of the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Find the critical points of f.
(c) Where does f have a local minimum value? local maximum value?
(d) Calculate $f(0)$.
(e) Calculate the absolute maximum value of f on the interval $[0,6]$. At what x-value does it occur?

Ex. Q-1 4.9

Exam
Given that x units of a commodity are sold, the marginal cost is

$$
\frac{d C}{d x}=9 x^{2}+4 x+15 x^{1 / 4}+10
$$

Suppose the total cost of producing the 1st unit is 100 . Calculate the total cost of producing the first 16 units.
Ex. Q-2 $4.9 \quad$ Fa20 Exam

Let $V(t)$ denote the volume of water, measured in gallons, in a tank at time t. The tank is initially filled with 5 gallons of water. At $t=0$, water flows in at a rate in gal $/ \mathrm{min}$ given by $V^{\prime}(t)=0.5\left(196-t^{2}\right)$ for $0 \leq t \leq 10$. Find the total amount of water in the tank after 4 minutes.
Ex. Q-3 $4.9 \quad$ Sp21 Exam

A particle travels along the x-axis with velocity (measured in $\mathrm{ft} / \mathrm{sec}$) at any time t (measures in sec) given by

$$
v(t)=4 t^{3}-2 t+2
$$

The particle is at $x=3$ when $t=2$.
(a) Find the position of the particle at any time t.
(b) Find the position of the particle at time $t=4$.
(c) Find the acceleration of the particle when $t=4$.

Ex. Q-4

4.9

Fa21 Exam
For any time $t>0$, the acceleration of a particle is given by $a(t)=1+\frac{3}{\sqrt{t}}$, and the particle has velocity $v=-20$ when $t=1$. Find the velocity of the particle when $t=16$.
Ex. Q-5
4.9

Sp18 Quiz
Calculate the following antiderivatives.
(a) $\int\left(\cos (w)+2 \sin (w)-3 e^{w}\right) d w$
(b) $\int \frac{3 t^{3}-\sqrt[3]{t}+2 t}{t^{2}} d t$

Ex. Q-6
$4.9,5.3$
Su22 Quiz
Calculate each of the following. You do not have to simplify your answers.
(a) $\int\left(\frac{3 t^{2}-\sqrt{t}+4}{5 t}\right) d t$
(b) $\int_{-1}^{3}\left(3 x^{2}+2 e^{x}\right) d x$

Ex. Q-7
4.9
${ }^{\text {Fa22 }}$ Quiz
The total number of rabbits in a certain region t weeks after observations have begun is modeled by the equation $N(t)=200+36 t^{2 / 3}$. Use a linear approximation to estimate the increase in the rabbit population between $t=64$ and $t=67$.
Ex. Q-8 4.9 Fa22 Quiz

When x units of a product are produced, the derivative of the total cost C (measured in $\$$) is:

$$
\frac{d C}{d x}=3 x^{2}+40 x+100
$$

Suppose the total cost of producing 1 unit is $\$ 150$. Find the total cost of producing the first 2 units.

Ex. Q-9 4.9

For each part, find the antiderivative.
(a) $\int\left(4-9 x+x^{2}\right) d x$
(c) $\int\left(6 y-y^{3}\right)^{2} d y$
(e) $\int \frac{3 t^{3}-6 \sqrt{t}-\frac{9}{t}}{t} d t$
(b) $\int\left(12 e^{x}+\sin (x)-\frac{\cos (x)}{4}\right) d x$
(d) $\int\left(86 t^{7}-\sqrt[3]{t}\right) d t$
(f) $\int\left(1-\frac{1}{u}\right)\left(2+\frac{3}{\sqrt{u}}\right) d u$

Ex. Q-10

4.9

The marginal revenue of a certain commodity is $R^{\prime}(x)=-9 x^{2}+24 x+48$. Find the price for which the total revenue is a maximum. (Assume that $R(0)=0$.)

Ex. Q-11

A particle moves along the x-axis in such a way that its acceleration at time $t>0$ is

$$
a(t)=1-\frac{1}{t^{2}}
$$

The particle's velocity when $t=2$ is $v=5.5$. What is the net distance the particle travels between $t=3$ and $t=6$?

Ex. Q-12

4.9

The position of a particle on the x-axis (measured in meters) at time t (measured in seconds) is modeled by the equation $f(t)=100+8 t^{3 / 4}-5 t$. Use a linear approximation to estimate the change in the particle's position between $t=81$ and $t=83$.

Ex. L-32
 4.1, 4.9

The marginal revenue of a certain product is $R^{\prime}(x)=-9 x^{2}+17 x+30$, where x is the level of production. Assume $R(0)=0$. Find the market price that maximizes revenue.

Ex. Q-13

4.9

The marginal cost (in dollars) of a certain product is $C^{\prime}(x)=6 x^{2}+30 x+200$. If it costs $\$ 250$ to produce 1 unit, how much does it cost to produce 10 units?

Ex. Q-14

4.9

For each part, find the antiderivative or integral.
4.9
(a) $\int \frac{2 x+\sqrt{x}-1}{x} d x$
(c) $\int_{0}^{1} e^{x}\left(1+e^{-2 x}\right) d x$
(b) $\int(2 x+3)^{12} d x$
(d) $\int_{0}^{\pi / 2}(1+\sin (x))^{5} \cos (x) d x$

Ex. Q-15 $4.9,5.3,5.5$
For each part, find the antiderivative or integral.
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \sqrt{x-1} d x$
(c) $\int_{2}^{3} \frac{\ln (x)}{x} d x$
(d) $\int_{0}^{\ln (3)} e^{2 x} \sqrt{e^{2 x}-1} d x$

5 Chapter 5: Integration

§5.1, 5.2: Introduction to the Integral

Ex. R-1

$5.1 / 5.2$
${ }^{\text {Sp20 Exam }}$
Suppose f is a continuous function such that all of the following hold:

$$
\int_{-1}^{6} f(x) d x=-15 \quad, \quad \int_{6}^{9} f(x) d x=14 \quad, \quad \int_{0}^{9} f(x) d x=19
$$

Calculate the quantities below or determine there is not enough information.
(a) $\int_{-1}^{9} f(x) d x$
(c) $\int_{-1}^{6}|f(x)| d x$
(e) $\int_{-1}^{0} f(x) d x$
(b) $\int_{0}^{6} f(x) d x$
(d) $\left|\int_{-1}^{6} f(x) d x\right|$
(f) $\int_{6}^{9}(3 f(x)+4) d x$

Ex. R-2

$5.1 / 5.2$
Sp20
Exam
Use the graph of $y=f(x)$ to calculate the integrals below.

(a) $\int_{0}^{1} f(x) d x$
(b) $\int_{1}^{6} f(x) d x$
(c) $\int_{-10}^{10} f(x) d x$

Ex. R-3

$5.1 / 5.2$
Sp20 Exam
The figure below shows the area of regions bounded by the graph of $y=f(x)$ and the x-axis, where $a=4, b=6$, and $c=15$. Evaluate $\int_{a}^{c}(11 f(x)-6) d x$.

Ex. R-4

$5.1 / 5.2$
Consider the integral below.

$$
\int_{-2}^{1} \sqrt{9-(x-1)^{2}} d x
$$

(a) Explain in your own words how you can calculate this integral without using Riemann sums or the fundamental theorem of calculus. Hint: Try graphing the integrand!
(b) Find the exact value of the integral.

Ex. R-5 $\quad 5.1 / 5.2,5.3$

 ${ }^{\text {Sp20 }}$ ExamDefine the function g by $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(x)$ is given below. The graph consists of four line segments and one semicricle. Note: f and g are different functions!

(a) Calculate $f^{\prime}(9)$.
(b) Calculate $f^{\prime}(6)$.
(c) Calculate $g^{\prime}(6)$.
(d) Calculate $g(11)-g(8)$.
(e) Is the statement " $g(4)>g(0)$ " true or false?
(f) Find the critical numbers of g in the interval $(0,12)$.

Ex. R-6

$5.1 / 5.2$
Suppose f is continuous on $[0,8]$ and has the following integrals:

$$
\int_{0}^{3} f(x) d x=2 \quad \int_{3}^{5} f(x) d x=7 \quad \int_{0}^{8} f(x) d x=15
$$

For each part, calculate the integral or determine there is not enough information to do so.
(a) $\int_{0}^{5} f(x) d x$
(b) $\int_{5}^{3} f(x) d x$
(c) $\int_{5}^{8} f(x) d x$
(d) $\int_{3}^{8}(2 f(x)-6) d x$

Ex. R-7 $5.1 / 5.2 \quad$ Su20 Exam
Calculate $\int_{0}^{\sqrt{10}}\left(x+\sqrt{10-x^{2}}\right) d x$ using geometry and properties of integrals only. Do not attempt to use the fundamental theorem of calculus.
Ex. R-8 $\quad 5.1 / 5.2,5.3 \quad$ Fa21 Exam

Let $F(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(t)$ is given below. For each part, use this information to calculate the indicated item.

$5.1 / 5.2,5.3 \quad$ Fa21 Exam
(a) $F(10)$
(b) $F^{\prime}(6)$
(c) $\int_{0}^{6}|f(t)| d t$
(d) $\int_{0}^{4}\left(f^{\prime}(t)+5\right) d t$

Ex. R-9

$5.1 / 5.2$
Fa22
Quiz
Let $f(x)=12-3 x$. Calculate each of the following integrals using geometry. If you use the Fundamental Theorem of Calculus, you will receive no credit.
(a) $\int_{0}^{5} f(x) d x$
(b) $\int_{0}^{5}|f(x)| d x$

Ex. R-10 $5.1 / 5.2,5.3,5.5$

Calculate each of the following integrals using any valid method taught in this course. You may need to use basic geometry, the Fundamental Theorem of Calculus, substitution rule, or some combination.
(a) $\int_{-5}^{0} \sqrt{25-x^{2}} d x$
(b) $\int_{0}^{1} 6 x^{2}\left(x^{3}+26\right)^{1 / 2} d x$
(c) $\int_{-\ln (5)}^{\ln (6)}\left(2 e^{x}+3\right) d x$

Ex. R-11

$5.1 / 5.2$
For each part, use geometry to calculate the integral.
(a) $\int_{-1}^{9}(27-3 x) d x$
(c) $\int_{0}^{12}(2 x-10) d x$
(e) $\int_{-4}^{0} \sqrt{16-x^{2}} d x$
(b) $\int_{-2}^{4}(3 x+15) d x$
(d) $\int_{-3}^{5}(|x|-1) d x$
(f) $\int_{2}^{10} \sqrt{64-(x-10)^{2}} d x$

Ex. R-12

5.1/5.2

For each part, use the graph below to calculate the integral. Write your answer in terms of a, b, and c, if necessary. If there is not information to calculate the integral, explain why.

(a) $\int_{0}^{a} f(x) d x$
(d) $\int_{0}^{c}|f(x)| d x$
(g) $\int_{c}^{a}|f(x)| d x$
(b) $\int_{0}^{b} f(x) d x$
(e) $\int_{0}^{c}(2|f(x)|+3 f(x)) d x$
(h) $\int_{0}^{c}(2 f(x)+3) d x$
(c) $\int_{a}^{c} f(x) d x$
(f) $\int_{a}^{0} f(x) d x$
(i) $\int_{0}^{a} f(x)^{2} d x$

§5.3: Fundamental Theorem of Calculus

Ex. R-5

$5.1 / 5.2,5.3$
Sp20 Exam
Define the function g by $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(x)$ is given below. The graph consists of four line segments and one semicricle. Note: f and g are different functions!

(a) Calculate $f^{\prime}(9)$.
(b) Calculate $f^{\prime}(6)$.
(c) Calculate $g^{\prime}(6)$.
(d) Calculate $g(11)-g(8)$.
(e) Is the statement " $g(4)>g(0)$ " true or false?
(f) Find the critical numbers of g in the interval $(0,12)$.

Ex. S-1

$$
5.3
$$

Let $f(x)=5+\int_{-3}^{x} t^{2} e^{t} d t$. Find an equation of the tangent line to f at $x=-3$.

Ex. S-2 5.3
The curve $y=25-x^{2}$ is shown in the figure below. Calculate the area of the shaded region.

Ex. S-3
$5.3,5.5$
Fa21 Exam
The parts of this problem are not related.
(a) Calculate the integral $\int_{2}^{4} \frac{18 t-3 t^{2}}{t} d t$.
(b) Calculate the area of the region below the curve $y=23 \sin (x) \cos ^{2}(x)$ and above the interval $\left[0, \frac{\pi}{2}\right]$ on the x-axis. (Note that $y \geq 0$ on this interval.)

Ex. R-8

Let $F(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(t)$ is given below. For each part, use this information to calculate the indicated item.

(a) $F(10)$
(b) $F^{\prime}(6)$
(c) $\int_{0}^{6}|f(t)| d t$
(d) $\int_{0}^{4}\left(f^{\prime}(t)+5\right) d t$

Ex. Q-6

$4.9,5.3$
Calculate each of the following. You do not have to simplify your answers.
(a) $\int\left(\frac{3 t^{2}-\sqrt{t}+4}{5 t}\right) d t$
(b) $\int_{-1}^{3}\left(3 x^{2}+2 e^{x}\right) d x$

Ex. S-4
 5.3
 Fa22 Quiz

Find the area of the region bounded by the graph of $y=\left(x^{4}+1\right)^{2}$, the x-axis, and the lines $x=0$ and $x=1$.

Ex. R-10 $5.1 / 5.2,5.3,5.5$

Fa22 Quiz
Calculate each of the following integrals using any valid method taught in this course. You may need to use basic geometry, the Fundamental Theorem of Calculus, substitution rule, or some combination.
(a) $\int_{-5}^{0} \sqrt{25-x^{2}} d x$
(b) $\int_{0}^{1} 6 x^{2}\left(x^{3}+26\right)^{1 / 2} d x$
(c) $\int_{-\ln (5)}^{\ln (6)}\left(2 e^{x}+3\right) d x$

Ex. S-5

5.3

For each part, evaluate the integral using geometry, the Fundamental Theorem of Calculus, or a combination.
(a) $\int_{-3}^{5}(-8) d x$
(d) $\int_{0}^{9} \sqrt{x}\left(x^{2}-x+1\right) d x$
(h) $\int_{-\pi}^{\pi / 2} \sin (x) d x$
(b) $\int_{4}^{36} \sqrt{2 x} d x$
(e) $\int_{9}^{10} \frac{a}{x} d x$
(f) $\int_{-4}^{4} \sqrt{16-x^{2}} d x$
(i) $\left|\int_{-\pi}^{\pi / 2} \sin (x) d x\right|$
(c) $\int_{-\ln (3)}^{\ln (8)} 5 e^{x} d x$
(g) $\int_{-2}^{5}(2 x-|x|) d x$
(j) $\int_{-\pi}^{\pi / 2}|\sin (x)| d x$

Ex. S-6

For each part, calculate $F^{\prime}(x)$.
(a) $F(x)=\int_{-3}^{x} \frac{t^{4}-t^{2}+1}{\sqrt{t^{6}+1}} d t$
(b) $F(x)=\int_{-\pi}^{x} \sqrt[3]{w}\left(w^{2}-2 w+5\right) d w$

Ex. S-7
5.3

Let $f(x)=\left\{\begin{array}{ll}4 x-x^{2} & \text { if } x \leq 2 \\ \frac{8}{x} & \text { if } x>2\end{array}\right.$.
(a) Show that $f(x)$ is continuous on $[-1,4]$.
(b) Sketch the region whose net area is given by the integral $\int_{-1}^{4} f(x) d x$.
(c) Evaluate $\int_{-1}^{4} f(x) d x$.

Ex. S-8

5.3

Let $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(x)$ is given below. This graph consists of four line segments and one semicircle.

(a) Is the statement " $g(4)>g(2)$ " true or false? Explain your answer.
(b) Evaluate $g(8)$.
(c) Where is g decreasing and where is g increasing? Where in $(0,8)$ does g have a local minimum? local maximum?
(d) Where is g concave down and where is g concave up? Where in $(0,8)$ does g have an inflection point?

Ex. S-9

5.3

The parts of this question are not related.
(a) Find $F^{\prime}(x)$ with $F(x)=\int_{-1}^{x} \frac{t^{5}}{3+t^{6}} d t$.
(b) Find $\int_{0}^{5} f(t) d t$ with $f(x)=\left\{\begin{array}{ll}x & \text { if } x<1 \\ \frac{1}{x} & \text { if } x \geq 1\end{array}\right.$.

Ex. Q-15 $4.9,5.3,5.5$
For each part, find the antiderivative or integral.
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \sqrt{x-1} d x$
(c) $\int_{2}^{3} \frac{\ln (x)}{x} d x$
(d) $\int_{0}^{\ln (3)} e^{2 x} \sqrt{e^{2 x}-1} d x$

§5.5: Substitution Rule

Ex. T-1

5.5
${ }^{\text {sp20 }}$ Exam
Note: The parts of this problem are not related.
(a) Suppose we use the fundamental theorem of calculus to calculate an integral as follows:

$$
\int_{a}^{b} g(u) d u=G(b)-G(a)
$$

What is the relationship between the functions g and G ?
(b) Calculate the following definite integral:

$$
\int_{e^{-3}}^{e^{2}} \frac{2 \ln (x)-3}{5 x} d x
$$

(c) Consider the following indefinite integral:

$$
J=\int \frac{\ln (x)}{3 x^{2}} d x
$$

Use the substitution $u=\ln (x)$ to write J as an equivalent indefinite integral in terms of u. Do not attempt to calculate J.

Ex. T-2 5.5 Su20 Exam
Find the unique positive value of a such that $\int_{0}^{a} \frac{x}{x^{2}+1} d x=3$.
Ex. S-3 $\quad 5.3,5.5 \quad$ Fa21 Exam

The parts of this problem are not related.
(a) Calculate the integral $\int_{2}^{4} \frac{18 t-3 t^{2}}{t} d t$.
(b) Calculate the area of the region below the curve $y=23 \sin (x) \cos ^{2}(x)$ and above the interval [$\left.0, \frac{\pi}{2}\right]$ on the x-axis. (Note that $y \geq 0$ on this interval.)

Ex. R-10 $\quad 5.1 / 5.2,5.3,5.5$
 Fa22 Quiz

Calculate each of the following integrals using any valid method taught in this course. You may need to use basic geometry, the Fundamental Theorem of Calculus, substitution rule, or some combination.
(a) $\int_{-5}^{0} \sqrt{25-x^{2}} d x$
(b) $\int_{0}^{1} 6 x^{2}\left(x^{3}+26\right)^{1 / 2} d x$
(c) $\int_{-\ln (5)}^{\ln (6)}\left(2 e^{x}+3\right) d x$

Ex. T-3 5.5
For each part, find the antiderivative.
(a) $\int(5 x-7)^{14} d x$
(c) $\int \cos (4-x) d x$
(e) $\int \frac{1}{x \ln (x) \ln (\ln (x))} d x$
(b) $\int \frac{x^{3}}{\sqrt{9-x^{4}}} d x$
(d) $\int x \sqrt{2 x+1} d x$
(f) $\int \frac{1}{\sqrt{w}(\sqrt{w}+7)} d w$

Ex. T-4 5.5

For each part, calculate the integral.
(a) $\int_{0}^{1} \frac{5 x^{2}}{3 x^{3}+2} d x$
(c) $\int_{0}^{2}\left(e^{3 x}-e^{-3 x}\right)^{2} d x$
(e) $\int_{1}^{e^{3}} \frac{\ln (x)}{x} d x$
(b) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \tan (3 \theta) d \theta$
(d) $\int_{0}^{\ln (2)} \frac{1}{1+e^{-t}} d t$
(f) $\int_{-1}^{1} \frac{2 x}{2 x-9} d x$

Ex. T-5

5.5

For each part, find the area of the region under the given curve.
(a) $y=t \sqrt{t^{2}+9}$ on $[0,4]$
(c) $y=\sin (2 x)^{2} \cos (2 x)$ on [0, $\left.\frac{\pi}{4}\right]$
(b) $y=x(x-3)^{1 / 3}$ on $[3,11]$
(d) $y=\frac{e^{\sqrt{x}}}{\sqrt{x}}$ on $[1,9]$

Ex. Q-15
$4.9,5.3,5.5$
For each part, find the antiderivative or integral.
(a) $\int t^{2} \cos \left(1-t^{3}\right) d t$
(b) $\int \sqrt{x-1} d x$
(c) $\int_{2}^{3} \frac{\ln (x)}{x} d x$
(d) $\int_{0}^{\ln (3)} e^{2 x} \sqrt{e^{2 x}-1} d x$

6 Chapter 6: Additional Exercises

True or False?

Ex. U-1

True/False
Sp19 Exam
For each part, mark " T " if the statement is true or mark " F " if the statement is false. You do not have to explain your answers or show any work.
(a) T $\mathrm{F} \ln (3)-\ln (11)=\frac{\ln (3)}{\ln (11)}$
(b) T F The domain of $f(x)=\sqrt[9]{x-4}$ is all real numbers.
(c) T F The lines $9 x+y=1$ and $x-9 y=4$ are perpendicular to each other.
(d) T, F The equations $2 \ln (x)=0$ and $\ln \left(x^{2}\right)=0$ have the same solutions.
(e) $\mathrm{T} \sqrt[\mathrm{F}]{\cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}}$
Ex. U-2 True/False Sp20 Exam

4 Each of the following statements describes a scenario in which a certain rectangle is changing over time. For each part, mark " T " if the statement is true or mark " F " if the statement is false. You do not have to explain your answers or show any work.
(a) T F If two opposite sides of the rectangle increase in length and if the area remains constant, then the other two opposite sides must decrease in length.
(b) T, F If the area of the rectangle increases, then all sides of the rectangle must also increase in length.
(c) T, F If the length of the rectangle remains the same, then the area and the width of the rectangle cannot change in opposite ways (i.e., one cannot increase while the other decreases).
(d) T F If two opposite sides of the rectangle increase in length and the other two opposite sides decrease in length, then the area of the rectangle must remain constant.

Ex. U-3 True/False Sp20 Exam
The numbers a, b, and c (which are not necessarily positive) satisfy the formula $a=\frac{b}{c}$. The choices below describe scenarios in which the numbers a, b, and c are changing over time. For each part, mark "T" if the statement is true or mark "F" if the statement is false. You do not have to explain your answers or show any work.
Hint: There is at most one true statement.
(a) T, F Suppose a, b, and c are all positive numbers. If a and b are both increasing, then c must also be increasing.
(b) T, F Suppose b is a positive number and c is a negative number. If b and c are both increasing, then a must be decreasing.
(c) T, F Suppose a, b, and c are all positive numbers. If a is constant, then it is possible for b and c to change in opposite ways (i.e., one can increase while the other decreases).
(d) T F Suppose c is a positive number. If b is constant and c is increasing, then a must be decreasing.
Ex. U-4 True/False Sp21 Exam

For each part, mark " T " if the statement is true or mark " F " if the statement is false. You do not have to explain your answers or show any work.
(a) T F If $\lim _{x \rightarrow a} f(x)$ can be evaluated by direct substitution, then f is continuous at $x=a$.
(b) T F The value of $\lim _{x \rightarrow a} f(x)$, if it exists, is found by calculating $f(a)$.
(c) T F If f is not differentiable at $x=a$, then f is also not continuous at $x=a$.

Ex. U-5
True/False
Su22 Exam
For each part, mark "T" if the statement is true or mark "F" if the statement is false. You do not have to explain your answers or show any work.
(a) T F If $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 1} g(x)$ both exist, then $\lim _{x \rightarrow 1}(f(x) g(x))$ exists.
(b) T, F If $f(9)$ is undefined, then $\lim _{x \rightarrow 9} f(x)$ does not exist.
(c) T F If $\lim _{x \rightarrow 1^{+}} f(x)=10$ and $\lim _{x \rightarrow 1} f(x)$ exists, then $\lim _{x \rightarrow 1} f(x)=10$.
(d) T F A function is continuous for all x if its domain is $(-\infty, \infty)$.
(e) T F If $f(x)$ is continuous at $x=3$, then $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)$.
(f) T F If $\lim _{x \rightarrow 2} f(x)$ exists, then f is continuous at $x=2$.
(g) T T If $\lim _{x \rightarrow 5^{-}} f(x)=-\infty$, then $\lim _{x \rightarrow 5^{+}} f(x)=+\infty$.
(h) T F A function can have two different horizontal asymptotes.
Ex. U-6 True/False Su22 Exam

For each part, mark "T" if the statement is true or mark "F" if the statement is false. You do not have to explain your answers or show any work.
(a) T F If f is continuous at $x=3$, then f is differentiable at $x=3$.
(b) T F If f is differentiable at $x=3$, then f is continuous at $x=3$.
(c) T F If $f^{\prime}(x)=g^{\prime}(x)$ for all x, then $f(x)=g(x)$ for all x.
(d) T F The function $f(x)=|x|$ has two tangent lines at $x=0$: the lines $y=x$ and $y=-x$.
(e) T F If $f(x)=x^{1 / 3}$, then $f^{\prime}(0)$ does not exist.
(f) T F If $f(x)=x^{1 / 3}$, then there is no tangent line to f at $x=0$.
(g) $\mathrm{T} \sqrt[\mathrm{F}]{d x}\left(e^{2 x}\right)=2 x e^{2 x-1}$
(h) T F A certain cylindrical tank has a radius of 5 ft . If the height of the water in the tank increases at a constant rate, then the volume of the water in the tank also increases at a constant rate.
Ex. U-7 True/False Su22 Quiz

If $f(x)$ is not defined at $x=a$, then which of the following must be true?
(a) $\lim _{x \rightarrow a} f(x)$ cannot exist
(b) $\lim _{x \rightarrow a^{+}} f(x)$ must be infinite (either $+\infty$ or $-\infty$)
(c) $\lim _{x \rightarrow a} f(x)$ could be 0
(d) none of the above

Ex. U-8 True/False Su22 Quiz
If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} g(x)=0$, then which of the following is true about $\lim _{x \rightarrow a^{-}} \frac{f(x)}{g(x)}$?
(a) The limit does not exist, and is not infinite.
(b) The limit is infinite (either $+\infty$ or $-\infty$).
(c) The limit must exist.
(d) There is not enough information to say anything about the limit's value.

Ex. U-9
True/False
Zero or more of the following statements are true for all real numbers a, x, and y. Determine which statements are true and determine which statements are false. For each false statement, find values of a, x, and y that make the statement false.
(a) $a(x+y)=a x+a y$
(d) $a \sqrt{x+y}=\sqrt{a^{2} x+a^{2} y}$
(g) $\sqrt{x+y}=\sqrt{x}+\sqrt{y}$
(b) $a(x+y)^{2}=(a x+a y)^{2}$
(e) $\sin (x+y)=\sin (x)+\sin (y)$
(c) $a(x+y)^{2}=a x^{2}+a y^{2}$
(f) $\cos (a x)=a \cos (x)$
(h) $\frac{a}{x+y}=\frac{a}{x}+\frac{a}{y}$

Extra Challenges

Ex. A-68 Algebra/Precalculus \star Challenge
Let $f(x)=\frac{2}{3-\sqrt{x}}$. Fully simplify the difference quotient $\frac{f(4+h)-f(4)}{h}$ for $h \neq 0$ (i.e., simplify the expression all common factors of h have been canceled.)

Ex. D-23

$2.4,2.5$
\star Challenge
For each function, find all horizontal asymptotes and vertical asymptotes. Then, at each vertical asymptote, calculate both one-sided limits.
(a) $f(x)=\frac{4 x^{3}+4 x^{2}-8 x}{x^{3}+3 x^{2}-4}$
(b) $f(x)=\frac{4 x^{3}-\sqrt{x^{6}+17}}{5 x^{3}-40}$

Ex. F-42

2.6
*Challenge
Consider $f(x)=\frac{\tan (2 x)}{|5 x|}$.
(a) Where is f not continuous?
(b) Is it possible to redefine f at $x=0$ to make f continuous there? Explain your answer.

Hint: For the limit of f as $x \rightarrow 0$, examine the one-sided limits first.

Ex. H-38 $\quad 3.3 / 3.4 / 3.5 / 3.9 \quad \star$ Challenge

Find all points on the graph of $y=\frac{2}{x}+3 x$ such that the tangent line there passes through $(6,17)$.

Ex. J-35 $\quad 3.8$ Challenge

Find all tangent lines to the graph of $9 x^{2}-18 x y+y^{2}=1800$ that are perpendicular to the line $x+3 y=10$.
Ex. K-29 $\quad 3.11$ *Challenge !!!

A water tank in the shape of an inverted cone has height 10 meters and base radius 8 meters. Water flows into the tank at the rate of $32 \pi \mathrm{~m}^{3} / \mathrm{min}$. At what rate is the depth of the water in the tank changing when the water is 5 meters deep?

Ex. J-36
$3.8,4.6$
\star Challenge
Consider the curve described by the equation

$$
\frac{x-y^{3}}{y+x^{2}}=x-12
$$

(a) Find an equation for the line tangent to this curve at $(-1,4)$.
(b) There is a point on the curve with coordinates $(-1.1, b)$. Use linear approximation to estimate b. Round to three decimal places.
(c) There is a point on the curve with coordinates ($a, 4.2$). Use linear approximation to estimate a. Round to three decimal places.
Ex. O-32
4.6
*Challenge

The acceleration (measured in $\mathrm{m} / \mathrm{s}^{2}$) of a particle moving along the x-axis is given by

$$
a(t)=14 t^{3 / 4}-6 t^{2}+1
$$

and the particle is at rest (zero velocity) when $t=1$. Use a linear approximation to estimate the particle's change in position between $t=16$ and $t=16.02$.

Ex. M-38
4.3/4.4
\star Challenge
Consider the function $f(x)=a x^{6} e^{-b x}$, where a and b are unspecified constants. Suppose f has a point of local maximum at $\left(2,64 e^{-2}\right)$. Find the values of a and b.

Ex. P-29
$4.7 \quad \star$ Challenge

Suppose $f^{\prime \prime}$ is continuous for all x. Calculate $\lim _{h \rightarrow 0}\left(\frac{f(x+5 h)+f(x-5 h)-2 f(x)}{h^{2}}\right)$.

Ex. P-30 $4.7 \quad \star$ Challenge
Suppose f^{\prime} is continuous for all x and $f(0)=0$. Calculate $\lim _{x \rightarrow 0^{+}}(1+f(2 x))^{4 / x}$.
Ex. M-39 $\quad 4.3 / 4.4$ Challenge !!!

Consider the function $f(x)=(x-3 a)(x+2 a)^{4}$, where a is an unspecified positive constant. Answer all of the following in terms of a.
(a) where is f decreasing?
(e) where is f concave down?
(b) where is f increasing?
(c) where does f have a local minimum?
(f) where is f concave up?
(d) where does f have a local maximum?
(g) where does f have an inflection point?

Finally, sketch a graph of $y=f(x)$. Your horizontal scale should be in terms of a and your vertical scale should be in terms of a^{5}.
Ex. M-40 $\quad 4.3 / 4.4$ *Challenge !!!

Let $f(x)=\frac{e^{x}}{4+x^{3}}$. Answer all of the following.
(a) what are the vertical asymptotes of f ?
(d) where is f increasing?
(b) what are the horizontal asymptotes of f ?
(e) where does f have a local minimum?
(c) where is f decreasing?
(f) where does f have a local maximum?
Ex. N-35 4.5 *Challenge !!!

Find the equation of the line through $(2,4)$ that cuts off the least area from the first quadrant. (Observe that this cut off region is a triangle.)
Ex. N-36 $\quad 4.5$ Challenge !!!

Two poles, one 6 meters tall and one 15 meters tall, are 20 meters apart. A length of wire is attached to the top of each pole and it is also staked to the ground somewhere between the two poles. Where should the wire be staked so that the minimum amount of wire is used?

Ex. B-14
$2.1 / 2.2$
\star Challenge
Suppose $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists. Is it true that $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 0} g(x)$ also exist? Explain your answer.

Ex. E-17
 2.5
 *Challenge

Find all horizontal asymptotes of $f(x)=\frac{2 x}{x-\sqrt{x^{2}+10}}$.

Ex. F-43

2.6
*Challenge
Find the values of the constants a and b that make f continuous at $x=0$. You may assume $a>0$.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1-\cos (a x)}{x^{2}} & , \\
2 a+b & x<0 \\
\frac{x^{2}-b x}{\sin (x)} & , \quad x>0 \\
\end{array}\right.
$$

Ex. G-36 $\quad 3.1 / 3.2 \quad \star$ Challenge
The graph of $y=f(x)$ is given below. Sketch a graph of $y=f^{\prime}(x)$. Only the general shape is important. The graph does not have to be to scale.

Ex. G-37
$3.1 / 3.2$
*Challenge
Consider the following function, where c is an unspecified constant

$$
f(x)= \begin{cases}-x^{2} & \text { if } x<0 \\ x^{2}+2 x & \text { if } 0 \leq x<1 \\ 6 x-x^{2}+c & \text { if } x \geq 1\end{cases}
$$

(a) Show precisely that $f^{\prime}(0)$ does not exist.
(b) Find the value of c that makes f differentiable at $x=1$ or show that no such value exists.

Ex. H-39 $\quad 3.3 / 3.4 / 3.5 / 3.9 \quad *$ Challenge

Find all points P on the graph of $y=4 x^{2}$ with the property that the tangent line at P passes through the point $(2,0)$.
Ex. J-37 3.8 *Challenge

Suppose $x^{2}+y^{2}=R^{2}$, where R is a constant. Find $\frac{d^{2} y}{d x^{2}}$ and fully simplify your answer as much as possible.
Ex. M-41 $\quad 4.3 / 4.4$ *Challenge

Let $f(x)=\sqrt[3]{x^{3}-48 x}$.
(i) Find all vertical asymptotes and horizontal asymptotes of $f(x)$.
(ii) Find where $f(x)$ is decreasing and where $f(x)$ is increasing. Also find and classify all local extrema of $f(x)$.
$4.3 / 4.4 \quad \star$ Challenge
(iii) Find where $f(x)$ is concave down and where $f(x)$ is concave up. Also find all inflection points of $f(x)$. (iv) Sketch a graph of $y=f(x)$.

7 Chapter 7: Sample Exams (Set A)

Sample Precalculus Exam A

A-25. For each part, use the graph of $y=g(x)$ given below and let $f(x)=8 x^{2}-4 x+15$.
(a) Find an expression for $g(x)$.
(b) Calculate the y-intercept of the graph of $y=f(g(x))$.
(c) Calculate $g(f(x))$.

A-26. A 100-gram sample of a radioactive substance decays to 65% of its initial mass in 15 hours. Recall that the mass of the sample M at time t satisfies $M(t)=M_{0} e^{k t}$ for some constants M_{0} and k.
(a) Find the growth constant k.
(b) Find the mass of the sample after 22 hours.
(c) Find the time in hours when the sample will have a mass of 41 grams.

A-27. A rectangular box is constructed according to the following rules.

- The length of the box is 5 times its width.
- The volume of the box is 110 cubic feet.

Let L, W, and H be the length, width, and height of the box (measured in feet), respectively.
(a) Write an equation in terms of L, W, and H that expresses the first constraint.
(b) Write an equation in terms of L, W, and H that expresses the second constraint.
(c) Write an expression for $S(W)$, the total surface area of the box as a function of W.
(d) Suppose the rules also require that the sum of the box's length and width be less than 78 feet. What is the domain of $S(W)$ in this context?

A-28. Suppose $\log _{16}(x)=A$ and $\log _{16}(y)=B$. Rewrite the expression below in terms of A and B. Your final answer may not contain any logarithm symbol.

$$
\log _{16}\left(\frac{4 x^{7}}{\sqrt[9]{y}}\right)
$$

A-29. Let $f(x)=\sqrt{3 x}$ and assume $h \neq 0$. Fully simplify each of the following expressions:
(a) $f(x+h)$
(b) $f(x+h)-f(x)$
(c) $\frac{f(x+h)-f(x)}{h}$

A-30. Consider the function $f(x)=\frac{x-6}{x^{2}-9 x+20}$.
(a) Solve the equation $f(x)=0$.
(b) List all numbers that are not in the domain of $f(x)$.
(c) Solve the inequality $f(x)>0$ and write your answer using interval notation.

A-31. Find all solutions to the following equation in the interval $[0,2 \pi)$.

$$
2 \sin (\theta) \cos (\theta)-\cos (\theta)=0
$$

A-32. Complete each of the following algebra exercises.
(a) Fully factor the polynomial $5 x^{4}+25 x^{3}-180 x^{2}$.
(b) Solve the rational equation below.

$$
\frac{4}{x+5}+\frac{9 x}{x^{2}-25}=\frac{6}{x-5}
$$

(c) Simplify the complex fraction below by writing it as a simple fraction.

$$
\frac{\frac{4}{x}-\frac{2}{x y}}{8+\frac{7}{y}}
$$

Sample Midterm Exam \#1A

F-25. On the axes provided, sketch the graph of a function $f(x)$ that satisfies all of the following properties. Note: Make sure to read these properties carefully!

- the domain of $f(x)$ is $[-10,7) \cup(7,10]$
- $\lim _{x \rightarrow-8} f(x)$ exists but f is discontinuous at $x=-8$
- $\lim _{x \rightarrow-5^{+}} f(x)=f(-5)$ but $\lim _{x \rightarrow-5} f(x)$ does not exist
- $\lim _{x \rightarrow 2^{-}} f(x)=4$ and f is continuous at $x=2$
- the line $x=5$ is a vertical asymptote for f (Note: $x=5$ is in the domain of f.)
- $\lim _{x \rightarrow 7} f(x)=+\infty($ Note: $x=7$ is not in the domain of f.)

C-25. For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 8}\left(\frac{(x-2)^{2}-36}{x-8}\right)$
(b) $\lim _{x \rightarrow 5}\left(\frac{40-8 x}{\sqrt{19-3 x}-2}\right)$
(c) $\lim _{x \rightarrow 2^{-}}\left(\frac{4+x}{x^{2}+x-6}\right)$

F-26. Consider the function below, where a and b are unspecified constants.

$$
f(x)= \begin{cases}\frac{\sin (4 x) \sin (6 x)}{x^{2}} & x<0 \\ a x+b & 0 \leq x \leq 1 \\ \frac{5 x+2}{x-1}-\frac{2 x+5}{x^{2}-x} & x>1\end{cases}
$$

(a) Calculate $\lim _{x \rightarrow 0^{-}} f(x)$.
(b) Calculate $\lim _{x \rightarrow 1^{+}} f(x)$.
(c) Find the values of a and b for which f is continuous for all x, or determine that no such values exist. In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

D-17. Find all vertical asymptotes of the function $f(x)=\frac{x^{3}-36 x}{x^{3}-12 x^{2}+36 x}$.
In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

E-11. Find all horizontal asymptotes of the function $h(x)=\frac{6 x+5}{\sqrt{4 x^{2}-9}}$.
In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

Sample Midterm Exam \#2A

I-9. For each part, calculate the indicated derivative. Do not simplify your answer.
(a) $\frac{d}{d x}\left(7 x^{10}+\sqrt[3]{x}-\frac{8}{x^{20}}+\sec (8 x)\right)$
(b) $\frac{d}{d x}\left(\frac{\ln \left(x^{3}+30\right)}{8 x}\right)$
(c) $\frac{d}{d x}\left(\sin \left(x e^{-5 x}\right)\right)$

K-17. A solid 14-foot tall garage door opens via a pulley mechanism. As the pulley opens the garage door, the top of the garage door (point P in the figure) moves to the right at 5 ft / s. At the same time, the bottom of the garage door (point Q in the figure) moves straight up.
As shown in the figure, the point R is the fixed point at the top of the garage door frame, x represents the distance between P and R, and y represents the distance between Q and R.

(a) What is the sign of $\frac{d x}{d t}$?
(b) What is the sign of $\frac{d y}{d t}$?
(c) What is the rate of change of the distance between the points Q and R when the distance between them is 9 feet? You must include correct units in your answer. You may leave unsimplified radicals in your answer.

G-22. For each part, use the graph of $y=f(x)$ to determine whether the value exists. If the value exists, state its sign (negative, positive, or zero).
(a) $f^{\prime}(-3)$
(b) $f^{\prime}(-2)$
(c) $f^{\prime}(-1)$
(d) $f^{\prime}(1)$
(e) $f^{\prime}(3)$

J-20. Consider the following curve.

$$
\cos (5 x+y-5)=8 x e^{y}+y-7
$$

(a) Calculate $\frac{d y}{d x}$ for a general point on the curve.
(b) Find an equation of the line tangent to the curve at the point $(1,0)$.

I-10. Find the coordinates of all points on the graph of $f(x)=x \sqrt{14-x^{2}}$ where the tangent line is horizontal. You must give both the x - and y-coordinate of each such point.

G-23. Let $f(x)=\frac{8 x}{x+5}$.
(a) Calculate $f^{\prime}(x)$ by any method.
(b) Use the limit definition of derivative to calculate $f^{\prime}(3)$. Hint: Use your answer from part (a) to check your final answer.

I-11. The graph of $y=f(x)$ is given below.

(a) Calculate $f^{\prime}(6)$. Briefly explain how you found your answer.
(b) Let $g(x)=9 x f(2 x)$. Find an equation of the line tangent to the graph of $y=g(x)$ at $x=3$.

Sample Midterm Exam \#3A

P-17. For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow \pi}\left(\frac{\cos (6 x)-1}{(x-\pi)^{2}}\right)$
(b) $\lim _{x \rightarrow 0}\left(e^{2 x}+3 x\right)^{1 / x}$

M-24. Let $f(x)=4 x^{5}-20 x^{4}+7 x+32$. Find where f is concave down and where f is concave up; write your answer using interval notation. Also find where inflection points of f occur.
M-25. Suppose $f(x)$ satisfies all of the following properties. Sign charts for f^{\prime} and $f^{\prime \prime}$ are also given below. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.
(i) f is continuous and differentiable on $(-\infty, 2) \cup(2, \infty)$
(ii) $\lim _{x \rightarrow-\infty} f(x)=\infty ; \quad \lim _{x \rightarrow \infty} f(x)=\infty ; \quad \lim _{x \rightarrow 2^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 2^{+}} f(x)=\infty$
(iii) the only x-value for which $f^{\prime}(x)=0$ is $x=5$
(iv) the only x-value for which $f^{\prime \prime}(x)=0$ is $x=-3$

M-26. Let $f(x)=\frac{x^{2}+21}{x-2}$. Find where f is decreasing and where f is increasing; write your answer using interval notation. Also find where the local extrema of f occur.
Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
L-20. Find the absolute extreme values of $f(x)=x(x-8)^{5 / 3}$ on the interval $[0,9]$ and the x-values at which they occur.
N -17. A rectangle (with base $2 x$ and height y) is constructed with its base on the diameter of a semicircle with radius 5 and with its two other vertices on the semicircle. Find the dimensions of the rectangle with the maximum possible area. As you work, fill in the answer boxes below. You must use calculus-based methods in your work. You must also justify that your answer really does give the maximum.

constraint equation in terms of x and $y:$	
objective function in terms of x only:	
interval of interest:	
dimensions of rectangle:	$\frac{2 x \text { (base) }}{} \times \frac{y \text { (height) }}{}$

Sample Final Exam A

B-8. For each part, use the graph of $y=g(x)$.

(a) How many solutions does the equation $g^{\prime}(x)=0$ have?
(b) Order the following quantities from least to greatest: $g^{\prime}(-2.5), g^{\prime}(-2), g^{\prime}(0)$, and $g^{\prime}(4)$. In your answer, write these quantities symbolically; do not give a numerical estimate.
(c) What is the sign of $g^{\prime \prime}(-3)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(d) Let $h(x)=g(x)^{2}$. What is the sign of $h^{\prime}(-4)$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.

F-19. Let $f(x)$ be the following function, where k is an unspecified constant. Find the value of k that makes f continuous at $x=2$ or determine that no such value of k exists.

$$
f(x)= \begin{cases}27 x-k x^{2} & x<2 \\ -6 & x=2 \\ 3 x^{3}+k & x>2\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

1. Consider the curve described by the following equation: $2 x^{2}-2 x y+3 y^{2}=60$.
(a) Find $\frac{d y}{d x}$ for a general point on the curve.
(b) Find the x-coordinate of each point on the curve where the tangent line is horizontal.

S-3. The parts of this problem are not related.
(a) Calculate the integral $\int_{2}^{4} \frac{18 t-3 t^{2}}{t} d t$.
(b) Calculate the area of the region below the curve $y=23 \sin (x) \cos ^{2}(x)$ and above the interval [$\left.0, \frac{\pi}{2}\right]$ on the x-axis. (Note that $y \geq 0$ on this interval.)

D-13. For each part, calculate the limit or show that it does not exist. If the limit is " $+\infty$ " or " $-\infty$ ", write that as your answer, instead of "does not exist".
(a) $\lim _{x \rightarrow 1}\left(\frac{x^{4}-x}{\ln (77 x-76)}\right)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$, with $f(x)= \begin{cases}1+4 x & x \leq 2 \\ \frac{x^{2}-4}{x-2} & x>2\end{cases}$
(b) $\lim _{x \rightarrow-\infty}\left(\frac{\sqrt{36 x^{2}+63}}{31 x}\right)$
(d) $\lim _{x \rightarrow 5^{-}}\left(\frac{\cos (\pi x)}{x^{2}-25}\right)$

Q-4. For any time $t>0$, the acceleration of a particle is given by $a(t)=1+\frac{3}{\sqrt{t}}$, and the particle has velocity $v=-20$ when $t=1$. Find the velocity of the particle when $t=16$.

R-8. Let $F(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(t)$ is given below. For each part, use this information to calculate the indicated item.

(a) $F(10)$
(b) $F^{\prime}(6)$
(c) $\int_{0}^{6}|f(t)| d t$
(d) $\int_{0}^{4}\left(f^{\prime}(t)+5\right) d t$

O-18. Use linear approximation to estimate $\tan \left(\frac{\pi}{4}+0.12\right)-\tan \left(\frac{\pi}{4}\right)$.
L-18. Let $f(x)=x^{3}(3 x-4)$.
(a) Find where relative extrema of f occur (if any). Classify each as a local minimum or a local maximum.
(b) Find the absolute extrema of f on $[-1,2]$ and the x-values at which they occur.

D-14. For each part, find all vertical asymptotes of the given function.
(a) $f(x)=\frac{x^{2}-8 x+15}{x^{2}-9}$
(b) $g(x)=\frac{e^{x+3}-1}{x^{2}-9}$

K-14. A hot-air balloon is floating directly above the point Q on the ground and is descending at a constant rate of $10 \mathrm{ft} / \mathrm{sec}$. A camera is on the ground at point P, which is 500 feet from point Q. See the figure below.

(a) What is the sign of $\frac{d h}{d t}$ (negative, positive, or zero)? If there is not enough information to determine the value, explain why.
(b) How is $\cos (\theta)$ changing over time? Circle your answer below.
(i) increasing over time
(ii) decreasing over time
(iii) constant over time
(iv) sometimes increasing and sometimes decreasing
(v) not enough information to determine
(c) What is the rate of change of the distance between the camera and the balloon when the balloon is 600 feet above the ground? You must give correct units as part of your answer.
\mathbf{N}-16. Farmer Green is building an enclosure that must have a total area of $48 \mathrm{~m}^{2}$. The pen will also be subdivided into 6 pens of equal area, as shown on the right. Find the dimensions of the enclosure that will require the least amount of fencing. As you work, fill in the answer boxes below. You must use calculus-based methods in your work. You must also justify that your answer really does give the least fencing.

constraint equation in terms of x and $y:$	
objective function in terms of x only:	
interval of interest:	
dimensions of desired enclosure (in meters):	$\frac{}{\text { total length }(x)} \times \frac{}{\text { total width }(y)}$

M-23. Consider the function $g(x)$, whose first two derivatives are given below. Note: Do not attempt to calculate $g(x)$. Also assume that $g(x)$ has the same domain as $g^{\prime}(x)$.

$$
g^{\prime}(x)=\frac{8 x^{17}}{x-32} \quad g^{\prime \prime}(x)=\frac{128 x^{16}(x-34)}{(x-32)^{2}}
$$

Fill in the table below with information about the graph of $y=g(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

where g is decreasing	
where g is increasing	
x-coordinate(s) of local minima of g	
x-coordinate(s) of local maxima of g	
where g is concave down	
where g is concave up	
x-coordinate(s) of inflection point(s) of g	

L-19. The parts of this problem are not related.
(a) Suppose that when x units are produced, the total cost is $C(x)=2 x^{2}+10 x+18$ and the selling price per unit is $p(x)=46-x$. Find the level of production that maximizes total profit.
(b) Suppose the total cost of producing q units is $C(q)=q^{3}+20 q^{2}+200 q+2000$. Use marginal analysis to estimate the cost of the 3rd unit.

8 Chapter 8: Sample Exams (Set B)

Sample Precalculus Exam B

A-16. The graph of $y=f(x)$ is given below.
Note that f is piecewise linear. An explicit formula for $f(x)$ can be written in the following form, where A and B are constants.

$$
f(x)= \begin{cases}y_{1}(x) & \text { if }-8 \leq x<A \\ y_{2}(x) & \text { if } B \leq x \leq 8\end{cases}
$$

Calculate each of $A, B, y_{1}(x)$, and $y_{2}(x)$.

A-17. For each part, use the graph of $y=f(x)$.
(a) Calculate $f(f(2))$.
(b) State the domain of f in interval notation.
(c) State the range of f in interval notation.

A-18. Suppose $\log _{3}(x)=A$ and $\log _{3}(y)=B$. Rewrite the expression below in terms of A and B. Your final answer may not contain any logarithm symbol.

$$
\log _{3}\left(\frac{27 \sqrt{x}}{y^{4}}\right)
$$

A-19. Rewrite the expression below as a single logarithm. Assume x and y are positive.

$$
\frac{1}{2}\left(\log _{5}(x)-7 \log _{5}(y)\right)+3 \log _{5}(x-1)
$$

A-20. Suppose $\cos (\theta)=\frac{A}{7}$ with $0<A<7$ and $\sin (\theta)<0$. Find $\sec (\theta), \sin (\theta)$, and $\tan (\theta)$ in terms of A.
A-21. A bacteria colony has an initial population of 3500 . The population grows exponentially and triples every 7 hours. Recall that this means the population P at time t satisfies $P(t)=P_{0} e^{k t}$ for some constants P_{0} and k.
(a) Find the exact value of the growth constant k.
(b) Find the population after 25 hours.
(c) Find the time (in hours) when the population will be 12,600.

A-22. A rectangular box is constructed according to the following rules.

- the length of the box is twice its width
- the height of the box is 5 feet more than three times the length

Let ℓ, w, and h denote the length, width, and height of the box, respectively, measured in feet.
(a) Write the height of the box in terms of w.
(b) Write an expression for $V(w)$, the volume of the box measured in cubic feet, as a function of its width.
(c) Suppose the rules also require that the sum of the box's width and height to be less than 26 feet. Under this condition, what is the domain of the function $V(w)$?

A-23. Let $f(x)=\frac{2}{3 x}$ and assume $h \neq 0$. Fully simplify each of the following expressions:
(a) $f(x+h)$
(b) $f(x+h)-f(x)$
(c) $\frac{f(x+h)-f(x)}{h}$

A-24. Find the domain of the function $f(x)=\sqrt{x^{2}+x-6}+\ln (10-x)$. Write your answer using interval notation.

Sample Midterm Exam \#1B

B-6. For each part, use the graph of $y=f(x)$.

(a) List the x-values where f is not continuous or determine that f is continuous for all x.
(b) List all vertical asymptotes of f.
(c) List all horizontal asymptotes of f.
(d) Calculate $\lim _{x \rightarrow 8} f(x)$ or determine that the limit does not exist.
(e) At $x=7$, which of the one-sided limits of f exist?

F-17. Consider the piecewise-defined function $f(x)$ below; A and B are unspecified constants and $g(x)$ is an unspecified function with domain $[94, \infty)$.

$$
f(x)= \begin{cases}A x^{2}+8 & x<75 \\ \ln (B)+6 & x=75 \\ \frac{x-75}{\sqrt{x+6}-9} & 75<x<94 \\ 19 & x=94 \\ g(x) & x>94\end{cases}
$$

(a) Find $\lim _{x \rightarrow 75^{-}} f(x)$ in terms of A and B.
(b) Find $\lim _{x \rightarrow 75^{+}} f(x)$ in terms of A and B.
(c) Find the exact values of A and B for which f is continuous at $x=75$.
(d) Suppose $g(94)=19$. What does this imply about $\lim _{x \rightarrow 94} f(x)$? Select the best answer.
(i) $\lim _{x \rightarrow 94} f(x)$ exists.
(ii) $\lim _{x \rightarrow 94} f(x)$ does not exist.
(iii) It gives no information about $\lim _{x \rightarrow 94} f(x)$.

B-7. The position of a particle (measured in feet) after t seconds is modeled by the following function.

$$
h(t)=-16 t^{2}+96 t+100
$$

(a) Calculate the average velocity of the particle (in feet per second) between $t=4$ and $t=5$.
(b) Find an equation of the secant line between $(4, h(4))$ and $(5, h(5))$.

C-20. Suppose $\lim _{x \rightarrow 6}|f(x)|=2$. Which of the following statements must be true about $\lim _{x \rightarrow 6} f(x)$?
(i) $\lim _{x \rightarrow 6} f(x)$ does not exist.
(ii) $\lim _{x \rightarrow 6} f(x)=2$.
(iii) $\lim _{x \rightarrow 6} f(x)$ exists and is equal to either 2 or -2 , but there is not enough information to determine which of these possibilities must be true.
(iv) There is not enough information about $f(x)$ to determine whether $\lim _{x \rightarrow 6} f(x)$ exists.
(v) $\lim _{x \rightarrow 6} f(x)=-2$.
$\mathbf{C - 2 1 .}$ Consider the following function, where k is an unspecified constant.

$$
f(x)=\frac{4 x^{2}-k x}{x^{2}+12 x+32}
$$

(a) Find the value of k for which $\lim _{x \rightarrow-4} f(x)$ exists.
(b) For the value of k described in part (a), evaluate $\lim _{x \rightarrow-4} f(x)$.

C-22. Suppose $\lim _{x \rightarrow 0}\left(\frac{f(x)}{x}\right)=8$. Calculate $\lim _{x \rightarrow 0}\left(\frac{f(x)}{\sin (6 x)}\right)$ or show that the limit does not exist. If the limit is " $+\infty$ " or " $-\infty "$, write that as your answer, instead of "does not exist".

F-18. Consider the following function.

$$
f(x)=\frac{x^{2}-x-6}{x^{3}-2 x^{2}-3 x}
$$

(a) Where is f discontinuous?
(b) At the leftmost x-value where f is discontinuous, what type of discontinuity does f have (removable, jump, infinite (vertical asymptote), or other)?
(c) At the rightmost x-value where f is discontinuous, what type of discontinuity does f have (removable, jump, infinite (vertical asymptote), or other)?
E-9. Let $f(x)=\frac{8+6 e^{x}}{9 e^{x}-\pi^{6}}$.
(a) Evaluate $\lim _{x \rightarrow \infty} f(x)$.
(b) Evaluate $\lim _{x \rightarrow-\infty} f(x)$.
(c) List all vertical asymptotes of f.

Sample Midterm Exam \#2B

G-14. The following limit represents the derivative of a function f at a point a.

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{9 \tan \left(\frac{\pi}{6}+h\right)-\frac{9}{\sqrt{3}}}{h}\right)
$$

(a) Find a possible pair for f and a.
(b) Calculate the value of the limit.

G-15. For each part, use the graph of $y=f(x)$ to determine whether the value exists. If the value exists, state its sign (negative, positive, or zero).
(a) $f^{\prime}(1)$
(b) $f^{\prime}(2)$
(c) $f^{\prime}(3.5)$
(d) $f^{\prime}(7)$

I-5. Let $f(x)=x^{9} e^{4 x}$.
(a) Find $f^{\prime}(x)$.
(b) Explain how to find where the tangent line to the graph of f is horizontal.
(c) Find where the graph of f has a horizontal tangent line.

I-6. Selected values of the functions f and g and their derivatives are given in the table below. Use these values to complete the questions.

x	1	2	3	4
$f(x)$	4	3	2	1
$f^{\prime}(x)$	-4	-1	-9	-3
$g(x)$	2	1	3	4
$g^{\prime}(x)$	1	2	4	5

(a) Suppose $h(x)=5 f(x)-8 g(x)$. Find $h^{\prime}(1)$.
(b) Suppose $p(x)=x^{2} f(x)$. Find $p^{\prime}(2)$.
(c) Suppose $q(x)=f\left(x^{2}\right)$. Find $q^{\prime}(2)$.

G-16. Let $f(x)$ and $g(x)$ be functions such that $f^{\prime}(-8)=g^{\prime}(-8)$ and the line tangent to the graph of f at $x=-8$ is $y=-7 x+6$. For each part, compute the desired value, if possible.
(a) $f(-8)$
(b) $f^{\prime}(-8)$
(c) $g(-8)$
(d) $g^{\prime}(-8)$
$\mathbf{J}-\mathbf{1 7}$. Consider the curve defined by the following equation, where A and B are unspecified constants.

$$
A x^{2}-8 x y=B \cos (y)+3
$$

(a) Find a formula for $\frac{d y}{d x}$.
(b) Suppose the point $(8,0)$ is on the curve. Find an equation that A and B must satisfy.
(c) Suppose the tangent line to the curve at the point $(8,0)$ is $y=6 x-48$. Find the values of A and B.

K-13. The base of a right triangle is decreasing at a constant rate of $10 \mathrm{~cm} / \mathrm{sec}$ and in such a way that the triangle always remains a right triangle. At the time when the base is 15 cm and the height is 22 cm , the area of the triangle is increasing by 25 $\mathrm{cm}^{2} / \mathrm{sec}$. Use this information to answer the questions below. Let B denote the base of the triangle.
(a) At the described time, what is the sign of $\frac{d B}{d t}$?
(b) At the described time, what is the sign of $\frac{d^{2} B}{d t^{2}}$?
(c) At the described time, at what rate is the height changing?
(d) What are the units of the answer to part (c)?

I-7. Suppose f is differentiable at x and $g(x)=\frac{16 \ln (15 x)}{6 f(x)-\sqrt{x+17}}$. Find $g^{\prime}(x)$.

Sample Midterm Exam \#3B

L-17. Find the absolute extreme values of $f(x)=x^{3}-6 x^{2}+9 x+20$ on $[-3,2]$ and the x-value(s) at which they occur.
M-20. Consider the function f and its derivatives below.

$$
f(x)=\frac{x-3}{x^{2}-6 x-16} \quad, \quad f^{\prime}(x)=\frac{-(x-3)^{2}-25}{\left(x^{2}-6 x-16\right)^{2}} \quad, \quad f^{\prime \prime}(x)=\frac{2(x-3)\left((x-3)^{2}+75\right)}{\left(x^{2}-6 x-16\right)^{3}}
$$

Find where f is concave down and where f is concave up; write your answers using interval notation. Also find the x-coordinate of each inflection point of f.
Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

M-21. Suppose f is differentiable on $(-\infty, 1) \cup(1, \infty)$ and satisfies all of the following properties. Sketch a possible graph of $y=f(x)$ on the axes provided. Label all asymptotes, local extrema, and inflection points. Your graph need not to be to scale, but it must have the correct shape.
(i) $\quad \lim _{x \rightarrow-\infty} f(x)=-3 ; \quad \lim _{x \rightarrow \infty} f(x)=\infty ; \quad \lim _{x \rightarrow 1^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 1^{+}} f(x)=\infty$;
(ii) $f^{\prime}(x)>0$ on $(-\infty,-2)$ and $(5, \infty) ; \quad f^{\prime}(x)<0$ on $(-2,1)$ and $(1,5) ; \quad f^{\prime}(-2)=f^{\prime}(5)=0$
(iii) $f^{\prime \prime}(x)>0$ on $(-\infty,-7)$ and $(1, \infty) ; \quad f^{\prime \prime}(x)<0$ on $(-7,1) ; \quad f^{\prime \prime}(-7)=0$

N-15. A storage shed with a volume of $1500 \mathrm{ft}^{3}$ is to be built in the shape of a rectangular box with a square base. The material for the base costs $\$ 6 / \mathrm{ft}^{2}$, the material for the roof costs $\$ 9 / \mathrm{ft}^{2}$, and the material for the sides costs $\$ 2.50 / \mathrm{ft}^{2}$. Find the dimensions of the cheapest shed. As you work, fill in the answer boxes below. Let x represent the length of the base of the shed.

objective function in terms of $x:$	
interval of interest:	
dimensions of cheapest shed (in ft):	$\frac{}{\text { length of base }} \times \frac{}{\text { width of base }} \times \frac{}{\text { height of shed }}$

M-22. Let $f(x)=-e^{-x}\left(x^{2}-5 x-23\right)$. Find all critical points of f. Then find where f is decreasing and where f is increasing; write your answers using interval notation. Also find where relative extrema of f occur.
Write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.

Sample Final Exam B

B-2. The graph of $y=f(x)$ is given below. Find all values of a in $(-4,4)$ such that $\lim _{x \rightarrow a} f(x)$ does not exist.

G-5. Which statement is true about the graph of $f(x)=|x|+91$ at the point $(0,91)$?
(a) The graph has a tangent line at $y=91$.
(b) The graph has infinitely many tangent lines.
(c) The graph has no tangent line.
(d) The graph has two tangent lines: $y=x+91$ and $y=-x+91$.
(e) None of the above statements is true.

O-11. Suppose the cost (in dollars) of manufacturing q units is given by

$$
C(q)=6 q^{2}+34 q+112
$$

Use marginal analysis to estimate the cost of producing the 5th unit.
F-10. Consider the function $f(x)$, where k is an unspecified constant. Find the value of k for which f continuous for all x, or show that no such value of k exists.

$$
f(x)= \begin{cases}38+k x & x<3 \\ k x^{2}+x-k & x \geq 3\end{cases}
$$

In your work, you must use limit-based methods to solve this problem. Solutions that have work that is not based on limits will not receive full credit.

R-3. The figure below shows the area of regions bounded by the graph of $y=f(x)$ and the x-axis, where $a=4$, $b=6$, and $c=15$. Evaluate $\int_{a}^{c}(11 f(x)-6) d x$.

M-10. Consider the function f and its first two derivatives below.

$$
f(x)=\frac{99 e^{x}}{(x-25)^{47}}+98 \quad, \quad f^{\prime}(x)=\frac{99 e^{x}(x-72)}{(x-25)^{48}} \quad, \quad f^{\prime \prime}(x)=\frac{99 e^{x}\left((x-72)^{2}+47\right)}{(x-25)^{49}}
$$

Fill in the table below with information about the graph of $y=f(x)$. For each part, write "NONE" as your answer if appropriate. Where applicable, give a comma-separated list of intervals that are as inclusive as possible.
You do not have to show work, and each table item will be graded with no partial credit.

equation(s) of vertical asymptote(s) of f	
equation(s) of horizontal asymptote(s) of f	
where f is decreasing	
where f is increasing	
x-coordinate(s) of local minima of f	
x-coordinate(s) of local maxima of f	
where f is concave down	
where f is concave up	
x-coordinate(s) of inflection point(s) of f	

$\mathbf{P - 1 1 .}$ A student is asked to calculate the following limit using l'Hospital's Rule and to show all their work.

$$
L=\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)+17 x^{2}+2 x}{4 x^{2}+\tan (x)}\right)
$$

The student decides to cheat, so they find the solution online (shown below) and they submit the work as their own!

$$
\begin{align*}
L & =\lim _{x \rightarrow 0}\left(\frac{\sin (2 x)+17 x^{2}+2 x}{4 x^{2}+\tan (x)}\right) \tag{1}\\
& =\lim _{x \rightarrow 0}\left(\frac{2 \cos (2 x)+34 x+2}{8 x+\sec (x)^{2}}\right) \tag{2}\\
& =\lim _{x \rightarrow 0}\left(\frac{-4 \sin (2 x)+34}{8+2 \sec (x)^{2} \tan (x)}\right) \tag{3}\\
& =\frac{-4 \sin (0)+34}{8+2 \sec (0)^{2} \tan (0)} \tag{4}\\
& =\frac{0+34}{8+0} \tag{5}\\
& =\frac{17}{4} \tag{6}
\end{align*}
$$

Unfortunately, this solution contains an error, and so the student lost all credit for the problem. The student was also later determined to be responsible for cheating, and so they earned a grade of 0 on the entire exam!
Your task is to find and correct the error(s). Answer the following questions.
(a) There may be several errors in this solution. Which line is the first incorrect line?
(b) Explain the error in the first incorrect line in your own words.
(c) Calculate the correct value of L (the original limit).

R-4. Consider the integral below.

$$
\int_{-2}^{1} \sqrt{9-(x-1)^{2}} d x
$$

(a) Explain in your own words how you can calculate this integral without using Riemann sums or the fundamental theorem of calculus. Hint: Try graphing the integrand!
(b) Find the exact value of the integral.

J-12. Consider the curve described by the following equation.

$$
e^{12 x+2 y}=6 y-3 x y+1
$$

(a) Find $\frac{d y}{d x}$ at a general point on this curve.
(b) Calculate the slope of the line tangent to the curve at $(2,-12)$.
(c) There is a point on the curve close to the origin with coordinates $(0.07, b)$, and the line tangent to the curve at the origin is $y=3 x$. Use linear approximation to estimate the value of b.

G-6. Suppose the derivative of f is $f^{\prime}(x)=3 x^{2}-6 x-9$ and that $f(1)=10$.
(a) Find an equation of the line tangent to the graph of $y=f(x)$ at $x=1$.
(b) Find the critical points of f.
(c) Where does f have a local minimum value? local maximum value?
(d) Calculate $f(0)$.
(e) Calculate the absolute maximum value of f on the interval $[0,6]$. At what x-value does it occur?

N-10. A local park has hired you to construct a rectangular flower garden surrounded by a grass border that is 1 m wide on two sides and 2 m wide on the other two sides. (See the figure below.) The area of the garden only (the small rectangle) must be $126 \mathrm{~m}^{2}$.
Your primary task is to find the dimensions of the garden that give the smallest possible combined area of the garden and the grass border. For this problem, let W be the horizontal width of the garden and let H be the vertical height of the garden.

(a) What is the objective function for this problem in terms of W and H ?
(b) What is the constraint equation for this problem in terms of W and H ?
(c) Find the objective function in terms of W only.
(d) What is the interval of interest for the objective function?
(e) Find the values of W and H that minimize the total combined area.
(f) What horizontal width W of the garden will maximize the total area?

K-9. A farmer's tractor pulls a rope of length 12 m attached to a bale of hay through a pulley is 8 m above the ground. The vertical distance between the tractor and the pulley (the distance from P to Q) is 7 m . The tractor is moving to the left at rate of $2 \mathrm{~m} / \mathrm{sec}$, which causes the bale of hay to rise off the ground.

(a) The rate of change (with respect to time) of which variable is equal to the speed of the tractor?
(b) Use the Pythagorean theorem to find an equation that holds for all time and involves only the variables x and z.
(c) Use the fact that the length of the rope is constant to find an equation that holds for all time and involves only the variables z and y.
(d) Use the fact that the height of the pulley is constant to find an equation that holds for all time and involves only the variables h and y.
(e) Combine the equations from parts (b), (c), and (d) to find an equation that holds for all time and involves only the variables x and h.
(f) The rate of change (with respect to time) of which variable is equal to the rate at which the bale of hay is rising?
(g) Find the rate at which the bale of hay is rising off the ground when the horizontal distance between the tractor and the bale of hay is 8 m .

R-5. Define the function g by $g(x)=\int_{0}^{x} f(t) d t$, where the graph of $y=f(x)$ is given below. The graph consists of four line segments and one semicricle. Note: f and g are different functions!

$$
y=f(x)
$$

(a) Calculate $f^{\prime}(9)$.
(b) Calculate $f^{\prime}(6)$.
(c) Calculate $g^{\prime}(6)$.
(d) Calculate $g(11)-g(8)$.
(e) Is the statement " $g(4)>g(0) "$ true or false?
(f) Find the critical numbers of g in the interval $(0,12)$.

T-1. Note: The parts of this problem are not related.
(a) Suppose we use the fundamental theorem of calculus to calculate an integral as follows:

$$
\int_{a}^{b} g(u) d u=G(b)-G(a)
$$

What is the relationship between the functions g and G ?
(b) Calculate the following definite integral:

$$
\int_{e^{-3}}^{e^{2}} \frac{2 \ln (x)-3}{5 x} d x
$$

(c) Consider the following indefinite integral:

$$
J=\int \frac{\ln (x)}{3 x^{2}} d x
$$

Use the substitution $u=\ln (x)$ to write J as an equivalent indefinite integral in terms of u. Do not attempt to calculate J.

