Learning Goals

Learning Goal	Homework Problems
10.1.1 Find the few first terms of a sequence whose terms is defined directly as a function of n or recursively	$10.1: 3,11$
10.1.2 Find the general term of a sequence given its first few terms	$10.1: 17,25$
10.1.3 Determine whether a sequence converges or diverges by directly evaluating the limit of its term	$10.1: 31,34,35,39,43,72,73$
10.1 .4 Determine whether a sequence converges or diverges by identifying its term with a function and then evaluating the limit	$10.1: 51,53,57,61,74,89,91$
10.1 .5 Determine whether a sequence diverges or converges and find the limit if converges using the squeeze theorem for sequences	$10.1: 49$
10.1 .6 Using the Bounded Monotonic Sequences theorem to find the limit of a recursive sequence	$10.1: 101,103$

Conceptual introduction: a sequence is a function whose domain is a set of integers. Notation: $\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ We call n the index (= the input of the function), a_{n} is the $n^{\text {th }}$ term ($=$ the output of the input n).
We think about sequences as ordered lists of numbers:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n-1}, a_{n}, a_{n+1}, \ldots
$$

Examples:

1) The sequence of even positive integers: $2,4,6,8,10, \ldots$

Index	Term
1	$2=a_{1}$
2	$4=a_{2}$
3	$6=a_{3}$
4	$8=a_{4}$
5	$10=a_{5}$

We have a formula for the general term of the sequence: $a_{n}=2 n$
The sequence is $\{2 n\}_{n=1}^{\infty}$.

Remarks: sequences can start at any integer: $\{2 n\}_{n=3}^{\infty}$ is the sequence $6,8,10,12, \ldots$
2) Constant sequence: $\{3\}_{n=n_{0}}^{\infty}$ is the sequence $3,3,3, \ldots$.
3) The sequence of positive odd numbers: $1,3,5,7,9, \ldots$ General term: $\{2 n-1\}_{n=1}^{\infty}$ or $\{2 n+1\}_{n=0}^{\infty}$ both work.
4) Alternating sequence: $-1,1,-1,1,-1, \ldots$

General term: $a_{n}=(-1)^{n}$
The sequence can be written as $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$ or $\left\{(-1)^{n+1}\right\}_{n=0}^{\infty}$.
5) The sequence $8,2,8,2,8,2, \ldots$

To find the general term, observe that $\left\{\begin{array}{l}8=5+3 \\ 2=5-3\end{array}\right.$ General term: $a_{n}=5+3(-1)^{n}, n \geqslant 0$
6) The sequence $3,6,12,24,48, \ldots$

Observe that the ratio between consecutive terms is always the same: $\quad \underbrace{3,}_{x 2} \underbrace{6}_{x 2}, \underbrace{12}_{x 2} \underbrace{24,48}_{x 2}, \ldots$ geometric sequence with

$$
\times 2 \times 2 \times 2 \times 2 \quad \text { common ratio }=2=\frac{a_{n+1}}{a_{n}}
$$

General term: $a_{n}=3.2^{n} \quad, n \geqslant 0$
Geometric sequence: $a_{n}=c r^{n}, \quad c=a_{0}=$ first term

$$
r=\frac{a_{n+1}}{a_{n}}=\text { common ratio }
$$

7) The factorial sequence $\{n!\}_{n=0}^{\infty}$ where $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$

$$
\begin{aligned}
& 0!=1, \quad 1!=1, \quad 2!=2 \cdot 1=1, \quad 3!=3 \cdot 2 \cdot 1=6, \quad 4!=4 \cdot 3 \cdot 2 \cdot 1=24 \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \text { etc. }
\end{aligned}
$$

8) The sequence defined recursively by $\left\{\begin{array}{l}a_{1}=4 \\ a_{n+1}=1-2 a_{n}\end{array}\right.$

$$
\begin{aligned}
& a_{1}=4 \\
& a_{2}=1-2 a_{1}=1-2 \cdot 4=-7 \quad \text { (recursion formula for } n=1 \text {) } \\
& a_{3}=1-2 a_{2}=1-2(-7)=15 \text { (recursion formula for } n=2 \text {) } \\
& a_{4}=1-2 a_{3}=1-2(15)=-29
\end{aligned}
$$

"recur sion formula
etc. This is an example of a recursive sequence.

Geometric sequences can be defined recursively:

$$
\begin{cases}a_{0}=c & \text { gives a geometric sequence with first term } c \\ a_{n+1}=r a_{n} & \text { and common ratio } r .\end{cases}
$$

The factorial sequence can be defined recursively: $\left\{\begin{array}{l}a_{0}=1 \\ a_{n+1}=(n+1) a_{n}\end{array}\right.$.

Limits of sequences: the only type of limit that makes sene is for $n \rightarrow \infty$.
$\lim _{n \rightarrow \infty} a_{n}=L$ if a_{n} can be made arbitrarily close to L when n is arbitrarily large.
We say that $\left\{a_{n}\right\}$ converges if the limit exists and is finite, diverges otherwise.

Examples: 1) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots$

$$
\uparrow a_{n}=\frac{1}{n} \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

in general, any limit of the form $\frac{\text { constant }}{\infty}$ is 0 .
 the form $\frac{\infty}{\infty} 0$.
2) $\left\{(-1)^{n}\right\}_{n=0}^{+\infty}=1,-1,1,-1,1, \ldots$
\qquad

Theorem:

If $a_{n}=f(n)$ for a function f and if $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$

In practice: we can treat n as a continuous variable and use methods seen in Calc I to compute limits of functions, provided it makes sense.

1 If $\lim _{x \rightarrow \infty} f(x)$ DNE, we cannot conclude that $\lim _{n \rightarrow \infty} a_{n}$ DNE

Examples: 1) $\lim _{n \rightarrow \infty} \frac{2 n+1}{1-3 n}=\lim _{n \rightarrow \infty} \frac{(2 n+1) \cdot \frac{1}{n}}{(1-3 n) \cdot \frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2+\frac{1}{n}}{\frac{1}{n}-3}=\frac{2+0}{0-3}=-\frac{2}{3}$
or use L'Hopital's Rule: $\lim _{n \rightarrow \infty} \frac{2 n+1}{1-3 n}=\lim _{x \rightarrow \infty} \frac{2 x+1}{1-3 x} \underset{\frac{\infty}{\infty}}{=} \lim _{n \rightarrow \infty} \frac{2}{-3}=-\frac{2}{3}$.
treat n as a
continuous variable
2) $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}$: we cannot use the theorem and treat n as a continuous variable because $f(x)=\frac{(-1)^{x}}{x}$ is undefined if $x=\frac{1}{\text { even \# }}$.

Instead, we can use the Sandwich Theorem:
If $b_{n} \leqslant a_{n} \leqslant c_{n}$ and $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Here, $-1 \leqslant(-1)^{n} \leqslant 1$
so $\frac{-1}{n} \leqslant \frac{(-1)^{n}}{n} \leqslant \frac{1}{n}$
and $\lim _{n \rightarrow \infty} \frac{-1}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$
So $\quad \lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n}=0$
3) $\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{2}}=\lim _{x \rightarrow \infty} \frac{2^{x}}{x^{2}} \quad$ (treat n as a continuous variable)
$\stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty}^{\infty} \frac{\ln (2) 2^{x}}{2 x} \stackrel{L^{\prime} H}{\frac{\infty}{\infty}} \lim _{x \rightarrow \infty} \frac{\ln (2)^{2} 2^{x}}{2}=\infty$, so $\left\{\frac{2^{n}}{n^{2}}\right\}_{n}$ diverges.
4) Limit of geometric sequences $\left\{\mathrm{cr}^{n}\right\}_{n=0}^{\infty}$.

$$
\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{lll|}
0 & \text { if } & |r|<1 \\
1 & \text { if } & r=1 \\
\infty & \text { if } r>1 \\
\text { DNE } & \text { if } & r<-1
\end{array}\right.
$$

So $\quad \lim _{n \rightarrow \infty}\left(\frac{-7}{11}\right)^{n}=0, \lim _{n \rightarrow \infty}(-2)^{n}$ ONE, $\lim _{n \rightarrow \infty} 2^{n}=\infty$.
5) Useful common limits:
a) $\lim _{n \rightarrow \infty} c^{n}=0$ if $|c|<1$
b) $\lim _{n \rightarrow \infty} c^{1 / n}=1$ if $c>0$
c) $\lim _{n \rightarrow \infty} n^{1 / n}=1$
d) $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0$ for any c
e) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=e^{c}$ for any c

We saw a) above.
b)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} c^{1 / n}=\lim _{n \rightarrow \infty} e^{\frac{1}{n} \ln (c)}=e^{0}=1 . \\
& a^{b}=e^{\ln (a)} e^{x} \text { continuous at } x=0 .
\end{aligned}
$$

This is an application of the Continuous Function Theorem:
If $\lim _{n \rightarrow \infty} a_{n}=L$ and f is continuous at $x=L$, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

For indeterminate powers $\left(\infty^{0}, 1^{\infty}, 0^{\circ}\right)$ like c), e), we can rewrite the expression with $a^{b}=e^{b \ln (a)}$ or taking the in, and then use L'Hópital's Rule.
c)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n^{1 / n} & =\lim _{n \rightarrow \infty} e^{\frac{\ln (n)}{n}} \\
& =\lim _{x \rightarrow \infty} e^{\ln (x)_{x}^{\frac{\infty}{\infty}}} \text {, use L'H. } \\
& \text { (treat } n \text { as a continuous variable) } \\
& \lim _{x \rightarrow \infty} e^{\frac{\frac{1}{x}}{1}}=e^{0}=1 .
\end{aligned}
$$

e) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{c}{n}\right)}$ let's calculate the limit'

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n \ln \left(1+\frac{c}{n}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{c}{x}\right)}{\frac{1}{x}} \quad \frac{L^{\prime}}{\frac{1}{0}} \lim _{x \rightarrow \infty} \frac{-\frac{c}{x^{2}} \cdot \frac{1}{1+c / x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{c}{1+\frac{c}{x}}=c .
\end{aligned}
$$

So $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=e^{c}$.
6) $\lim _{n \rightarrow \infty} a_{n}$ where a_{n} is the sequence defined recursively by

$$
\left\{\begin{array}{l}
a_{1}=-4 \\
a_{n+1}=\sqrt{8+2 a_{n}}
\end{array}\right.
$$

First few terms of $a_{n}: \quad a_{1}=-4$

$$
\begin{aligned}
& a_{2}=\sqrt{8+2 a_{1}}=\sqrt{8+2(-4)}=0 \\
& a_{3}=\sqrt{8+2 a_{2}}=\sqrt{8+2 \cdot 0}=\sqrt{8}=2 \sqrt{2} \\
& a_{4}=\sqrt{8+2 a_{3}}=\sqrt{8+4 \sqrt{2}}=2 \sqrt{2+\sqrt{2}} \\
& \text { etc. }
\end{aligned}
$$

Assume we know that a_{n} converges to L. How can we find L ?
Because $\lim _{n \rightarrow \infty} a_{n}=L, \lim _{n \rightarrow \infty} a_{n+1}=L$
same list of numbers, just indexed differently

$$
a_{n+1}=\sqrt{8+2 a_{n}}
$$

\downarrow take limit when $n \rightarrow \infty$
$L=\sqrt{8+2 L}$ we can now solve for L.

$$
\begin{aligned}
& L^{2}=8+2 L \\
& L^{2}-2 L-8=0 \\
& (L-4)(L+2)=0 \Rightarrow L=4 \text { or } L=-2
\end{aligned}
$$

Since $a_{n} \geqslant 0$ for $n \geqslant 2$, we deduce $L=4$.

We assumed that $\left\{a_{n}\right\}$ converges to do this reasoning. The folbwing theorem helps proving convergence.
Theorem: if $\left\{a_{n}\right\}$ is bounded and monotonic, then $\left\{a_{n}\right\}$ is convergent.

Bounded: for some $M>0$, we have $\left|a_{n}\right| \leqslant M$ for all n.
Monotonic: either increasing $a_{n+1} \geqslant a_{n}$ for $n \geqslant n_{0}$ or decreasing $a_{n+1} \leqslant a_{n}$ for $n \geqslant n_{0}$.

Practice: calculate the limits of the following sequences or show that they diverge.

1) $\lim _{n \rightarrow \infty}\left(1+\sin \left(\frac{3}{n}\right)\right)^{n}$
2) $\lim _{n \rightarrow \infty} \frac{3 \cos \left(n^{2}\right)+2 n}{n+1}$
3) $\lim _{n \rightarrow \infty} \frac{5^{n+1}-3^{2 n}}{7^{n}}$
4) $\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}+n+1}{\sqrt{n^{2}+1}}\right)^{1 / n}$

Solutions:

$$
\begin{aligned}
& \text { 1) } \lim _{n \rightarrow \infty}\left(1+\sin \left(\frac{3}{n}\right)\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\sin \left(\frac{2}{n}\right)\right)} \text { calculate limitit of exponent. } \\
& \lim _{n \rightarrow \infty} n \ln \left(1+\sin \left(\frac{3}{n}\right)\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\sin \left(\frac{3}{x}\right)\right)}{\frac{1}{x}} \quad \frac{L^{\prime} x}{\frac{\infty}{\infty}} \lim _{x \rightarrow \infty} \frac{-\frac{3}{x^{2}} \cos \left(\frac{3}{x}\right) \frac{1}{1+\sin (3 / x)}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{3 \cos \left(\frac{3}{x}\right)}{1+\sin \left(\frac{3}{x}\right)}=3 .
\end{aligned}
$$

So $\lim _{n \rightarrow \infty}\left(1+\sin \left(\frac{3}{n}\right)\right)^{n}=e^{3}$.
2) $\lim _{n \rightarrow \infty} \frac{3 \cos \left(n^{2}\right)+2 n}{n+1} \quad$ Recall:

$$
\begin{aligned}
& -1 \leqslant \cos (\cdots) \leqslant 1 \\
& -1 \\
& -\frac{\pi}{2} \leqslant \sin ^{2}\left(-\tan ^{-1}(\cdots) \leqslant \frac{\pi}{2}\right. \\
& \hline
\end{aligned}
$$

We have

$$
-1 \leqslant \cos \left(n^{2}\right) \leqslant 1
$$

$$
\begin{aligned}
& -3 \leqslant 3 \cos \left(n^{2}\right) \leqslant 3 \\
& \frac{-3+2 n}{n+1} \leqslant \frac{3 \cos \left(n^{2}\right)+2 n}{n+1} \leqslant \frac{3+2 n}{n+1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\lim _{n \rightarrow \infty} \frac{\frac{-3+2 n}{n+1}=\lim _{n \rightarrow \infty} \frac{-3 / n+2}{1+1 / n}=\frac{0+2}{1+0}=2}{\lim _{n \rightarrow \infty} \frac{3+2 n}{n+1}=\lim _{n \rightarrow \infty} \frac{3 / n+2}{1+1 / n}=\frac{0+2}{1+0}=2}\right\}\left\{\Rightarrow \lim _{n \rightarrow \infty} \frac{3 \cos \left(n^{2}\right)+2 n}{n+1}=2\right. \\
& \text { by the Sandwich Theorem }
\end{aligned}
$$

3)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{5^{n+1}-3^{2 n}}{7^{n}}=\lim _{n \rightarrow \infty}\left(\frac{5 \cdot 5^{n}}{7^{n}}-\frac{\left(3^{2}\right)^{n}}{7^{n}}\right)=\lim _{n \rightarrow \infty}\left(5\left(\frac{5}{7}\right)^{n}-\left(\frac{9}{7}\right)^{n}\right) \\
& ={ }^{n} 5 \cdot 0-\infty "=-\infty .
\end{aligned}
$$

4)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{3 n^{2}+n+1}{\sqrt{n^{2}+1}}\right)^{1 / n} & =\lim _{n \rightarrow \infty}\left(\frac{n^{2}\left(3+1 / n+1 / n^{2}\right)}{n \sqrt{1+1 / n^{2}}}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty} n^{1 / n} \cdot\left(\frac{3+1 / n+1 / n^{2}}{\sqrt{1+1 / n^{2}}}\right)^{1 / n}=1 \cdot 3^{0}=1 .
\end{aligned}
$$

