Learning Goals

	J															
Learning	g Goal						H	omewor	k Probl	ems						
10.1.1 Find the few first terms of a sequence whose terms is defined directly as a function of n or recursively								10.1: 3,11								
10.1.2 H terms	⁻ 10.1.2 Find the general term of a sequence given its first few terms								10.1: 17,25							
10.1.3 Determine whether a sequence converges or diverges by directly evaluating the limit of its term							es 1	10.1: 31,34,35,39,43,72,73								
10.1.4 I by iden limit	10.1.4 Determine whether a sequence converges or diverges by identifying its term with a function and then evaluating the limit								10.1: 51,53,57,61,74,89,91							
- 10.1.5 Determine whether a sequence diverges or converges and find the limit if converges using the squeeze theorem for sequences								10.1: 49								
10.1.6 Using the Bounded Monotonic Sequences theorem to – find the limit of a recursive sequence							to 1	10.1:101,103								

Conceptual introduction: a <u>sequence</u> is a function whose domain is a set of integers. Notation fany or fany We call n the index (= the input of the function), an is the nth term (= the output of the input n). We think about sequences as ordered lists of numbers: $a_1, a_2, a_3, a_4, \dots, a_{n-1}, a_n, a_{n+1}, \dots$ Examples : 1) The sequence of even positive integers: 2,4,6,8,10,... Index Term We have a formula for the general term 1 2 = a1 of the sequence: $a_n = 2n$ 2 4 = a2 3 The sequence is ${2n \int_{n=1}^{\infty}}$. $6 = a_{3}$ 4 8 = Q4 5 10 = Q <u>Remarks</u>: sequences can start at any integer: $\left\{2n\right\}_{n=3}^{\infty}$ is the sequence 6,8,10,12,... 2) Constant sequence: $\{3\}_{n=1}^{\infty}$ is the sequence 3, 3, 3, ...3) The sequence of positive odd numbers: 1,3,5,7,9,... General term: f2n-160 or f2n+160 both work 4) Alternating sequence: -1, 1, -1, 1, -1, ... General term: $a_n = (-1)^n$ sequence can be written as $\ell(-1)^{n} \int_{n=1}^{\infty} or \, \ell(-1)^{n+1} \int_{n=0}^{\infty}$ The

If
$$\lim_{x \to \infty} f(x)$$
 DNE, we cannot conclude that $\lim_{n \to \infty} a_n$ DNE
 $\lim_{x \to \infty} f(x)$ DNE, we cannot conclude that $\lim_{n \to \infty} a_n$ DNE
 $\lim_{n \to \infty} \frac{1}{x} = \lim_{n \to \infty} \frac{1}{x} = \frac{1}{x}$

4) Limit of geometric sequences
$$\int cr^n \int_{n=0}^{\infty} dr^n = \int_{n=0}^{\infty} dr^n f(r) = 1$$

 $\lim_{n \to \infty} r^n = \int_{0}^{\infty} dr^n f(r) = 1$
 $\int_{0}^{\infty} dr^n f(r) = 1$
So $\lim_{n \to \infty} \left(\frac{-2}{11}\right)^n = 0$, $\lim_{n \to \infty} (2)^n$ DNE, $\lim_{n \to \infty} 2^n = \infty$.
5) Useful common limits : a) $\lim_{n \to \infty} c^n = 0$ if $|c| < 1$
b) $\lim_{n \to \infty} c^n = 1$ if $c > 0$ c) $\lim_{n \to \infty} n'^n = 1$
d) $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ for any c e) $\lim_{n \to \infty} (1 + \frac{c}{n})^n = e^c$ for any c
 $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ for any c e) $\lim_{n \to \infty} (1 + \frac{c}{n})^n = e^c$ for any c
 $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ for any c e) $\lim_{n \to \infty} \frac{1 + c^n}{n!} = e^{c} = 1$.
 $\int_{n \to \infty} \frac{1}{n!} \frac{1}{n!$

 $a_{n+1} = \sqrt{8+2a_n}$ U take limit when $n \rightarrow \infty$ L= v 8+2L we can now solve for L. $L^{2} = 8 + 2L$ $L^{2} - 2L - 8 = 0$ $(L-4)(L+2)=0 \Rightarrow L=4 \text{ or } L=-2$ Since an 70 for n72, we deduce L=4 We assumed that fan y converges to do this reasoning. The following theorem helps proving convergence. Theorem: if day is bounded and monotonic, then day is convergent. Bounded: for some M>0, we have lan 1 < M for all n. Monotonic : either increasing antiz an for nzno or decreasing anti < an for nzno. Practice: calculate the limits of the following sequences or show that they diverge. 2) $\lim_{n \to \infty} \frac{3\cos(n^2) + 2n}{n+1}$ 1) $\lim_{n \to \infty} \left(1 + \sin \left(\frac{3}{n} \right) \right)^{n}$ $(4) \lim_{n \to \infty} \left(\frac{3n^2 + n + 1}{\sqrt{n^2 + 1}} \right)^{1/n}$ 3) $\lim_{n \to \infty} \frac{5^{n+1} - 3^{2n}}{2^n}$

Solutions:

$$\frac{1}{1} \lim_{n \to \infty} (1 + \sin\left(\frac{3}{n}\right))^{n} = \lim_{n \to \infty} e^{nh\left(1 + \sin\left(\frac{3}{n}\right)\right)} e^{s\left(\frac{1}{2} + \sin\left(\frac{3}{n}\right)\right)} = \lim_{n \to \infty} \frac{1 \ln\left(1 + \sin\left(\frac{3}{n}\right)\right)}{\frac{1}{n}} = \lim_{n \to \infty} \frac{2\pi \cos\left(\frac{3}{n}\right) + \sin(2\pi)}{\frac{1}{n}}$$

$$\lim_{n \to \infty} \ln\left(1 + \sin\left(\frac{3}{n}\right)\right) = \lim_{n \to \infty} \frac{\ln\left(1 + \sin\left(\frac{3}{n}\right)\right)}{\frac{1}{n}} = \frac{3}{n}$$

$$\frac{1}{n} \lim_{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{3}{n}$$

$$\frac{3}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n}$$

$$\frac{3}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n}$$

$$\frac{1}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n}$$

$$\frac{1}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n}$$

$$\frac{1}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n}$$

$$\frac{3}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{8}{n + 1}$$

$$\frac{3}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{3}{n + 1}$$

$$\frac{1}{n \to \infty} \frac{3\cos\left(\frac{n}{n}\right) + 2n}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1} = \frac{3}{n + 1}$$

$$\frac{3}{n + \infty} \frac{3^{2}n}{n + 1} = \lim_{n \to \infty} \frac{3^{2}n}{n + 1} = \frac{3}{n + \infty} \left(\frac{3 + 3n}{n + 1}\right)^{n}$$

$$\frac{3}{n + \infty} \frac{5^{n} - 5^{2n}}{n + 1} = \lim_{n \to \infty} \left(\frac{n + (3 + 3^{n} + 3^{n})}{n + 1}\right)^{n}$$

$$\frac{3}{n + \infty} \frac{5^{n} - 5^{2n}}{n + 1} = \lim_{n \to \infty} \left(\frac{n + (3 + 3^{n} + 3^{n})}{n + 1}\right)^{n}$$

$$\frac{3}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + \infty} \left(\frac{3n^{2} + n + 1}{\sqrt{n^{2} + 1}}\right)^{n}$$

$$\frac{3n}{n + 1} = \frac{3n}{n + 1}$$

$$\frac{3n}{n +$$