
(1) Computing limits

Suppose we want to compute a limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ leading to an indeterminate form \div.
We can use L'tlopital's Rule, but that may lead to difficult derivatives computations, especially if we must use it multiple times. Taylor series give us an alternative.

Examples: 1) $\lim _{x \rightarrow 0} \frac{e^{x^{3}}-1}{x^{2} \sin (2 x)}$
We find Maclaurin series of numerator and denominator.

$$
\begin{aligned}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \Rightarrow e^{x^{3}} & =\sum_{n=0}^{\infty} \frac{\left(x^{3}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{3 n}}{n!} \\
& =1+x^{3}+\frac{x^{6}}{2}+\frac{x^{9}}{6}+\cdots
\end{aligned}
$$

So $e^{x^{3}}-1=x^{3}+\frac{x^{6}}{2}+\frac{x^{9}}{6}+\cdots=\sum_{n=1}^{\infty} \frac{x^{3 n}}{n!}$

$$
\begin{aligned}
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \Rightarrow \sin (2 x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n+1}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

So $x^{2} \sin (2 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+3}}{(2 n+1)!}=2 x^{3}-\frac{8 x^{5}}{6}+\frac{32 x^{7}}{120}-\cdots$
Now $\lim _{x \rightarrow 0} \frac{e^{x^{3}}-1}{x^{2} \sin (2 x)}=\lim _{x \rightarrow 0} \frac{x^{3}+\frac{x^{6}}{2}+\cdots}{2 x^{3}-\frac{8 x^{5}}{6}+\cdots} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{1+\frac{x^{3}}{2}+\cdots(\text { positive powers of } x) \cdots}{2-\frac{8 x^{2}}{6}+\cdots(\text { positive powers of } x) \cdots} \\
& =\frac{1}{2} .
\end{aligned}
$$

2) $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin (x)-\tan ^{-1}(x)}$

We find the first few terms of the Maclaurin series of the denominator.

$$
\begin{aligned}
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120} \cdots \\
& \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \cdots
\end{aligned}
$$

So

$$
\begin{aligned}
\sin (x)-\tan ^{-1}(x) & =(1-1) x+\left(-\frac{1}{6}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{120}-\frac{1}{5}\right) x^{5}+\cdots \\
& =\frac{x^{3}}{6}-\frac{23 x^{5}}{120}+\cdots
\end{aligned}
$$

Now

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{3}}{\sin (x)-\tan ^{-1}(x)} & =\lim _{x \rightarrow 0} \frac{x^{3}}{\frac{x^{3}}{6}-\frac{23 x^{5}}{120}+\cdots} \cdot \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow 0} \frac{1}{\frac{1}{6}-\frac{23 x^{2}}{120}+\cdots \text { (positive powers of } x \text {) }} \\
& =\frac{1}{\frac{1}{6}}=6 .
\end{aligned}
$$

3)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{8}\left(2 \cos \left(\frac{1}{x^{2}}\right)-2+\frac{1}{x^{4}}\right) \\
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots \\
& \Rightarrow \cos \left(\frac{1}{x^{2}}\right)=1-\frac{1}{2 x^{4}}+\frac{1}{24 x^{8}}-\frac{1}{720 x^{12}}+\cdots \\
& \Rightarrow 2 \cos \left(\frac{1}{x^{2}}\right)=2-\frac{1}{x^{4}}+\frac{1}{12 x^{8}}-\frac{1}{360 x^{12}}+\cdots
\end{aligned}
$$

So $2 \cos \left(\frac{1}{x^{2}}\right)-2+\frac{1}{x^{4}}=\frac{1}{12 x^{8}}-\frac{1}{360 x^{12}}+\cdots$
Now $\lim _{x \rightarrow \infty} x^{8}\left(2 \cos \left(\frac{1}{x^{2}}\right)-2+\frac{1}{x^{4}}\right)=\lim _{x \rightarrow \infty} x^{8}\left(\frac{1}{12 x^{8}}-\frac{1}{360 x^{12}}+\cdots\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{1}{12}-\frac{1}{360 x^{4}}+\cdots \text { (negative powers of } x \text {) } \cdots \\
& =\frac{1}{12} .
\end{aligned}
$$

(2) Approximations of integrals.

Some integrals cannot be computed using elementary functions. We can use power series to express some of these integrals as sums of series using term-by-term integration.

Examples: 1) Write the integral $I=\int_{0}^{1 / 2} e^{3 x^{2}} d x$ the sum of an infinite series.

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\Rightarrow & e^{3 x^{2}}=\sum_{n=0}^{\infty} \frac{\left(3 x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{3^{n} x^{2 n}}{n!}
\end{aligned}
$$

Integrate term-by-term: $\int_{0}^{1 / 2} e^{3 x^{2}} d x=\sum_{n=0}^{\infty} \int_{0}^{1 / 2} \frac{3^{n} x^{2 n}}{n!} d x$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{3^{n}}{n!} \int_{0}^{1 / 2} x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \frac{3^{n}}{n!} \cdot\left[\frac{x^{2 n+1}}{2 n+1}\right]_{0}^{1 / 2} \\
& =\sum_{n=0}^{\infty} \frac{3^{n}}{n!}\left(\frac{1}{(2 n+1) 2^{n+1}}-\infty\right)
\end{aligned}
$$

So we get $I=\sum_{n=0}^{\infty} \frac{3^{n}}{n!(2 n+1) 2^{2 n+1}}=\frac{1}{2}+\frac{3}{3 \cdot 2^{3}}+\frac{3^{2}}{2 \cdot 5 \cdot 2^{5}}+\cdots$
2) Write the integral $\int_{0}^{1} x^{3} \cos \left(x^{3}\right) d x$ as the sum of an infinite series.

$$
\begin{aligned}
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \Rightarrow \quad \cos \left(x^{3}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!} \\
& \Rightarrow \quad x^{3} \cos \left(x^{3}\right)=x^{3} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{(2 n)!}
\end{aligned}
$$

Integrate term-by-term:

$$
\begin{aligned}
\int_{0}^{1} x^{3} \cos \left(x^{3}\right) d x & =\sum_{n=0}^{\infty} \int_{0}^{1} \frac{(-1)^{n} x^{6 n+3}}{(2 n)!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \int_{0}^{1} x^{6 n+3} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left[\frac{x^{6 n+4}}{6 n+4}\right]_{0}^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{1}{6 n+4}-0\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!(6 n+4)}
\end{aligned}
$$

2) Write $I=\int_{0}^{1} \sin \left(t^{2}\right) d t$ as the sum of an infinite series. Then estimate the value of I with an error of at most 10^{-6}.

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!} \Rightarrow \sin \left(t^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(t^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+2}}{(2 n+1)!}
$$

Integrate term-by-term:

$$
\begin{aligned}
\int_{0}^{1} \sin \left(t^{2}\right) d t & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \int_{0}^{1} t^{4 n+2} d t \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left[\frac{t^{4 n+3}}{4 n+3}\right]_{0}^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left(\frac{1}{4 n+3}-0\right)
\end{aligned}
$$

So $I=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!(4 n+3)}$
We will estimate I using a partial sum S_{N}. We need to find N such that $\underbrace{\left|I-S_{N}\right|}_{\text {error }} \leqslant 1^{-6}$.

We can use the Alternating Series Estimation Theorem because: $a_{n}=\frac{1}{(2 n+1)!(4 n+3)} \geqslant 0$.

- a_{n} is decreasing since $(2 n+1)!(4 n+3)$ is increasing.
- $\lim _{n \rightarrow \infty} \frac{1}{(2 n+1)!(4 n+3)}=0$.

ASET: $\left|I-S_{N}\right| \leqslant a_{N+1}$ so we want $a_{N+1} \leq 10^{-6}$.

		$\frac{1}{(2 N+3)!(4 N+7)} \leqslant 10^{-6}$
N	$(2 N+3)!(4 N+7)$	$(2 N+3)!(4 N+7) \geqslant 10^{6}$
0	$42 \times x$	
1	$1320 \times x$	
2	$75600 \times$	$N \geqslant 3$.

So we can estimate I using S_{3}.

$$
I \approx S_{3}=\sum_{n=0}^{3} \frac{(-1)^{n}}{(2 n+1)!(4 n+3)}=\frac{1}{3}-\frac{1}{42}+\frac{1}{1320}-\frac{1}{75600} \approx 0.310268 \text {. }
$$

Practice:

1) Compute the following limits.
a) $\lim _{x \rightarrow 0} \frac{\tan ^{-1}\left(x^{2}\right)-x^{2}}{\cos \left(x^{3}\right)-1}$
b) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{\ln (x-2)}$
2) Use Maclaurin series to write each integral as the sum of an infinite series
a) $\int_{0}^{\frac{1}{2}} \frac{d x}{x^{4}+1}$
b) $\int_{0}^{2} \frac{\sin (x)}{x} d x$.

Solutions:

$$
\begin{aligned}
& \text { 1) a) } \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \\
& \Rightarrow \tan ^{-1}\left(x^{2}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n+1}}{2 n+1}=x^{2}-\frac{x^{6}}{3}+\frac{x^{10}}{5} \cdots
\end{aligned}
$$

So $\tan ^{-1}\left(x^{2}\right)-x^{2}=-\frac{x^{6}}{3}+\frac{x^{10}}{5}-\cdots$

$$
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \Rightarrow \cos \left(x^{3}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{3}\right)^{2 n}}{(2 n)!}=1-\frac{x^{6}}{2}+\frac{x^{12}}{24} \cdots
$$

So $\cos \left(x^{3}\right)-1=-\frac{x^{6}}{2}+\frac{x^{12}}{24} \cdots$
Now $\lim _{x \rightarrow 0} \frac{\tan ^{-1}\left(x^{2}\right)-x^{2}}{\cos \left(x^{3}\right)-1}=\lim _{x \rightarrow 0} \frac{-\frac{x^{6}}{3}+\frac{x^{10}}{5} \cdots \cdot}{-\frac{x^{6}}{2}+\frac{x^{12}}{24} \cdots \cdot} \cdot \frac{\frac{1}{x^{6}}}{\frac{1}{x^{6}}}$

$$
=\lim _{x \rightarrow 0} \frac{-\frac{1}{3}+\frac{x^{4}}{5}-\cdots}{-\frac{1}{2}+\frac{x^{6}}{24}-\cdots}=\frac{-\frac{1}{3}}{-\frac{1}{2}}=\frac{2}{3}
$$

b) $\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots$
and $\ln (x-2)=\ln (1+(x-3))=(x-3)-\frac{(x-3)^{2}}{2}+\cdots$
Now

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{\ln (x-2)} & =\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{(x-3)-\frac{(x-3)^{2}}{2}+\cdots} \cdot \frac{\frac{1}{x-3}}{\frac{1}{x-3}} \\
& =\lim _{x \rightarrow 3} \frac{x+3}{\left.1-\frac{(x-3)^{2}}{2}+\cdots \text { (positive powers of }(x-3)\right) \cdot} \\
& =6
\end{aligned}
$$

2) a) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ if $|x|<1$

So $\frac{1}{1+x^{4}}=\sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n}$
Integrate term-by-term: $\int_{0}^{\frac{1}{2}} \frac{d x}{1+x^{4}}=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{\frac{1}{2}} x^{4 n} d x$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}(-1)^{n}\left[\frac{x^{4 n+1}}{4 n+1}\right]_{0}^{\frac{1}{2}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(4 n+1) 2^{4 n+1}}
\end{aligned}
$$

b) $\quad \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ so $\frac{\sin (x)}{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}$

Integrate term-by-term: $\int_{0}^{2} \frac{\sin (x)}{x} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} \int_{0}^{2} x^{2 n} d x$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}\left[\frac{x^{2 n+1}}{2 n+1}\right]_{0}^{2} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1}}{(2 n+1)!(2 n+1)}
\end{aligned}
$$

