Rutgers University
Math 152

Section 10.1: Sequences - Worksheet Solutions

1. Determine if the sequences below converge or diverge. In case of convergence, find the limit.
(a) $a_{n}=\frac{\sqrt{1+16 n^{4}}}{n^{2}+1}$

Solution. We can compute the limit by dividing numerator and denominator by n^{2} as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{1+16 n^{4}}}{n^{2}+1} & =\lim _{n \rightarrow \infty} \frac{\sqrt{1+16 n^{4}}}{n^{2}+1} \cdot \frac{1}{\frac{n^{2}}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{\frac{1}{n^{4}}+16}}{1+\frac{1}{n^{2}}} \\
& =\frac{\sqrt{0+16}}{1+0} \\
& =4
\end{aligned}
$$

Since the limit exists and is finite, we conclude that the sequence $\left\{a_{n}\right\}$ converges to the limit 4 .
(b) $a_{n}=\frac{5 n+4}{2 \cos (n)^{2}+3 n}$

Solution. We can start the limit computation by dividing numerator and denominator by n as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{5 n+4}{2 \cos (n)^{2}+3 n} & =\lim _{n \rightarrow \infty} \frac{5 n+4}{2 \cos (n)^{2}+3 n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{5+\frac{4}{n}}{\frac{2 \cos (n)^{2}}{n}+3}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& 0 \leqslant 2 \cos (n)^{2} \leqslant 2 \\
& \Rightarrow 0 \leqslant \frac{2 \cos (n)^{2}}{n} \leqslant \frac{2}{n}
\end{aligned}
$$

and $\lim _{n \rightarrow \infty} \frac{2}{n}=0$. Therefore, $\lim _{n \rightarrow \infty} \frac{2 \cos (n)^{2}}{n}=0$ by the Sandwich Theorem. It follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{5 n+4}{2 \cos (n)^{2}+3 n} & =\lim _{n \rightarrow \infty} \frac{5+\frac{4}{n}}{\frac{2 \cos (n)^{2}}{n}+3} \\
& =\frac{5+0}{0+3} \\
& =\frac{5}{3}
\end{aligned}
$$

Since the limit exists and is finite, we conclude that the sequence $\left\{a_{n}\right\}$ converges to the limit $\frac{5}{3}$.
(c) $a_{n}=\tan ^{-1}(1-\sqrt{n})$

Solution. We have $\lim _{n \rightarrow \infty} 1-\sqrt{n}=-\infty$. Therefore,

$$
\lim _{n \rightarrow \infty} \tan ^{-1}(1-\sqrt{n})=" \tan ^{-1}(-\infty) "=-\frac{\pi}{2}
$$

Since the limit exists and is finite, we conclude that the sequence $\left\{a_{n}\right\}$ converges to the limit $-\frac{\pi}{2}$.
(d) $a_{n}=\frac{n+(-1)^{n}}{n^{3}+1}$

Solution. If $n \geqslant 1$, we have

$$
\begin{aligned}
& 0 \leqslant n+(-1)^{n} \leqslant n+1 \text { and } n^{3}+1 \geqslant n^{3}>0 \\
& \Rightarrow 0 \leqslant \frac{n+(-1)^{n}}{n^{3}+1} \leqslant \frac{n+1}{n^{3}}=\frac{1}{n^{2}}+\frac{1}{n^{3}}
\end{aligned}
$$

and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}+\frac{1}{n^{3}}=0$. Therefore by the Sandwich Theorem we have

$$
\lim _{n \rightarrow \infty} \frac{n+(-1)^{n}}{n^{3}+1}=0
$$

So the sequence $\left\{a_{n}\right\}$ converges to the limit 0 .
(e) $a_{n}=\frac{4^{n}-5^{2 n}}{7^{n}}$

Solution. We have

$$
\frac{4^{n}-5^{2 n}}{7^{n}}=\left(\frac{4}{7}\right)^{n}-\left(\frac{25}{7}\right)^{n}
$$

Since a geometric sequence converges to 0 if its common ratio is in $(-1,1)$ and diverges to ∞ if its common ratio is >1, we have

$$
\lim _{n \rightarrow \infty} \frac{4^{n}-5^{2 n}}{7^{n}}=" 0-\infty "=-\infty
$$

so the sequence diverges.
(f) $a_{n}=\cos \left(\frac{5}{\sqrt{n}}\right)^{n}$

Solution. When computing the limit of this sequence, we have an indeterminate power 1^{∞}. We can resolve the indeterminate form by writing the power in exponential form

$$
\lim _{n \rightarrow \infty} \cos \left(\frac{5}{\sqrt{n}}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(\cos \left(\frac{5}{\sqrt{n}}\right)\right)}
$$

We now compute the limit of the exponent using L'Hôpital's Rule twice:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(\cos \left(\frac{5}{\sqrt{n}}\right)\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(\cos \left(\frac{5}{\sqrt{x}}\right)\right)}{\frac{1}{x}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{\overline{0}} \lim _{x \rightarrow \infty} \frac{\frac{5}{2 x^{3 / 2}} \tan \left(\frac{5}{\sqrt{x}}\right)}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{5 \tan \left(\frac{5}{\sqrt{x}}\right)}{\frac{2}{\sqrt{x}}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty}-\frac{-\frac{25}{2 x^{3 / 2}} \sec \left(\frac{5}{\sqrt{x}}\right)^{2}}{-\frac{1}{x^{3 / 2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{25}{2} \sec \left(\frac{5}{\sqrt{x}}\right)^{2} \\
& =-\frac{25}{2} \sec (0)^{2} \\
& =-\frac{25}{2} .
\end{aligned}
$$

So

$$
\lim _{n \rightarrow \infty} e^{n \ln \left(\cos \left(\frac{5}{\sqrt{n}}\right)\right)}=e^{-25 / 2}
$$

and the sequence $\left\{a_{n}\right\}$ converges to the limit $e^{-25 / 2}$.
(g) $a_{n}=\left(\frac{n+5}{n+3}\right)^{4 n}$

Solution. When computing the limit of this sequence, we have an indeterminate power 1^{∞}. We can resolve the indeterminate form by writing the power in exponential form

$$
\lim _{n \rightarrow \infty}\left(\frac{n+5}{n+3}\right)^{4 n}=\lim _{n \rightarrow \infty} e^{4 n \ln \left(\frac{n+5}{n+3}\right)}
$$

We now compute the limit of the exponent using L'Hôpital's Rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} 4 n \ln \left(\frac{n+5}{n+3}\right) & =\lim _{x \rightarrow \infty} 4 \frac{\ln (x+5)-\ln (x+3)}{\frac{1}{x}} \\
& \frac{\mathrm{~L}^{\prime} \mathrm{H}}{\frac{0}{0}} 4 \frac{\frac{1}{x+5}-\frac{1}{x+3}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-4 x^{2} \frac{(x+3)-(x+5)}{(x+5)(x+3)} \\
& =\lim _{x \rightarrow \infty} \frac{8 x^{2}}{(x+5)(x+3)} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{8}{(1+5 / x)(1+3 / x)} \\
& =8 .
\end{aligned}
$$

So

$$
\lim _{n \rightarrow \infty} e^{4 n \ln \left(\frac{n+5}{n+3}\right)}=e^{8}
$$

and the sequence $\left\{a_{n}\right\}$ converges to the limit e^{8}.
(h) $a_{n}=(2 n+1)^{3 / n}$.

Solution. This time, the indeterminate power has the form ∞^{0}. The method stays the same and we write the power in exponential form to obtain

$$
\lim _{n \rightarrow \infty}(2 n+1)^{3 / n}=\lim _{n \rightarrow \infty} e^{3 \ln (2 n+1) / n}
$$

We can compute the limit of the exponent using L'Hôpital's Rule as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 \ln (2 n+1)}{n} & =\lim _{x \rightarrow \infty} \frac{3 \ln (2 x+1)}{x} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{\frac{\infty}{\infty}} \lim _{x \rightarrow \infty} \frac{3 \frac{2}{2 x+1}}{1} \\
& =\lim _{x \rightarrow \infty} \frac{6}{2 x+1} \\
& =0
\end{aligned}
$$

So

$$
\lim _{n \rightarrow \infty} e^{3 \ln (2 n+1) / n}=e^{0}=1
$$

and the sequence $\left\{a_{n}\right\}$ converges to the limit 1 .
(i) $a_{n}=\sin (n \pi) e^{n}$

Solution. Observe that $\sin (n \pi)=0$ if n is an integer. Therefore $a_{n}=0$ for all n, and thus

$$
\lim _{n \rightarrow \infty} \sin (n \pi) e^{n}=0
$$

So the sequence $\left\{a_{n}\right\}$ converges to the limit 0 .
2. Suppose that a_{n} is a sequence defined inductively by

$$
\left\{\begin{array}{l}
a_{1}=2, \\
a_{n+1}=\frac{5}{a_{n}+4} \text { for } n \geqslant 1
\end{array}\right.
$$

(a) Find the first 4 terms of the sequence $\left\{a_{n}\right\}$.

Solution. We have

$$
\begin{aligned}
& a_{1}=2 \\
& a_{2}=\frac{5}{a_{1}+4}=\frac{5}{2+4}=\frac{5}{6}, \\
& a_{3}=\frac{5}{a_{2}+4}=\frac{5}{\frac{5}{6}+4}=\frac{35}{29}, \\
& a_{4}=\frac{5}{a_{3}+4}=\frac{5}{\frac{35}{29}+4}=\frac{145}{151}
\end{aligned}
$$

(b) The sequence $\left\{a_{n}\right\}$ converges. Find its limit.

Solution. Call L the limit of the sequence. Taking $n \rightarrow \infty$ in the recursion formula gives

$$
a_{n+1}=\frac{5}{a_{n}+4} \Rightarrow L=\frac{5}{L+4}
$$

Solving this for L gives the solutions $L=-5,1$. Since the terms of the sequence are positive, the only possibility is $L=1$. Hence,

$$
\lim _{n \rightarrow \infty} a_{n}=1 \text {. }
$$

