Learning Goals

Learning Goal	Homework Problems
10.2.1 Find the first terms of a series	$10.2: 7,10,11,14$
10.2.2 Determine whether a series converges or diverges when the term is function of a term of another series	$10.2: 94$
10.2.3 Determine whether a series converges or diverges using the sequence of partial sums	$10.2: 39,45,69$
10.2.4 Evaluate the sum of a telescopic series	$10.2: 39,41,45,49$
10.2.5 Determine if a geometric series converges and if so find its sum	$10.2: 53,59,61,67,71,100$
10.2.6 Express repeating decimals as fractions using geometric series	$10.2: 23,29$
10.2.7 Show that a series diverges by the Term Divergence Theorem	$10.2: 33,35,38$
10.2.8 Determine the value of x for which a geometric series converges (preview of power series)	$10.2: 77,81,97$

Conceptual introduction: an infinite series is the sum of all terms in a sequence.

Sequence: $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ (list of numbers)
Series: $a_{1}+a_{2}+a_{3}+a_{4}+\cdots$ (infinite sum)
Notation for series: $\sum_{n=1}^{\infty} a_{n}$
could start at any index- does not have to be 1 .
this refers to both: - the series itself - the idea of summing all terms.

- the value of the sum if it exists.

How do we compute the sum of a series?
We consider the partial sums

$$
S_{N}=\sum_{n=1}^{N} a_{n}=a_{1}+a_{2}+\cdots+a_{N-1}+a_{N}
$$

Then, we take the limit as $N \rightarrow \infty$:

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} a_{n}
$$

We say that the series converges if the limit exists and is finite, diverges otherwise.

Examples: 1) For $a_{n}=\frac{1}{n}$, write out the first 4 terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ and the first 4 partial sums of the series $\sum_{n=1}^{\infty} a_{n}$.

Sequence: $\quad a_{1}=\frac{1}{1}=1, a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}, a_{4}=\frac{1}{4}$

Partial sums:

$$
\begin{aligned}
& S_{1}=a_{1}=1 \\
& S_{2}=a_{1}+a_{2}=1+\frac{1}{2}=\frac{3}{2} \\
& S_{3}=\underbrace{a_{1}+a_{2}}_{S_{2}}+a_{3}=\underbrace{1+\frac{1}{2}}_{S_{2}}+\frac{1}{3}=\frac{11}{6} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4}=1+\frac{1}{2}+\frac{1}{3}
\end{aligned}+\frac{1}{4}=\frac{25}{12} .2
$$

In the previous section, we saw that the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ converges: the numbers $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ approach 0 .
In the next section, we will explain that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges: if we sum more and more terms $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$, the sum will eventually surpass any number.
So we have $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$
2) Evaluate $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$

We look at the partial sums: $S_{N}=\sum_{n=1}^{N}\left(\frac{1}{n}-\frac{1}{n+1}\right)$

$$
\begin{aligned}
& S_{1}=\left(\frac{1}{1}-\frac{1}{2}\right) \\
& S_{2}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)=1-\frac{1}{3} \\
& S_{3}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)=1-\frac{1}{4}
\end{aligned} \begin{aligned}
& \text { the negative po } \\
& \text { each term canc } \\
& \text { with the positive } \\
& \text { the next term. }
\end{aligned}
$$

the negative part of each term cancels out with the positive part of

In general, we get the cancellation:

$$
\begin{aligned}
& S_{N}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{N-1}-\frac{1}{N}\right)+\left(\frac{1}{N}-\frac{1}{N+1}\right) \\
& S_{N}=1-\frac{1}{N+1} \text { so } \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N+1}\right)=1
\end{aligned}
$$

This is called a telescoping series/sum.
3) Evaluate $\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{2 n+4}\right)$.

We still get cancellation, but less overlap.

$$
\begin{aligned}
& S_{1}=\left(\frac{1}{2}-\frac{1}{6}\right) \\
& S_{2}=\left(\frac{1}{2}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{6}-\frac{1}{10}\right)=\frac{1}{2}+\frac{1}{4}-\frac{1}{8}-\frac{1}{10} \\
& S_{3}=\left(\frac{1}{2}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{6}-\frac{1}{10}\right)+\left(\frac{1}{8}-\frac{1}{12}\right)=\frac{1}{2}+\frac{1}{4}-\frac{1}{10}-\frac{1}{12}
\end{aligned}
$$

negative part of each term cancels out with the positive part of the one after next (skip one)

$$
\begin{aligned}
& S_{N}=\left(\frac{1}{2}-\frac{1}{6}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{6}-\frac{1}{10}\right)+\left(\frac{1}{8}-\frac{1}{12}\right)+\cdots+\left(\frac{1}{2 N-2}-\frac{1}{2 N+2}\right)+\left(\frac{1}{2 N}-\frac{1}{2 N+1}\right) \\
&=\frac{1}{2}+\frac{1}{4}-\frac{1}{2 N}-\frac{1}{2 N+4} \quad \text { (first two positives, last two negatives) } \\
& \lim _{N \rightarrow \infty} S_{N}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \text { so } \sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{2 n+4}\right)=\frac{3}{4} .
\end{aligned}
$$

4) Does the series $\sum_{n=1}^{\infty} \frac{2 n}{5_{n+3}}$ converge or diverge? Observe that $\lim _{n \rightarrow \infty} \frac{2 n}{5 n+3}=\frac{2}{5}$
So in the sum $\sum_{n=1}^{\infty} \frac{2 n}{5 n+3}$, we are summing infinitely many terms very close to $\frac{2}{5}$. Therefore, $\sum_{n=1}^{\infty} \frac{2 n}{5_{n}+3}=\infty \Rightarrow$ diverges.

This is an example of:
Term Divergence Test: if $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$ or: if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{n=1}^{\infty} a_{n} a_{n}$ diverges

Intuitively: the only way an infinite sum can be finite is if the terms approach 0 .
Note: the converse is false: $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. This is because $\frac{1}{n}$ does not approach o "fast enough". So if you just know that $\lim _{n \rightarrow \infty} a_{n}=0$, you cannot conclude anything about $\sum_{n=n_{0}}^{\infty} a_{n}$.

Geometric Series: $\sum_{n=N_{0}}^{\infty} a r^{n}, \quad r=$ common ratio $(r \neq 1)$.
We have an explicit formula for the partial sums of a geometric series.

$$
\sum_{n=N_{0}}^{N} r^{n}=\frac{r^{N_{0}}-r^{N+1}}{1-r}=\frac{\text { (first term) }- \text { (term after last) }}{1-(\text { common ratio })}
$$

So $\sum_{n=N_{0}}^{\infty} r^{n}=\left\{\begin{array}{l}\frac{r^{N}}{1-r}=\frac{\text { first term }}{1-\text { (common ratio) }} \\ \text { diverges } \\ \text { if }|r| \geqslant 1\end{array} \quad|r|<1\right.$

Examples: 1) $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{128}=$?
$1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{128}=$ geometric sum of common ratio $\frac{1}{2}$

$$
\begin{aligned}
& =\sum_{n=0}^{7}\left(\frac{1}{2}\right)^{n} \\
& =\frac{(\text { first term })-(\text { term after last) }}{1-(\text { common ratio) }}=\frac{1-\frac{1}{256}}{1-\frac{1}{2}}=\frac{255}{128}
\end{aligned}
$$

2) Evaluate $\sum_{n=3}^{\infty} \frac{1}{2^{n}}, \sum_{n=0}^{\infty} 4^{-n} 5^{n}$ or explain why they diverge.

$$
=\frac{\text { first term }}{1-\text { common ratio }}=\frac{1 / 8}{1-1 / 2}=\frac{1}{4} \text {. }
$$

$$
\sum_{n=0}^{\infty} 4^{n} 5^{n}=\sum_{n=0}^{\infty}\left(\frac{5}{4}\right)^{n} \quad \text { diverges since common ratio }=\frac{5}{4} \geqslant 1 \text {. }
$$

3) Evaluate $\sum_{n=1}^{\infty} \frac{3-2^{2 n}}{7^{n+1}}$ using the rules for series:

If $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ converge, then

$$
\begin{aligned}
& \cdot \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} \\
& \cdot \sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n} \quad(c \text { constant) } \\
& \sum_{n=1}^{\infty} \frac{3-2^{2 n}}{7^{n+1}}=\sum_{n=1}^{\infty} \frac{1}{7} \cdot \frac{3-4^{n}}{7^{n}}=\sum_{n=1}^{\infty}\left(\frac{3}{7}\left(\frac{1}{7}\right)^{n}-\frac{1}{7}\left(\frac{4}{7}\right)^{n}\right) \\
& =\frac{3}{7} \sum_{n=1}^{\infty}\left(\frac{1}{7}\right)^{n}-\frac{1}{7} \sum_{n=1}^{\infty}\left(\frac{4}{7}\right)^{n}=\frac{3}{7} \cdot \frac{1 / 7}{1-1 / 7}-\frac{1}{7} \cdot \frac{417}{1-417}=-\frac{5}{42} .
\end{aligned}
$$

4) Write the number $3.16161616 \ldots=3 . \overline{16}$ as a ratio of two integers.

$$
\begin{aligned}
3.16161616 \ldots & =3+0.16+0.0016+0.000016+0.00000016+\cdots \\
& =3+\frac{16}{100}+\frac{16}{100^{2}}+\frac{16}{100^{3}}+\frac{16}{100^{4}}+\cdots \\
& =3+\sum_{n=1}^{\infty} \frac{16}{100^{n}}=3+16 \sum_{n=1}^{\infty}\left(\frac{1}{100}\right)^{n}=3+16 \cdot \frac{\frac{1}{100}}{1-\frac{1}{100}}=3+\frac{16}{99} \\
& =\frac{313}{99} .
\end{aligned}
$$

5) Let $f(x)=\sum_{n=1}^{\infty} \frac{3 x^{n}}{2^{n}}$. Find the values of x for which $f(x)$ converges and find a formula for the sum when it converges.
$f(x)=\sum_{n=1}^{\infty} 3\left(\frac{x}{2}\right)^{n}$ geometric sum with common ratio $r=\frac{x}{2}$ and first term $\frac{3 x}{2}$.
$f(x)$ converges when $|r|<1 \Rightarrow\left|\frac{x}{2}\right|<1 \Rightarrow-2<x<2$.
When $-2<x<2, \quad f(x)=\frac{\text { first term }}{1-\text { common ratio }}$

$$
=\frac{\frac{3 x}{2}}{1-\frac{x}{2}}=\frac{3 x}{2-x} .
$$

Practice: Evaluate the following series or explain why they diverge.
a) $\sum_{n=2}^{\infty} \frac{2^{3-n}}{3^{n+2}}$
b) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
c) $\sum_{n=1}^{\infty}\left(\frac{1}{3 n+2}-\frac{1}{3 n+8}\right)$
d) $\sum_{n=1}^{\infty} \frac{2^{3 n}}{5^{n+4}}$

Solutions: a) $\sum_{n=2}^{\infty} \frac{2^{3-n}}{3^{n+2}}=\sum_{n=2}^{\infty} \frac{2^{3} 2^{-n}}{3^{n} 3^{2}}=\frac{2^{3}}{3^{2}} \sum_{n=2}^{\infty} \frac{1}{3^{n} \cdot 2^{n}}=\frac{8}{9} \sum_{n=2}^{\infty}\left(\frac{1}{6}\right)^{n}$

$$
=\frac{8}{9} \cdot \frac{1 / 36}{1-1 / 6}=\frac{8}{9} \cdot \frac{1}{30}=\frac{4}{135}
$$

b) Term Divergence Test: $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{\ln \left(1+\frac{1}{n}\right)}$

So $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e^{1}=e \neq 0$.
Therefore, $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$ diverges.
c) $\sum_{n=1}^{\infty}\left(\frac{1}{3 n+2}-\frac{1}{3 n+8}\right)$ is a telescopic series.

$$
\begin{aligned}
S_{N} & =\sum_{n=1}^{N}\left(\frac{1}{3 n+2}-\frac{1}{3 n+8}\right) \\
& =\left(\frac{1}{5}-\frac{1}{11}\right)+\left(\frac{1}{8}-\frac{1}{14}\right)+\left(\frac{1}{11}-\frac{1}{17}\right)+\cdots+\left(\frac{1}{3 N-1}-\frac{1}{3 N+5}\right)+\left(\frac{1}{3 n+2}-\frac{1}{3 N+8}\right) \\
& =\frac{1}{5}+\frac{1}{8}-\frac{1}{3 N+5}-\frac{1}{3 N+8} \underset{N \rightarrow \infty}{ } \frac{1}{5}+\frac{1}{8}=\frac{13}{40}
\end{aligned}
$$

So $\sum_{n=1}^{\infty}\left(\frac{1}{3 n+2}-\frac{1}{3 n+8}\right)=\frac{13}{40}$
d) $\sum_{n=1}^{\infty} \frac{2^{3 n}}{5^{n+4}}=\frac{1}{5^{4}} \sum_{n=1}^{\infty} \frac{8^{n}}{5^{n}}=\frac{1}{5^{4}} \sum_{n=1}^{\infty}\left(\frac{8}{5}\right)^{n}$ is a geometric series with common ratio $\frac{8}{5}>1$, so it diverges.

