Section 10.2

Learning Goals

L	ear	ning (Goal						E	Iomewor	rk Probl	lems					
	10.2	.1 Fin	d the first terms of a series 10.2: 7,10,11,14									-					
	10.2.2 Determine whether a series converges or diverges when the term is function of a term of another series								1	10.2: 39,45,69							
	10.2 usin	.3 Determine whether a series converges or diverges g the sequence of partial sums 4 Evaluate the sum of a telescopic series															
	10.2	.4 Eva	aluate t	he sum o	of a teles	copic se	ries		:	10.2: 39,	41,45,4	9					
t	10.2 find	.5 Det its su	5 Determine if a geometric series converges and if so ts sum							10.2: 53,59,61,67,71,100							
	10.2 geo1	.6 Exp netric	press re series	epeating	decimals	lecimals as fractions using10.2: 23,29liverges by the Term Divergence10.2: 33,35,38											
	10.2 Гhe	0.2.7 Show that a series diverges by the Term Divergence neorem0.2.8 Determine the value of x for which a geometric series nverges (preview of power series)						e i	10.2: 33,35,38 10.2: 77,81,97								
	10.2 conv							ries									

Conceptual introduction: an infinite series is the sum of
all terms in a sequence.
Sequence:
$$a_1, a_2, a_3, a_4, \dots$$
 (list of numbers)
Series : $a_1 + a_2 + a_3 + a_4 + \dots$ (infinite sum)
Notation for series: $\sum_{n=0}^{\infty} a_n$
this refers to both : • the series itself - the idea of summing
all terms,
• the value of the sum if it exists.
How do we compute the sum of a series?
We consider the partial sums
 $S_n = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_{n-1} + a_n$
Then, we take the limit $a \in N \to \infty$:
 $\sum_{n=1}^{\infty} a_n = \lim_{n\to\infty} \sum_{n=1}^{\infty} a_n$
We say that the series converges if the limit exists and is finite,
diverges otherwise.
Examples: 1) For $a_n = \frac{1}{n}$, write out the first & terms of the
sequence $\{a_1\}_{n=1}^{\infty}$, and the first 4 terms of the series
 $\sum_{n=1}^{\infty} a_n$.

Partial sums:
$$S_{1} = a_{1} + a_{2} = 1$$

 $S_{2} = a_{1} + a_{3} = 1 + \frac{1}{2} = \frac{a}{2}$
 $S_{3} = a_{1} + a_{3} + a_{3} = \frac{1 + \frac{1}{2} + \frac{1}{3} = \frac{1}{4}}{\frac{5}{2} + \frac{1}{3}} = \frac{1}{4}$
 $S_{4} = a_{1} + a_{3} + a_{4} = \frac{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}}{\frac{5}{2} + \frac{1}{3}} = \frac{1}{4}$
In the previous section, we saw that the sequence $\{\frac{1}{n}, \frac{1}{n}, \frac{$

3) Evaluate $\sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{1}{2n+4} \right)$ We still get cancellation, but less overlap. $S_1 = \left(\frac{1}{2} - \frac{1}{6}\right)$ $S_{A} = \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) = \frac{1}{2} + \frac{1}{4} - \frac{1}{8} - \frac{1}{10}$ $S_{3} = \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{8} - \frac{1}{12}\right) = \frac{1}{2} + \frac{1}{4} - \frac{1}{10} - \frac{1}{12}$ negative part of each term cancels out with the positive part of the one after next (skip one) $S_{N} = \left(\frac{1}{2} - \frac{1}{6}\right) + \left(\frac{1}{4} - \frac{1}{8}\right) + \left(\frac{1}{6} - \frac{1}{10}\right) + \left(\frac{1}{8} - \frac{1}{12}\right) + \cdots + \left(\frac{1}{2^{N-2}} - \frac{1}{2^{N+2}}\right) + \left(\frac{1}{2^{N-2}} - \frac{1}{2^{N+2}}\right)$ (first two positives, last two negatives) $\frac{1}{2} + \frac{1}{4} - \frac{1}{2N} - \frac{1}{2Ntu}$ $\lim_{N \to \infty} S_{N} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} S_{N} \left[\sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{1}{2n+4} \right) = \frac{3}{4} \right]$ 4) Does the series $\sum_{n=1}^{\infty} \frac{2n}{5n+3}$ converge or diverge? Observe that lim 2n - 2 n→∞ 5n+3 5 So in the sum $\frac{\Sigma}{n=1} \frac{2n}{5n+3}$, we are summing infinitely many terms very close to $\frac{2}{5}$. Therefore, $\sum_{n=1}^{\infty} \frac{2n}{5n+2} = \infty \Rightarrow$ diverges This is an example of: Term Divergence Test: if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = D$ or: if $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges Intuitively: the only way an infinite sum can be finite is if the terms approach O. Note: the converse is false : $\lim_{n \to \infty} \frac{1}{n} = 0$ but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. This is because $\frac{1}{n}$ does not approach o "fast enough". So if you just know that $\lim_{n \to \infty} a_n = 0$, you cannot conclude anything about $\sum_{n=n}^{\infty}$ an

3) Evaluate
$$\sum_{n=1}^{\infty} \frac{3 - x^{2n}}{2^{n+1}}$$
 using the rules for series:
Tf $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ converge, then
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} (a_n + b_n) = \sum_{i=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n$
 $+ \sum_{i=1}^{\infty} \frac{3 - x^{2n}}{2} + \frac{1}{2} + \frac{3 - 4n^n}{2}} = \sum_{i=1}^{\infty} (\frac{3}{4} (\frac{1}{7})^n - \frac{1}{7} (\frac{4}{7})^n)$
 $= \frac{3}{2} \sum_{n=1}^{\infty} (\frac{1}{7})^n - \frac{1}{7} \sum_{i=1}^{\infty} (\frac{4}{7})^n = \frac{3}{7} + \frac{17}{1 - 17} + \frac{1}{7} + \frac{414}{1 - 1644} = \frac{5}{42}$,
4) Write the number $3.16161616... \pm 3.16$ as a ratio of two integes.
 $3.16161616.... \pm 3 + 0.16 + 0.0016 + 0.000016 + 0.0000016 + \cdots$
 $= 3 + \frac{16}{100} + \frac{16}{100^3} + \frac{16}{100^3} + \frac{16}{100^3} + \frac{16}{100}$
 $= 3 + \frac{5}{10} + \frac{16}{100} = 3 + 16 \sum_{n=1}^{\infty} (\frac{1}{100})^n = 3 + 16 \frac{1}{1 + \frac{1}{100}} = 23 + \frac{16}{49}$
 $= \frac{313}{99}$.
 $5)$ Let $f(x) = \sum_{n=1}^{\infty} \frac{3x^n}{2^n}$. Find the values of x for which
 $f(x)$ converges and find a formula for the sum when
 it converges.
 $f(x) = \sum_{n=1}^{\infty} 3(\frac{x}{2})^n$ geometric sum with common ratio
 $r = \frac{x}{2}$ and first term $\frac{3x}{2}$.

$$f(x) \quad \text{converges when } |r| < 1 \Rightarrow \left|\frac{x}{x}\right| < 1 \Rightarrow \frac{-2 < x < 2}{-2 < x < 2}$$
When $-2 < x < 2$, $f(x) = \frac{first term}{1 - common ratio}$

$$= \frac{\frac{3x}{1 - \frac{x}{2}}}{1 - \frac{x}{2}} = \frac{3x}{2 - x}$$
Practice: Evaluate the following series or explain why they diverge.
a) $\sum_{n=1}^{\infty} \frac{2^{3-n}}{3^{n+2}} = b$ $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n$ c) $\sum_{n=1}^{\infty} (\frac{1}{2n+2}) = d$ $\sum_{n=1}^{\infty} \frac{2^{3}}{3^{n+2}}$

$$\frac{Solutions}{1 - \frac{1}{2}} = b$$
 $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n$ c) $\sum_{n=1}^{\infty} (\frac{1}{2n+2}) = d$ $\sum_{n=1}^{\infty} \frac{2^{3-n}}{3^{n+2}} = \sum_{n=1}^{\infty} \frac{2^3 2^{n}}{3^{n+2}} = \frac{2}{3^2} \sum_{n=1}^{\infty} \frac{1}{2n+2} = \frac{8}{9} \sum_{n=1}^{\infty} (\frac{1}{6})^n$

$$= \frac{8}{9} \cdot \frac{1/36}{1 - \frac{1}{2}} = \frac{8}{9} \cdot \frac{1}{3n} = \frac{1}{135}$$
b) Term Divergence Test: $\lim_{n \to \infty} (1 + \frac{1}{n})^n = \lim_{n \to \infty} e^{in(n+\frac{1}{2})} \frac{1}{2n+2} = \frac{1}{2n+2}$
So $\lim_{n \to \infty} n\ln((1 + \frac{1}{n}) = \lim_{n \to \infty} \frac{\ln(1 + \frac{1}{n})}{\frac{1}{2}} = \frac{1}{2} + 0$.
Therefore, $\sum_{n=1}^{\infty} (1 + \frac{1}{n})^n$ diverges
$$\frac{x}{n+1} (\frac{1}{3n+2} - \frac{1}{2n+8}) = is - a \text{ telescopic series.}$$

$$S_{N} = \sum_{n=1}^{N} \left(\frac{1}{3n+2} - \frac{1}{3n+8} \right)$$

$$= \left(\frac{1}{5} - \frac{1}{11} \right) + \left(\frac{1}{5} - \frac{1}{14} \right) + \left(\frac{1}{11} - \frac{1}{14} \right) + \dots + \left(\frac{1}{3n+1} - \frac{1}{3n+5} \right) + \left(\frac{1}{3n+2} + \frac{1}{3n+8} \right)$$

$$= \frac{1}{5} + \frac{1}{8} - \frac{1}{3n+5} - \frac{1}{3n+6} + \frac{1}{3n+6} + \frac{1}{5} + \frac{1}{8} = \frac{13}{4n}$$

$$S_{0} \sum_{n=1}^{\infty} \frac{2^{2n}}{5^{n+4}} = \frac{1}{5^{4}} \sum_{n=1}^{\infty} \frac{8^{n}}{5^{n}} = \frac{1}{5^{6}} \sum_{n=1}^{\infty} \left(\frac{8}{5} \right)^{n} \text{ is a geometrie veries}$$

$$with common ratio \frac{8}{5} > 1, so it diverges.$$