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Section 10.2: Infinite Series - Worksheet Solutions
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1. Each of the series Z an below is either geometric or telescoping. For each series, find a formula for the

n=ngo
N

partial sum Sy = Z an, then determine if the series converges or diverges, and compute its sum if it

n=no
does.
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Solution. This is a geometric series of common ratio r = % The partial sum is
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Since |r| < 1, ‘the series converges ‘ We can compute the sum two ways: either taking the limit of
Sy when N — oo or using the formula for the sum of a convergent geometric series. Either way, we
get

- n—n_16
;23 =51

03 (51— 35)

n=0

Solution. This is a telescoping series. We have
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Therefore, | the series converges ‘ and

(L )
—\2n+1 2045/ 3|




o0

1—3.42n
(©) D~

n=0

Solution. We have
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Thus, using the formula for geometric sums, we get
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We have =+ — 0 and (12) — oo when N — co. Therefore Sy — —o0 as N — 00, s0

= 1—3.42"
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Solution. After rewriting the general term as

3n+1
=1 1) -1 4
n <3n - 4) n(3n+1) —In(3n +4)

we see that this a telescoping series. We have

N
Sy =Y _ (In(3n+1)—In(3n+4))
n=3
= (In(10) — In(13)) + (In(13) — In(16)) 4+ - - - + (In(3N — 2) —In(BN + 1)) + (In(BN + 1) — In(3N + 4))
=|In(10) - In(3N +4) |

Since In(3N 4 4) — oo when N — oo, we deduce that Sy — —oo when N — oo. Thus
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Solution. We can rewrite the general term as
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So this is a geometric with common ratio r = %. The partial sum is
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Since |r| < 1, ‘the series converges ‘ We can compute the sum two ways: either taking the limit of
Sy when N — oo or using the formula for the sum of a convergent geometric series. Either way, we

get
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() Z (tan™'(n + 1) — tan™'(n))
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Solution. This is a telescoping series. We have
Sy = (tan™'(2) — tan'(1)) + (tan"*(3) — tan"1(2)) + --- + (tan (N + 1) — tan"*(N))
= —tan" (1) +tan ' (N + 1)
)

= —g +tan '(N + 1

Since lim tan™!'(N + 1) = %, we have
N— 00

lim Sy = ]\}gnoo (—% + tan~ (N + 1)) = —% + - =

N—o0

So | the series converges ‘ and

(tan™'(n+1) — tan™"(n)) = % .

n=1

2. Use geometric series to express the repeating decimals below as a fraction of two integers.

(a) 1.5222---=1.52

Solution. We have

1.52 =1.540.02 + 0.002 + - - -
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(b) 0.126126 - -- = 0.126

Solution. We have
0.126 = 0.126 + 0.000126 + - - -
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3. For each sequence {a,};2,,, given below, determine
(i) whether the sequence {a,};2,, converges or diverges. If the sequence converges, find its limit.

o0
(ii) whether the series Y a, converges or diverges. If the series converges, find its sum if possible.
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Solution. (i) The limit of this sequence is an indeterminate power 1°°. We can write it in exponential

n=ngo

form N
4
lim (1 + ) = lim en(1+3),
n—o0o n n—o0o
We can now compute the limit of the exponent using L’Hépital’s Rule as follows:
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Therefore
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lim em(1+3) = et
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4 n
so | the sequence { (1 + > } converges to the limit e* |
n
n

(ii) Since the limit of the general term (1 + 2)" is not zero, the Term Divergence Test tells us that

o0 4 n
Z (1 + > diverges |
n=1 n
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Solution. (i) The limit of this sequence is an indeterminate form oo — co. We can resolve the
indeterminate by multiplying by the conjugate in the numerator and denominator:

i, (Ve 1=vin) = lim (Vi t —@'\/%ig

_ i _tl-n
n—oo \/n+14/n
-l
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=0.

So | the sequence {\/n +1-— ﬁ}n converges to the limit 0 |

(ii) To determine if the series converges or diverges, we can use the fact that this series is telescoping.
The partial sums can be expressed as follows

SN:(\ff\@)+(f—xﬁ)+m+(\/Wf\/N)
= VN +1.

Therefore, Sy — oo as N — oo, and

Z (Vn+1—+/n) diverges|
n=0
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Solution. (i) This is a geometric sequence of common ratio r = e~!, which satisfies |r| < 1. So

lim e™" =0,
n—oo

and | the sequence {e*"}n converges to the limit 0|




(i) Since |r| = e7! < 1, the geometric series
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and we can evaluate the sum as
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Solution. (i) The limit of this sequence is an indeterminate form 22. We can use L’Hopital’s Rule

to compute the limit:
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the sequence {

(ii) Since the limit of the general term % is not zero, the Term Divergence Test tells us that
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4. Let f(x) = Z 23357““ Find the values of = for which the series converges and find the sum of the series

n=0
when it converges.

Solution. Observe that f(z) is a geometric

series of common ratio 7 = . So it will converge when

Irl<1 = ’%‘<1 = |z <5 = [-5 <z <5]|

When —5 < x < 5, the sum of the series is

f(z)

first term

1 — (common ratio)
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