Section 10.2: Infinite Series - Worksheet Solutions

1. Each of the series $\sum_{n=n_{0}}^{\infty} a_{n}$ below is either geometric or telescoping. For each series, find a formula for the partial sum $S_{N}=\sum_{n=n_{0}}^{N} a_{n}$, then determine if the series converges or diverges, and compute its sum if it does.
(a) $\sum_{n=4}^{\infty} 2^{n} 3^{-n}$

Solution. This is a geometric series of common ratio $r=\frac{2}{3}$. The partial sum is

$$
S_{N}=\frac{(\text { first term })-(\text { term after last })}{1-(\text { common ratio })}=\frac{\left(\frac{2}{3}\right)^{4}-\left(\frac{2}{3}\right)^{N+1}}{1-\frac{2}{3}}=\frac{16}{27}-\frac{2^{N+1}}{3^{N}}
$$

Since $|r|<1$, the series converges. We can compute the sum two ways: either taking the limit of S_{N} when $N \rightarrow \infty$ or using the formula for the sum of a convergent geometric series. Either way, we get

$$
\sum_{n=4}^{\infty} 2^{n} 3^{-n}=\frac{16}{27}
$$

(b) $\sum_{n=0}^{\infty}\left(\frac{4}{2 n+1}-\frac{4}{2 n+5}\right)$

Solution. This is a telescoping series. We have

$$
\begin{aligned}
S_{N} & =\left(\frac{4}{1}-\frac{4}{5}\right)+\left(\frac{4}{3}-\frac{4}{7}\right)+\left(\frac{4}{5}-\frac{4}{9}\right)+\cdots+\left(\frac{4}{2 N-1}-\frac{4}{2 N+3}\right)+\left(\frac{4}{2 N+1}-\frac{4}{2 N+5}\right) \\
& =\frac{4}{1}+\frac{4}{3}-\frac{4}{2 N+3}-\frac{4}{2 N+5} \\
& =\frac{16}{3}-\frac{4}{2 N+3}-\frac{4}{2 N+5}
\end{aligned}
$$

So

$$
\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(\frac{16}{3}-\frac{4}{2 N+3}-\frac{4}{2 N+5}\right)=\frac{16}{3}-0-0=\frac{16}{3}
$$

Therefore, the series converges and

$$
\sum_{n=0}^{\infty}\left(\frac{4}{2 n+1}-\frac{4}{2 n+5}\right)=\frac{16}{3}
$$

(c) $\sum_{n=0}^{\infty} \frac{1-3 \cdot 4^{2 n}}{5^{n-1}}$

Solution. We have

$$
\frac{1-3 \cdot 4^{2 n}}{5^{n-1}}=5\left(\frac{1}{5}\right)^{n}-15\left(\frac{16}{5}\right)^{n}
$$

Thus, using the formula for geometric sums, we get

$$
\begin{aligned}
S_{N} & =5 \sum_{n=0}^{N}\left(\frac{1}{5}\right)^{n}-15 \sum_{n=0}^{N}\left(\frac{16}{5}\right)^{n} \\
& =5 \frac{1-\frac{1}{5^{N+1}}}{1-\frac{1}{5}}-15 \frac{1-\left(\frac{16}{5}\right)^{N+1}}{1-\frac{16}{5}} \\
& =\frac{25}{4}\left(1-\frac{1}{5^{N+1}}\right)+\frac{75}{11}\left(1-\left(\frac{16}{5}\right)^{N+1}\right)
\end{aligned}
$$

We have $\frac{1}{5^{N+1}} \rightarrow 0$ and $\left(\frac{16}{5}\right)^{N+1} \rightarrow \infty$ when $N \rightarrow \infty$. Therefore $S_{N} \rightarrow-\infty$ as $N \rightarrow \infty$, so

$$
\sum_{n=0}^{\infty} \frac{1-3 \cdot 4^{2 n}}{5^{n-1}} \text { diverges }
$$

(d) $\sum_{n=3}^{\infty} \ln \left(\frac{3 n+1}{3 n+4}\right)$

Solution. After rewriting the general term as

$$
\ln \left(\frac{3 n+1}{3 n+4}\right)=\ln (3 n+1)-\ln (3 n+4)
$$

we see that this a telescoping series. We have

$$
\begin{aligned}
S_{N} & =\sum_{n=3}^{N}(\ln (3 n+1)-\ln (3 n+4)) \\
& =(\ln (10)-\ln (13))+(\ln (13)-\ln (16))+\cdots+(\ln (3 N-2)-\ln (3 N+1))+(\ln (3 N+1)-\ln (3 N+4)) \\
& =\ln (10)-\ln (3 N+4)
\end{aligned}
$$

Since $\ln (3 N+4) \rightarrow \infty$ when $N \rightarrow \infty$, we deduce that $S_{N} \rightarrow-\infty$ when $N \rightarrow \infty$. Thus

$$
\sum_{n=3}^{\infty} \ln \left(\frac{3 n+1}{3 n+4}\right) \text { diverges }
$$

(e) $\sum_{n=1}^{\infty} 5 \cdot 3^{1-2 n}$

Solution. We can rewrite the general term as

$$
5 \cdot 3^{1-2 n}=\frac{15}{9^{n}}
$$

So this is a geometric with common ratio $r=\frac{1}{9}$. The partial sum is

$$
S_{N}=\frac{\frac{15}{81}-\frac{15}{9^{N+1}}}{1-\frac{1}{9}}=\frac{5}{24}\left(1-\frac{1}{9^{N}}\right) .
$$

Since $|r|<1$, the series converges. We can compute the sum two ways: either taking the limit of S_{N} when $N \rightarrow \infty$ or using the formula for the sum of a convergent geometric series. Either way, we get

$$
\sum_{n=1}^{\infty} 5 \cdot 3^{1-2 n}=\frac{5}{24}
$$

(f) $\sum_{n=1}^{\infty}\left(\tan ^{-1}(n+1)-\tan ^{-1}(n)\right)$

Solution. This is a telescoping series. We have

$$
\begin{aligned}
S_{N} & =\left(\tan ^{-1}(2)-\tan ^{-1}(1)\right)+\left(\tan ^{-1}(3)-\tan ^{-1}(2)\right)+\cdots+\left(\tan ^{-1}(N+1)-\tan ^{-1}(N)\right) \\
& =-\tan ^{-1}(1)+\tan ^{-1}(N+1) \\
& =-\frac{\pi}{4}+\tan ^{-1}(N+1)
\end{aligned}
$$

Since $\lim _{N \rightarrow \infty} \tan ^{-1}(N+1)=\frac{\pi}{2}$, we have

$$
\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(-\frac{\pi}{4}+\tan ^{-1}(N+1)\right)=-\frac{\pi}{4}+\frac{\pi}{2}=\frac{\pi}{4}
$$

So the series converges and

$$
\sum_{n=1}^{\infty}\left(\tan ^{-1}(n+1)-\tan ^{-1}(n)\right)=\frac{\pi}{4}
$$

2. Use geometric series to express the repeating decimals below as a fraction of two integers.
(a) $1.5222 \cdots=1.5 \overline{2}$

Solution. We have

$$
\begin{aligned}
1.5 \overline{2} & =1.5+0.02+0.002+\cdots \\
& =\frac{15}{10}+\frac{2}{100}+\frac{2}{1000}+\cdots \\
& =\frac{3}{2}+\sum_{n=2}^{\infty} \frac{2}{10^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{2}+\frac{\frac{2}{100}}{1-\frac{1}{10}} \\
& =\frac{3}{2}+\frac{10}{9} \cdot \frac{1}{50} \\
& =\frac{137}{90}
\end{aligned}
$$

(b) $0.126126 \cdots=0 . \overline{126}$

Solution. We have

$$
\begin{aligned}
0 . \overline{126} & =0.126+0.000126+\cdots \\
& =\frac{126}{1000}+\frac{126}{1000000}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{126}{1000^{n}} \\
& =\frac{\frac{126}{1000}}{1-\frac{1}{1000}} \\
& =\frac{1000}{999} \cdot \frac{126}{1000} \\
& =\frac{14}{111}
\end{aligned}
$$

3. For each sequence $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ given below, determine
(i) whether the sequence $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ converges or diverges. If the sequence converges, find its limit.
(ii) whether the series $\sum_{n=n_{0}}^{\infty} a_{n}$ converges or diverges. If the series converges, find its sum if possible.
(a) $\left\{\left(1+\frac{4}{n}\right)^{n}\right\}_{n=1}^{\infty}$

Solution. (i) The limit of this sequence is an indeterminate power 1^{∞}. We can write it in exponential form

$$
\lim _{n \rightarrow \infty}\left(1+\frac{4}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{4}{n}\right)}
$$

We can now compute the limit of the exponent using L'Hôpital's Rule as follows:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{4}{n}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{4}{x}\right)}{\frac{1}{x}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{-\frac{4}{x^{2}} \cdot \frac{1}{1+\frac{4}{x}}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{4}{1+\frac{4}{x}} \\
& =4
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{4}{n}\right)}=e^{4}
$$

so the sequence $\left\{\left(1+\frac{4}{n}\right)^{n}\right\}_{n}$ converges to the limit e^{4}.
(ii) Since the limit of the general term $\left(1+\frac{4}{n}\right)^{n}$ is not zero, the Term Divergence Test tells us that

$$
\sum_{n=1}^{\infty}\left(1+\frac{4}{n}\right)^{n} \text { diverges }
$$

(b) $\{\sqrt{n+1}-\sqrt{n}\}_{n=0}^{\infty}$

Solution. (i) The limit of this sequence is an indeterminate form $\infty-\infty$. We can resolve the indeterminate by multiplying by the conjugate in the numerator and denominator:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n}) & =\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n}) \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n+1-n}{\sqrt{n+1}+\sqrt{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}+\sqrt{n}} \\
& =0
\end{aligned}
$$

So the sequence $\{\sqrt{n+1}-\sqrt{n}\}_{n}$ converges to the limit 0 .
(ii) To determine if the series converges or diverges, we can use the fact that this series is telescoping. The partial sums can be expressed as follows

$$
\begin{aligned}
S_{N} & =(\sqrt{1}-\sqrt{0})+(\sqrt{2}-\sqrt{1})+\cdots+(\sqrt{N+1}-\sqrt{N}) \\
& =\sqrt{N+1}
\end{aligned}
$$

Therefore, $S_{N} \rightarrow \infty$ as $N \rightarrow \infty$, and

$$
\sum_{n=0}^{\infty}(\sqrt{n+1}-\sqrt{n}) \text { diverges }
$$

(c) $\left\{e^{-n}\right\}_{n=0}^{\infty}$

Solution. (i) This is a geometric sequence of common ratio $r=e^{-1}$, which satisfies $|r|<1$. So

$$
\lim _{n \rightarrow \infty} e^{-n}=0
$$

and the sequence $\left\{e^{-n}\right\}_{n}$ converges to the limit 0 .
(ii) Since $|r|=e^{-1}<1$, the geometric series $\sum_{n=0}^{\infty} e^{-n}$ converges and we can evaluate the sum as

$$
\sum_{n=0}^{\infty} e^{-n}=\frac{1}{1-e^{-1}}
$$

(d) $\left\{\frac{e^{5 n}}{n^{3 / 2}}\right\}_{n=1}^{\infty}$

Solution. (i) The limit of this sequence is an indeterminate form $\frac{\infty}{\infty}$. We can use L'Hôpital's Rule to compute the limit:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{e^{5 n}}{n^{3 / 2}} & =\lim _{x \rightarrow \infty} \frac{e^{5 x}}{x^{3 / 2}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{5 e^{5 x}}{\frac{3}{2} x^{1 / 2}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{25 e^{5 x}}{\frac{3}{4} x^{-1 / 2}} \\
& \stackrel{\infty}{\infty} \\
& =\lim _{x \rightarrow \infty} \frac{100}{3} x^{1 / 2} e^{5 x} \\
& =\infty
\end{aligned}
$$

So the sequence $\left\{\frac{e^{5 n}}{n^{3 / 2}}\right\}_{n}$ diverges.
(ii) Since the limit of the general term $\frac{e^{5 n}}{n^{3 / 2}}$ is not zero, the Term Divergence Test tells us that

$$
\sum_{n=1}^{\infty} \frac{e^{5 n}}{n^{3 / 2}} \text { diverges }
$$

4. Let $f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{2 \cdot 5^{n+1}}$. Find the values of x for which the series converges and find the sum of the series when it converges.

Solution. Observe that $f(x)$ is a geometric series of common ratio $r=\frac{x}{5}$. So it will converge when

$$
|r|<1 \Rightarrow\left|\frac{x}{5}\right|<1 \Rightarrow|x|<5 \Rightarrow-5<x<5 .
$$

When $-5<x<5$, the sum of the series is

$$
\begin{aligned}
f(x) & =\frac{\text { first term }}{1-(\text { common ratio })} \\
& =\frac{\frac{1}{10}}{1-\frac{x}{5}} \\
& =\frac{1}{10-2 x}
\end{aligned}
$$

