Section 10.3
 Learning Goals

The Integral Test

Learning Goal	Homework Problems
10.3.1 Determine whether a series with all positive terms diverges or converges using the integral test	$10.3: 5,6,7,8,15,21,25,37,43,61,62$

Conceptual introduction: it is in general very difficult to calculate the sum of a series $\sum_{n=n_{0}}^{\infty} a_{n}$. We have learned how to do it for telescoping and geometric series. In most other cases, we will just try to determine if the series converges or diverges. The Integral Test helps determining convergence for some series.

Integral Test: suppose that $a_{n}=f(n)$, where f is a positive, continuous, decreasing function. Then:

If $\int_{n_{0}}^{\infty} f(x) d x$ converges, then $\sum_{n=n_{0}}^{\infty} a_{n}$ converges.
If $\int_{n_{0}}^{\infty} f(x) d x$ diverges, then $\sum_{n=n_{0}}^{\infty} a_{n}$ diverges.

Intuition: $\sum_{n=n_{0}}^{\infty} a_{n}$ represents the area of rectangles of width 1 under the graph of f :

We have the inequality:

$$
\sum_{n=n_{0}+1}^{\infty} a_{n} \leqslant \int_{n_{0}}^{\infty} f(x) d x
$$

So if the integral is finite, then so is the series.

A similar reasoning with left-handpoint sums would show that if the integral is infinite, then so is the series.

Examples: 1) Determine if $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges or diverges.
Integral Test: $f(x)=x e^{-x^{2}}$ is positive, continuous on $[1, \infty)$

$$
f^{\prime}(x)=e^{-x^{2}}-2 x^{2} e^{-x^{2}}=\left(1-2 x^{2}\right) e^{-x^{2}}<0 \text { on }[1, \infty)
$$

so f is decreasing on $[1, \infty)$
\Rightarrow we can use the integral test.

$$
\begin{aligned}
& \int_{1}^{\infty} x e^{-x^{2}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} x e^{-x^{2}} d x=\lim _{b \rightarrow \infty}\left[-\frac{1}{2} e^{-x^{2}}\right]_{1}^{b} \\
& =\lim _{b \rightarrow \infty}\left(-\frac{e^{-b^{2}}}{2}+\frac{e}{2}\right)=\frac{e}{2} \text { so } \int_{1}^{\infty} x e^{-x^{2}} d x \text { converges. }
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges as well.
2) Determine if $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$ converges or diverges.

Integral Test: $f(x)=\frac{1}{x \ln (x)}$ is positive, continuous on $[3, \infty)$

$$
f^{\prime}(x)=-\frac{\ln (x)+1}{(x \ln (x))^{2}}<0 \text { on }[3, \infty)
$$

so f is decreasing on $[3, \infty)$.
\Rightarrow we can use the integral test.

$$
\begin{aligned}
\int_{3}^{\infty} \frac{d x}{x \ln (x)} & =\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{d x}{x \ln (x)} u \\
& =\lim _{b \rightarrow \infty} \int_{\ln (3)}^{\ln (b)} \frac{d u}{u} \\
& =\int_{\ln (3)}^{\infty} \frac{d u}{u} \quad \text { diverges (} p \text {-integral with } p=1 \text {). }
\end{aligned}
$$

Therefore, $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$ diverges as well.
3) Determine if $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges or diverges.

Integral Test: $f(x)=\frac{1}{x^{2}}$ is positive, continuous on $[1, \infty)$

$$
f^{\prime}(x)=-\frac{2}{x^{3}}<0<0 \text { on }[1, \infty)
$$

so f is decreasing on $[1, \infty)$
\Rightarrow we can use the integral test.
$\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges (p-integral with $p=2>1$).
Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges as well.
4. The Integral Test does not say that $\int_{1}^{\infty} \frac{d x}{x^{2}}, \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ are equal, just that they both converge.

$$
\int_{1}^{\infty} \frac{d x}{x^{2}}=1 \quad \text { but } \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \text {. }
$$

More generally, we have the following results for p-series

$$
\sum_{n=n_{0}}^{\infty} \frac{1}{n^{p}} \quad \begin{aligned}
& \text { converges if } p>1 \\
& \text { diverges if } p \leqslant 1
\end{aligned} \quad \text { (Integral Test }+p \text {-integrals). }
$$

So $\quad \sum_{n=1}^{\infty} n^{-37 / 36}=\sum_{n=1}^{\infty} \frac{1}{n^{37 / 36}}$ converges since $\frac{37}{36}>1$.
$\sum_{n=1}^{\infty} \frac{1}{n^{\ln (2)}}$ diverges since $\ln (2) \simeq 0.7 \leqslant 1$.

Practice: determine if the following series converge or diverge, and find the value of the sum when possible. (The Integral Test is not required/possible for all.)

1) $\sum_{n=0}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
2) $\sum_{n=1}^{\infty} \frac{1-2^{2 n}}{5^{n}}$
3) $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$
4) $\sum_{n=0}^{\infty}\left(\frac{1}{2 n+3}-\frac{1}{2 n+5}\right)$
5) $\sum_{n=1}^{\infty} \frac{2 n+1}{\sqrt{n^{2}+1}}$
6) $\sum_{n=2}^{\infty} n e^{-n}$

Solutions:

1) Integral Test: $f(x)=\frac{e^{x}}{1+e^{2 x}}$ is positive, continuous on $[0, \infty)$

$$
f^{\prime}(x)=\frac{e^{x}\left(1+e^{2 x}\right)-e^{x}\left(2 e^{2 x}\right)}{\left(1+e^{2 x}\right)^{2}}=\frac{e^{x}\left(1-e^{2 x}\right)}{\left(1+e^{2 x}\right)^{2}}<0 \text { on }(0, \infty)
$$

So f is decreasing on $[0, \infty)$.
So we can use the integral test.

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{e^{x}}{1+e^{2 x}} d x=\lim _{b \rightarrow \infty} \int_{1}^{e^{b}} \frac{d u}{1+u^{2}} \\
& =\lim _{b \rightarrow \infty}\left[\tan ^{-1}(u)\right]_{1}^{e^{b}}=\lim _{b \rightarrow \infty}\left(\tan ^{-1}\left(e^{b}\right)-\frac{\pi}{4}\right)=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} .
\end{aligned}
$$

So $\quad \int_{0}^{\infty} \frac{e^{x}}{1+e^{2 x}} d x$ converges.
Therefore, $\sum_{n=0}^{\infty} \frac{e^{n}}{1+e^{2 n}}$ converges as well.
2) $\sum_{n=1}^{\infty} \frac{1-2^{2 n}}{5^{n}}=\sum_{n=1}^{\infty}\left[\left(\frac{1}{5}\right)^{n}-\left(\frac{4}{5}\right)^{n}\right]$ converges $(\underset{\omega . \mid \text { common ratio } \mid<1}{\text { geometric series }}$ w. | common ratios| <1)

$$
\begin{aligned}
& =\frac{1 / 5}{1-1 / 5}-\frac{4 / 5}{1-4 / 5} \\
& =\frac{1}{4}-4=-\frac{15}{4}
\end{aligned}
$$

3) Integral test: $f(x)=\frac{1}{x \sqrt{\ln (x)}}$ positive, continuous on $[2, \infty)$.

$$
\begin{aligned}
f^{\prime}(x)=-\frac{\sqrt{\ln (x)}+x \frac{1}{x} \cdot \frac{1}{2} \ln (x)^{-1 / 2}}{x^{2} \ln (x)} & <0 \text { on }[2, \infty) \\
& \Rightarrow f \text { decreasing on }[2, \infty) .
\end{aligned}
$$

So we can use the integral test.

$$
\begin{aligned}
& \int_{2}^{\infty} \frac{d x}{x \sqrt{\ln (x)}}=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{d x}{x \sqrt{\ln (x)}}=\lim _{b \rightarrow \infty} \int_{\ln (2)}^{\ln (b)} \frac{d u}{\sqrt{u}} \\
& =\int_{\ln (2)}^{\infty} \frac{d u}{\sqrt{u}}, \text { which diverges }\left(p \text {-integral, } p=\frac{1}{2} \leq 1\right) .
\end{aligned}
$$

Therefore, $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln (n)}}$ diverges as well.
4) $\sum_{n=0}^{\infty}\left(\frac{1}{2 n+3}-\frac{1}{2 n+5}\right)$ is a telescoping series.

$$
\begin{aligned}
S_{N} & =\sum_{n=0}^{N}\left(\frac{1}{2 n+3}-\frac{1}{2 n+5}\right) \\
& =\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+\cdots+\left(\frac{1}{2 N+1}-\frac{1}{2 N+3}\right)+\left(\frac{1}{2 N+3}-\frac{1}{2 N+5}\right) \\
& =\frac{1}{3}-\frac{1}{2 N+5}
\end{aligned}
$$

We have $\sum_{n=0}^{\infty}\left(\frac{1}{2 n+3}-\frac{1}{2 n+5}\right)=\lim _{N \rightarrow \infty} S_{N}=\frac{1}{3}$, so the series converges.
5) Observe that $\lim _{n \rightarrow \infty} \frac{2 n+1}{\sqrt{n^{2}+1}} \cdot \frac{\frac{1}{n}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{2+1 / n}{\sqrt{1+1 / n^{2}}}=2$

Since the general term does not converge to 0 , we deduce that $\sum_{n=1}^{\infty} \frac{2 n+1}{\sqrt{n^{2}+1}}$ diverges by the Term Divergence Test.
6) Integral test: $f(x)=x e^{-x}$ positive, continuous on $[2, \infty)$.

$$
f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}<0 \text { on }[2, \infty)
$$

$\Rightarrow f$ decreasing on $[2, \infty)$.
So we can use the integral test.

$$
\left.\begin{array}{rl}
\int_{2}^{\infty} x e^{-x} d x & \left.=\lim _{b \rightarrow \infty} \int_{2}^{b} \frac{x e^{-x} d x}{u d v} \quad \begin{array}{l}
\text { ISP }
\end{array} \begin{array}{l}
u=x \\
d u=d x
\end{array} \right\rvert\, d v=e^{-x} d x \\
v=-e^{-x}
\end{array}\right]
$$

We have $\lim _{b \rightarrow \infty} b e^{-b}=\lim _{b \rightarrow \infty} \frac{b}{e^{b}} \stackrel{L^{\prime \prime} /}{\stackrel{\infty}{\infty}} \lim _{b \rightarrow \infty} \frac{1}{e^{b}}=0$.
So $\int_{2}^{\infty} x e^{-x} d x=2 e^{-2}+e^{-2}$, so it converges.
Therefore, $\sum_{n=2}^{\infty} n e^{-n}$ converges as well.

