Learning Goals

L	earning (Goal			ries diverges or converges 10.					rk Prob	lems							
ı			Direct or the Limit Comparison Tests with a ne whether a series diverges or converges Direct or the Limit Comparison Tests with a						10.4: 1,4,5,10, 18,23,24, 34,45,47,56									
ι	10.4.2 Det using eitho geometric	er the D	whether irect or	a series	s diverge it Comp	es or con parison 7	nverges Fests wi	th a	10.4: 6,12,13,19									

Conceptual introduction: for improper integrals, we learned the Direct Comparison Test and Limit Comparison Test to test for convergence. We are now going to learn similar tests for series. (They are almost the same.) ! These test only work for series with <u>non-negative</u> terms Direct Comparison Test: assume that of an for all n. If $\sum_{n=n_0}^{\infty} b_n$ converges, then $\sum_{n=n_0}^{\infty} a_n$ converges. If $\sum_{n=n_0}^{\infty} a_n$ diverges, then $\sum_{n=n_0}^{\infty} b_n$ diverges. Examples: 1) Does the series $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ converge or diverge? Observe that $0 \leq \frac{1}{n2^n} \leq \frac{1}{2^n}$ for $n \geq 1$. We know that $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges (geometric series with common ratio $r = \frac{1}{2}$ and |r| < 1). By the DCT, $\sum_{n=1}^{\infty} \frac{1}{n2^n}$ converges $\frac{\text{Remark}:}{\text{does not tell us anything since } \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n$

8) Does the series
$$\sum_{n=1}^{\infty} \frac{\cos(3n)^2 + 4n}{n^{4/3}}$$
 converge or diverge?
We have $\cos(3n)^2 \ge 0$ so $\frac{\cos(3n)^2 + 4n}{n^{4/3}} \ge \frac{4n}{n^{4/3}}$
 $\frac{\cos(3n)^2 + 4n}{n^{4/3}} \ge \frac{4}{n^{1/3}} \ge 0$
We know that $\sum_{n=1}^{\infty} \frac{4}{n^{1/3}}$ diverges $(p - series with $p = \frac{1}{3} \le 1)$.
So by the DCT, $\sum_{n=1}^{\infty} \frac{\cos(3n)^2 + 4n}{n^{4/3}}$ diverges.
3) Does the series $\sum_{n=2}^{\infty} \frac{n^2}{n^2 - n}$ converge or diverge?
We have $o < n^3 - n < n^3$ for all $n \ge 2$.
 $\sum_{n=2}^{\infty} \frac{n^2}{n^3 - n} \ge \frac{1}{n} = 0$ for all $n \ge 2$.
We know that $\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$ diverges $(p - series with $p = 1)$.
So by the DCT, $\sum_{n=2}^{\infty} \frac{n^3}{n^3 - n} = 0$ for all $n \ge 2$.
So $\frac{n^2}{n^2 - n} \ge \frac{1}{n} = 0$ for all $n \ge 2$.
So $\frac{n^2}{n^2 - n} = \frac{1}{n^2 - n} = 0$ for all $n \ge 2$.
So $\frac{n^2}{n^2 - n} = \frac{1}{n^2 - n} = 0$ for all $n \ge 2$.
So $\frac{n^2}{n^2 - n} = \frac{1}{n^2 - n} = 0$ for all $n \ge 2$.
So $\frac{n^2}{n^2 - n} = \frac{1}{n^2 - n} = 0$ for all $n \ge 2$.
So by the DCT, $\sum_{n=2}^{\infty} \frac{n^3}{n^2 - n} = \frac{1}{n^2 - n} = 0$.$$

Limit Comparison Test: suppose that
$$a_n \ge 0$$
, $b_n \ge 0$ and
let $L = \lim_{n \to \infty} \frac{a_n}{b_n}$
Tf $0 \le L \le \infty$, then $\sum_{n=n_0}^{\infty} a_n$ and $\sum_{n=n_0}^{\infty} b_n$ either both converge
or both diverge.
Tf $L = 0$ and $\sum_{n=n_0}^{\infty} b_n$ converges, then $\sum_{n=n_0}^{\infty} a_n$ converges.
Tf $L = 0$ and $\sum_{n=n_0}^{\infty} b_n$ diverges, then $\sum_{n=n_0}^{\infty} a_n$ diverges.
Tf $L = 0$ and $\sum_{n=n_0}^{\infty} b_n$ diverges, then $\sum_{n=n_0}^{\infty} a_n$ diverges.
Examples: 1) Does $\sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^2+4}}$ converge or diverge ?
LCT: use find a reference series to compare to by keeping
only the dominant terms:
 $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+4}}$ diverges $(p = \sec i)$ with $p = \frac{a}{5} \le 1)$.
L = $\lim_{n \to \infty} \frac{2n}{\sqrt{n^2+4}}$ series we are testing for
 $L = \lim_{n \to \infty} \frac{2n^{4/5}}{\sqrt{n^2+4}} = \lim_{n \to \infty} \frac{2}{\sqrt{1+6/4^{4}}}$
Since $0 \le L \le a$ and $\sum_{n=1}^{\infty} \frac{1}{n^{4/5}}$ diverges, we conclude that
 $\sum_{n=1}^{\infty} \frac{2n}{\sqrt{n^2+4}}$ diverges.

2) Does
$$\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n}$$
 converge or diverge ?
Intuition: $\frac{\sin(\pi)}{n} \approx \pi^{n}$ for π close to 0. ($\lim_{n \to 0} \frac{\sin(\pi)}{\pi} = 1$)
se $\frac{\sin(\frac{1}{n})}{n} \approx \frac{1}{n}$ for n large
 $= \frac{\sin(\frac{1}{n})}{n} \approx \frac{1}{n^{2}}$ for n large.
We use the LCT with $b_{n} = \frac{1}{n^{2}}$.
L = $\lim_{n \to \infty} \frac{\sin(\frac{1}{n})}{\frac{1}{n^{2}}} = \lim_{n \to \infty} \frac{\sin(\frac{1}{n})}{\frac{1}{n}} = 1$ (or use L'Hopital's).
 $\sum_{n=1}^{\infty} \frac{1}{n}$ converges (p. series with $p = 2 > 1$).
So $\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{n}$ converges or diverge ?
We compare with $\sum_{n=1}^{\infty} (\frac{3}{n})^{2}$, using the LCT.
 $\lim_{n \to \infty} \frac{3^{2}}{n^{2}+1} = \lim_{n \to \infty} \frac{2^{2}}{n^{2}+1} = \lim_{n \to \infty} \frac{1}{1+2^{2}} = 1 > 0$.

Practice: use a comparison test to determine if the following series converge or diverge. $1) \sum_{n=1}^{\infty} \frac{\ln(n)}{n} \qquad 2) \sum_{n=1}^{\infty} \frac{\ln(n)}{n^2} \qquad 3) \sum_{n=3}^{\infty} \frac{n^2 + 4\cos(n)^2}{n^3 + 5n^2 + 2}$ 4) $\sum_{n=1}^{\infty} \frac{24\pi + 3}{(n^8 + n^6 + 1)^{1/3}}$ 5) $\sum_{n=1}^{\infty} \frac{2^{3n}}{5^n - 3^n}$ 6) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n \ln(n)}}$ Solutions: 1) DCT: $\frac{\ln(n)}{n} = \frac{\ln(2)}{n} = 0$ for n = 2. Ne know that $\sum_{n=2}^{\infty} \frac{\ln(2)}{n}$ diverges (p-series with p=1). So $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ diverges as well. 2) Intuition: $\frac{\ln(n)}{n^2}$ will be dominated by any $\frac{1}{n^p}$ with p < 2. So if we compare with $\frac{1}{r^{p}}$ with 1 , we willbe able to prove convergence. LCT with $b_n = \frac{1}{n^{3/2}}$ works with any exponent in (1,2). $\lim_{n \to \infty} \frac{\ln(n)}{n^2} = \lim_{n \to \infty} \frac{\ln(n)}{n^{1/2}} = \lim_{x \to \infty} \frac{\ln(x)}{x^{1/2}} \lim_{x \to \infty} \frac{1}{x^{1/2}} = \lim_{x \to \infty} \frac{1}{24x} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0.$ • $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$ converges (p-series with $p = \frac{3}{2} > 1$) So $\sum_{n=1}^{\infty} \ln(n)$ converges .

3) Intuition:
$$\frac{n^{2} + 4 \cos(n)^{2}}{n^{2} + 5n^{2} + 2} \approx \frac{n^{2}}{n^{3}} = \frac{1}{n}$$
 when $n \log e$.
LCT with $b_{n} = \frac{1}{n}$:
 $\frac{1}{16n^{2} + 5n^{2} + 2}$ $\frac{1}{n^{2} + 5n^{2} + 2} \approx \frac{n^{2} + 4 \cos(n)^{2}}{n^{2} + 5n^{2} + 2}$ $\frac{1}{\sqrt{n^{2}}} = \lim_{n \to \infty} \frac{1 + 8 \cos(n)^{2}/n^{2}}{n^{2} + 5n^{2} + 2}$ $\frac{1}{\sqrt{n^{2}}} = \lim_{n \to \infty} \frac{1 + 8 \cos(n)^{2}/n^{2}}{n^{2} + 5n^{2} + 2}$ $\frac{1}{\sqrt{n^{2}}} = \lim_{n \to \infty} \frac{1 + 8 \cos(n)^{2}/n^{2}}{n^{2} + 5n^{2} + 2}$ $\frac{1}{\sqrt{n^{2}}} = \lim_{n \to \infty} \frac{1 + 8 \cos(n)^{2}/n^{2}}{n^{2} + 5n^{2} + 2}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1 + 0}{1 + 0 + 0}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{n^{2} + 6 \cos(n)^{2}}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{n^{2}}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}}$ $\frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}} = \frac{1}{\sqrt{n^{2}}}$

5) DCT: We have
$$\frac{1}{2^{3n} + n^2} = 8^n + n^2 \ge 8^n$$

 $8^n - 3^n \le 6^n$
 $\Rightarrow \frac{3^{3n} + n^2}{5^n - 3^n} \ge \frac{8^n}{5^n} = \left(\frac{8}{5}\right)^n \ge 0$
 $\sum_{n=1}^{\infty} \left(\frac{8}{5}\right)^n$ diverges (geometric series with $r = \frac{8}{5}$, $1n121$)
So $\left[\sum_{n=1}^{\infty} \frac{4^{3n} + n^2}{5^n - 3^n}\right]$ diverges
6) LCT with $b_n = \frac{1}{n^{3/4}}$ any exponent in $(\frac{1}{2^n})$ will work
 $e_{1nn} \frac{1}{n^{3/4}} = \lim_{n \to \infty} \frac{n^{3/4}}{1n \ln(n)} = \lim_{n \to \infty} \frac{n^{1/6}}{1n(n)} = \lim_{n \to \infty} \frac{x^{1/6}}{1n(x)}$
 $\sum_{n=2}^{\infty} \frac{1}{n^{3/4}}$ diverges $(p - series with p = \frac{3}{4} \le 1)$.
So $\left[\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}\right]$ diverges $(p - series with p = \frac{3}{4} \le 1)$.