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Section 10.4: Comparison Tests - Worksheet Solutions

Determine if the series below converge or diverge. Make sure to clearly label and justify the use of any
convergence test used. Note: some of these problems require convergence tests from previous sections.

1.

∞∑
n=2

(5
√
n− 2)3

3n2 − 2n+ 4

Solution. We use the LCT with

∞∑
n=2

bn =

∞∑
n=2

n3/2

n2
=

∞∑
n=2

1

n1/2
, which diverges as a p-series with

p = 1
2 ⩽ 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

(5
√
n−2)3

3n2−2n+4
1

n1/2

= lim
n→∞

(5
√
n− 2)3n1/2

3n2 − 2n+ 4
·

1
n2

1
n2

= lim
n→∞

(5− 2
n1/2 )

3

3− 2
n + 4

n2

=
125

3
.

Since 0 < L < ∞ and

∞∑
n=2

1

n1/2
diverges, we conclude that

∞∑
n=2

(5
√
n− 2)3

3n2 − 2n+ 4
diverges .

2.

∞∑
n=1

3n

n5n

Solution. We use the DCT. Observe that for any n ⩾ 1, we have

0 <
1

n
⩽ 1 ⇒ 0 <

3n

n5n
⩽

3n

5n
.

Furthermore,

∞∑
n=1

3n

5n
=

∞∑
n=1

(
3

5

)n

converges since it is a geometric series with common ration r = 3
5

satisfying |r| < 1. Therefore,

∞∑
n=1

3n

n5n
converges .

Remark. The LCT with bn = 3n

5n would have worked equally well here since

� lim
n→∞

an

bn
= lim

n→∞
1
n = 0, and
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�

∞∑
n=1

3n

5n
converges.

3.

∞∑
n=0

22n

3n + 11n2

Solution. We use the LCT with

∞∑
n=0

bn =

∞∑
n=0

22n

3n
=

∞∑
n=2

(
4

3

)n

, which diverges as a geometric series

with common ratio r = 4
3 satisfying |r| ⩾ 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

22n

3n+11n2

22n

3n

= lim
n→∞

3n

3n + 11n2
·

1
3n

1
3n

= lim
n→∞

1

1− 11n2

3n

.

Using L’Hôpital’s Rule twice, we see that

lim
x→∞

11x2

3x
L′H
=
∞
∞

lim
x→∞

22x

ln(3)3x
L′H
=
∞
∞

lim
x→∞

22

ln(3)23x
= 0.

Thus,

L = lim
n→∞

1

1− 11n2

3n

=
1

1− 0
= 1.

Since 0 < L < ∞ and

∞∑
n=0

22n

3n
diverges, we conclude that

∞∑
n=0

22n

3n + 11n2
diverges .

Remark. We cannot use the DCT with bn = 22n

3n here since

0 < 3n < 3n + 11n2 ⇒ 0 <
22n

3n + 11n2
<

22n

3n
.

And knowing that the series of the “bigger terms” diverges does not tell us anything about the series of
the “smaller terms”.

4.

∞∑
n=3

ln(n)2√
n

Solution. We use the DCT. Observe that for n ⩾ 3, we have

0 < ln(3)2 < ln(n)2 ⇒ 0 <
ln(3)2√

n
<

ln(n)2√
n

.

Furthermore,

∞∑
n=3

ln(3)2√
n

= ln(3)2
∞∑

n=3

1√
n
diverges as a p-series with p = 1

2 ⩽ 1. Therefore,

∞∑
n=3

ln(n)2√
n

diverges .

Remark. We could have also used the LCT with bn = 1√
n
here, observing that
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� lim
n→∞

an

bn
= lim

n→∞
ln(n)2 = ∞, and

�

∞∑
n=3

1√
n

diverges.

5.

∞∑
n=2

1√
n ln(n)2

Solution. Intuitively, we expect this series to diverge because ln(n) grows slower than any power of n, so
the

√
n in the denominator dictates the behavior. But because the ln(n)2 in the denominator is making the

fraction smaller, any attempt to compare this series with

∞∑
n=2

1√
n

will be inconclusive. So instead, we will

try to compare with another p-series

∞∑
n=2

1

np
. Because we expect divergence, we will need to pick p ⩽ 1.

Because we need the denominator np to grow faster than
√
n ln(n)2, we will pick p > 1

2 . A suitable value of
p would therefore be p = 3

4 (but you can repeat the reasoning below with any value of p between 1
2 and 1).

We use the LCT with

∞∑
n=2

bn =

∞∑
n=2

1

n3/4
, which diverges as a p-series with p = 3

4 ⩽ 1.. We have

L = lim
n→∞

an
bn

= lim
n→∞

1√
n ln(n)2

1
n3/4

= lim
x→∞

x1/4

ln(x)2

L′H
=
∞
∞

lim
x→∞

x−3/4

8 ln(x)
x

= lim
x→∞

x1/4

8 ln(x)

L′H
=
∞
∞

lim
x→∞

x−3/4

32
x

= lim
x→∞

x1/4

32

= ∞

Since L = ∞ and

∞∑
n=2

1

n3/4
diverges, we conclude that

∞∑
n=2

1√
n ln(n)2

diverges .

6.

∞∑
n=2

1

n ln(n)2

Solution. We could try to use a comparison with a p-series smartly chosen as in the previous problem,
but we would not find a suitable exponent for a conclusive test. Instead, the Integral Test will come to
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the rescue here.

The function f(x) =
1

x ln(x)2
is continuous, positive and decreasing (because x ln(x)2 is increasing) on

[2,∞). Therefore, the Integral Test applies and we can test for convergence of the series by testing for
convergence of the corresponding improper integral.

To compute the integral, we use the substitution u = ln(x), which gives du = dx
x . This gives∫ ∞

2

dx

x ln(x)2
= lim

b→∞

∫ b

2

dx

x ln(x)2

= lim
b→∞

∫ ln(b)

ln(2)

du

u2

=

∫ ∞

ln(2)

du

u2
.

This last integral is a type I p-integral with p = 2 > 1, so it converges. Therefore,

∞∑
n=2

1

n ln(n)2
converges .

7.

∞∑
n=0

(
n

n+ 3

)n

Solution. The limit of the general term is an indeterminate form 1∞. If this indetermination resolves into
something not equal to zero, the Term Divergence Test will immediately tell us that the series diverges.
So let us try to compute the limit of the general term.

We can start by writing the power in exponential form

lim
n→∞

(
n

n+ 3

)n

= lim
n→∞

en ln( n
n+3 ).

We now compute the limit of the exponent using L’Hôpital’s Rule:

lim
n→∞

n ln

(
n

n+ 3

)
= lim

x→∞

ln(x)− ln(x+ 3)
1
x

L′H
=
0
0

1
x − 1

x+3

− 1
x2

= lim
x→∞

−x2 (x+ 3)− x

x(x+ 3)

= lim
x→∞

− 3x

x+ 3
·

1
x
1
x

= lim
x→∞

− 3

1 + 3/x

= −3.

So
lim
n→∞

en ln( n
n+3 ) = e−3 ̸= 0.

4



By the Term Divergence Test, it follows that

∞∑
n=0

(
n

n+ 3

)n

diverges .

8.

∞∑
n=1

7− 3 cos
(
n2

)
n5 + 3

Solution. We use the DCT. Observe that −1 ⩽ cos(n2) ⩽ 1, so 4 ⩽ 7−3 cos
(
n2

)
⩽ 10. Also, n5+3 < n5.

It follows that

0 <
7− 3 cos

(
n2

)
n5 + 3

<
10

n5
.

Furthermore,

∞∑
n=1

10

n5
= 10

∞∑
n=1

1

n5
converges as a p-series with p = 5 > 1. Therefore,

∞∑
n=1

7− 3 cos
(
n2

)
n5 + 3

converges .

9.

∞∑
n=2

n sin

(
5

n3

)

Solution. We use the LCT with

∞∑
n=2

bn =

∞∑
n=2

n
1

n3
=

∞∑
n=2

1

n2
, which converges as a p-series with p = 2 > 1.

We have

L = lim
n→∞

an
bn

= lim
n→∞

n sin
(

5
n3

)
1
n2

= lim
x→∞

sin
(

5
x3

)
1
x3

L′H
=
0
0

lim
x→∞

− 15
x4 cos

(
5
x3

)
− 3

x4

= lim
x→∞

5 cos

(
5

x3

)
= 5.

Since 0 < L < ∞ and

∞∑
n=2

1

n2
converges, we conclude that

∞∑
n=2

n sin

(
5

n3

)
converges .
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