Sectio	n	lo.5				Absoluti		പ	nvergence		2								
						Rati	0 0	lnd	Roo	r Te	usts								
arn	ing	Goa	Ís																
	$\overline{}$																		
	Learr	ning Goal						Ŀ	Homework Problems										
	10.5.1 Determine whether a series diverges or absolutely									10.5: 1,3,6,7,9,10,11,14,15,20,21, 22,35									
	conv	erges using	the ratio/	root test	s.														
											1								

Conceptual introduction: the convergence tests we have learned so far only apply to series with non-negative terms. We are now going to work with series that can have both positive and negative terms. Definition: we say that $\sum_{n=n_0}^{\infty} a_n$ converges absolutely if the series $\sum_{n=n_0}^{\infty} |a_n|$ converges. Absolute Convergence Test (ACT): If $\sum_{n=n_0}^{\infty} |\alpha_n|$ converges, then $\sum_{n=n_0}^{\infty} \alpha_n$ converges. So absolute convergence => convergence. Said differently: If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} |a_n|$ diverges. Examples : 1) Does the series $\sum_{n=1}^{\infty} \frac{(r_1)^n}{n^2} = -1 + \frac{1}{4} - \frac{1}{9} + \frac{1}{16}$. converge or diverge? Cannot use IT, DCT or LCT because terms are not all positive. Instead, we test for absolute convergence by looking at the * positive - term series ": $\frac{\tilde{\Sigma}}{n} = 1 + \frac{1}{4} + \frac{1}{q} + \cdots = \frac{\tilde{\Sigma}}{n} = 1 \quad \text{converges } (p - \text{series with } p = 271)$ So $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely (in particular converges by ACT).

2) Does the series
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{3^n}$$
 converge or diverge?
We test for absolute convergence:
 $\sum_{n=1}^{\infty} |\frac{\sin(n)}{3^n}| = \sum_{n=1}^{\infty} \frac{|\sin(n)|}{3^n}$
Observe that $0 \in |\frac{\sin(n)|}{3^n} \in \frac{1}{3^n}$
 $\cdot \sum_{n=1}^{\infty} \frac{1}{3^n}$ converges (geometric series with common ratio ret_3^{-1} , $|r| < 1$)
So $\sum_{n=1}^{\infty} \frac{1 \sin(n)!}{3^n}$ converges by the DCT.
Therefore, $\sum_{n=1}^{\infty} \frac{\sin(n)}{3^n}$ converges absolutely.
Therefore, $\sum_{n=1}^{\infty} \frac{\sin(n)}{3^n}$ converges absolutely.
Therefore, $\sum_{n=1}^{\infty} \frac{\sin(n)}{3^n}$ converges absolutely.
Therefore test: consider a series $\sum_{n=n_0}^{\infty} a_n$ and let $\rho = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$
Therefore test: consider a series $\sum_{n=n_0}^{\infty} a_n$ and let $\rho = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$
Therefore test: consider a series $\sum_{n=n_0}^{\infty} a_n$ and let $\rho = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$
Ratio Test: consider a series $\sum_{n=n_0}^{\infty} a_n$ and let $\rho = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$
Therefore test: consider $\sum_{n=n_0}^{\infty} a_n$ converges absolutely.
Therefore test: consider $\sum_{n=n_0}^{\infty} a_n$ converges $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_n$
Therefore $\sum_{n=1}^{\infty} (\frac{n+1}{n})^{\frac{n}{2}} = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \left|\frac{(n+1)^{\frac{n}{2}}}{a_n}\right| = \lim_{n\to\infty} \frac{2^{n}}{a_n} (n+1)^{\frac{n}{2}}$
For $n = \lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \left|\frac{(n+1)^{\frac{n}{2}}}{a_n}\right| = \lim_{n\to\infty} \frac{2^{n}}{n^2} (n+1)^{\frac{n}{2}}$

Since
$$\rho < 1$$
, $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ converges absolutely.
d) Does the series $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$ converge or diverge?
Ratio Test: $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-3)^{n+1}}{(n+1)!} - \frac{n!}{n} \right|$
 $= \lim_{n \to \infty} \left| \frac{(-3)^{n+1}}{(-3)^n} - \frac{n!}{(n+1)!} \right|$
 $= \lim_{n \to \infty} \left| \frac{(-3)^n}{(n+1)!} \right|$
 $= \lim_{n \to \infty} \left| \frac{(-3)^n}{n+1} \right| = 0$
Since $\rho < 1$, $\sum_{n=1}^{\infty} \frac{(-3)^n}{n!}$ converges absolutely
 $\frac{3}{n+1}$ Does the series $\sum_{n=1}^{\infty} \frac{(2n)!}{n!}$ converge or diverge?
Ratio Test: $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(2(n+1))!}{(n+1)!} \frac{(n+1)!}{(2n)!}$
 $= \lim_{n \to \infty} \frac{(2n+2)!}{(n+1)!} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{(2(n+1))!}{(2n)!} \frac{(n+1)!}{(2n)!}$
 $= \lim_{n \to \infty} \frac{(2n+2)!}{(2n)!} \frac{n!}{(n+1)!} = 4 - 1$ to $\sum_{n=1}^{\infty} \frac{(2n+3)!}{(2n+1)!} \frac{1}{n+1} \frac{1}{n+1}$
 $q_{n+1} = \lim_{n \to \infty} \frac{(2n+2)!}{(n+1)!} = 4 - 1$ to $\sum_{n=1}^{\infty} \frac{(2n)!}{(2n)!}$ diverges.
 $q_{n+1} = \frac{3n}{2n+1} a_n$.
 Φ Let a_n be the sequence defined inductively by
 $a_n = 8$, $a_{n+1} = \frac{3n}{2n+1} a_n$.
Does $\sum_{n=1}^{\infty} a_n$ converge or diverge?

Because this recursive relation gives us information about <u>anti</u>, it is a good idea to try the Ratio Test. $\rho = \lim_{n \to \infty} \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \lim_{n \to \infty} \left| \frac{3n}{2n+1} \right|_{n+1} = \lim_{n \to \infty} \left| \frac{3n}{2n+1} \right|_{n+1} = \lim_{n \to \infty} \left| \frac{3n}{2n+1} \right|_{n+1} = \frac{3}{2}.$ Since p > 1, we conclude that $\sum_{n=1}^{\infty} a_n$ diverges. The ratio test is very helpful for series whose terms involve factorials / exponentials. It has the advantage of not needing to find a reference series to compare to But it has the disadvantage of being often inconclusive (ex: for any series with algebraic terms, such as $\sum_{n=1}^{\infty} \frac{1}{n^p}$ or $\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^2+1}}$ Root Test: consider a series $\sum_{n=n}^{\infty} a_n$ and let $p = \lim_{n \to \infty} \sqrt{|a_n|}$ If p < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely. If p > 1, then $\sum_{n=1}^{\infty} a_n$ diverges. If p=1, then the test is inconclusive and does not tell us anything about $\sum_{n=n}^{\infty} a_n$ The following limits we saw in 10.1 will be helpful when using the Root Test: $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$ $\lim_{n \to \infty} \left(\left(+ \frac{c}{n} \right)^n = e^c \quad (any \ c) \right)$ (Show full details with L'Hôpital's Rule when using them.)

Examples: 1) Does the series
$$\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^{n}$$
 converge or diverge ?
Root Test : $\rho = \lim_{n \to \infty} \sqrt{(a_n)} = \lim_{n \to \infty} \left(\left(1 - \frac{3}{n}\right)^{n+1}\right)^{n} = \lim_{n \to \infty} \left(1 - \frac{3}{n}\right)^{n}$
 $= \lim_{n \to \infty} e^{n\left(1 - \frac{3}{n}\right)}$
We compute the limit of the exponent using L'Höpital's Rule:
 $\lim_{n \to \infty} n\ln\left(1 - \frac{3}{n}\right) = \lim_{n \to \infty} \frac{\ln\left(1 - \frac{1}{n}\right)}{\frac{1}{n}} = e^{-3}$.
So $\rho = \lim_{n \to \infty} e^{n\left(1 - \frac{3}{n}\right)} = e^{-3}$.
Since $\rho < 1$, $\sum_{n \to \infty} \left(1 - \frac{3}{n}\right)^{n^{n}}$ converges absolutely
 A) Does the series $\sum_{n=1}^{\infty} \frac{5n^{n}}{2^{n}n^{3}}$ converge or diverge ?
Root Test : $\rho = \lim_{n \to \infty} \sqrt{|a_{1}|} = \lim_{n \to \infty} \left(\frac{5n^{n}}{2^{n}n^{3}}\right)^{n} = \lim_{n \to \infty} \frac{5^{N} \cdot n}{a^{n} \frac{2n^{3} \ln n}{2}}$
We compute the limit of the exponent using L'Höpital's Rule:
 $\lim_{n \to \infty} e^{n\left(1 - \frac{3}{n}\right)} = e^{-3}$.
Since $\rho < 1$, $\sum_{n=1}^{\infty} \frac{5n^{n}}{2^{n} \frac{2n^{n}}{2}} = e^{-3}$.
So $\rho = \lim_{n \to \infty} \sqrt{|a_{1}|} = \lim_{n \to \infty} \left(\frac{5n^{n}}{2^{n}n^{3}}\right)^{n} = \lim_{n \to \infty} \frac{5^{N} \cdot n}{a^{n} \frac{2n^{3} \ln n}{2}}$
We compute the limit of the exponent using L'Höpital's Rule:
 $\lim_{n \to \infty} \frac{\ln(n + \frac{1}{2})}{n \frac{2}{2}} = 0$.
So $\rho = \lim_{n \to \infty} \frac{5^{N} \cdot n}{a \frac{2^{3} \ln n}{2}} = 0$.
So $\rho = \lim_{n \to \infty} \frac{5^{N} \cdot n}{a \frac{2^{3} \ln n}{2}} = 0$.

3) Does the series
$$\sum_{n=1}^{\infty} (n+3)^n$$
 converge or diverge?
Proot Test: $\rho = \lim_{n \to \infty} \sqrt{|a_1|} = \lim_{n \to \infty} ((n+3)^n)^{V_n} = \lim_{n \to \infty} \frac{n+3}{2n+1} = \frac{1}{n}$
 $= \lim_{n \to \infty} \frac{1+\frac{3}{n}}{2+\frac{1}{n}} = \frac{1}{2}$.
Since $\rho < 1$, $\sum_{n=1}^{\infty} (n+3)^n$ converges absolutely.
What to choose between ratio and root test? If the general term involves factorials, ratio will be better. Otherwise, root test is stronger than ratio test.
Practice: determine if the following series converge or diverge.
 $1) \sum_{n=1}^{\infty} n^n = 2$, $\sum_{n=1}^{\infty} (n^{2n} - 2)^n = (-1)^n - (n+2)!$
 $4) \sum_{n=1}^{\infty} a_n = (1+\frac{1}{n})^n = \lim_{n \to \infty} (n+1)^{m} = \lim_{n \to \infty} (n+1)(n+1)^n = \lim_{n \to \infty} (n^{m})(n^{m}) = \lim_{n \to \infty} ($

Since
$$\rho > 1$$
, $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ diverges
a) Root Test: $\rho = \lim_{n \to \infty} \sqrt{|a_n|} = \lim_{n \to \infty} \left(\frac{5^{n^n}}{n^{n^n}} \right)^{n^n} = \lim_{n \to \infty} \frac{5^n}{n^n} = \lim_{n \to \infty} \frac{5^n}{n^n} = \lim_{n \to \infty} \frac{5^n}{n^n}$
 $(\frac{14}{2} \lim_{n \to \infty} \ln(5) \cdot 5^n \frac{12^n}{n^n} \lim_{n \to \infty} \ln(5)^2 \cdot 5^n \frac{1}{n^n}$
 $\frac{1}{2} \lim_{n \to \infty} \ln(5) \cdot 5^n \frac{12^n}{n^n} \lim_{n \to \infty} \ln(5)^2 \cdot 5^n \frac{1}{n^n}$
 $\frac{1}{2} \lim_{n \to \infty} \ln(5) \cdot 5^n \frac{12^n}{n^n} \frac{1}{n^n} \frac{1}{n^n} \frac{1}{n^n} \frac{1}{n^n} \frac{1}{n^n}$
 $\frac{1}{2} \lim_{n \to \infty} \frac{1}{n^n} \frac{5^{n^n}}{n^n} \frac{1}{n^n} \frac$