Section 10.5: Absolute Convergence, Ratio \& Root Tests - Worksheet Solutions

1. Determine if the series below converge or diverge. Make sure to clearly label and justify the use of any convergence test used. Note: some of these problems require convergence tests from previous sections.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{3^{2 n}}$

Solution. We use the Root Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \sqrt[n]{\left|(-1)^{n} \frac{n^{n}}{3^{2 n}}\right|} \\
& =\lim _{n \rightarrow \infty} \frac{n}{9} \\
& =\infty
\end{aligned}
$$

Since $\rho>1$, we conclude that $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{3^{2 n}}$ diverges
(b) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{8 n^{6}+7 n+11}}{3 n^{7}+8 n^{5}-1}$

Solution. We use the LCT with $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{n^{6 / 3}}{n^{7}}=\sum_{n=1}^{\infty} \frac{1}{n^{5}}$, which converges as a p-series with $p=5>1$. We have

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{\sqrt[3]{8 n^{6}+7 n+11}}{3 n^{7}+8 n^{5}-1}}{\frac{n^{6 / 3}}{n^{7}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[3]{8 n^{6}+7 n+11}}{3 n^{7}+8 n^{5}-1} \cdot \frac{n^{7}}{n^{6 / 3}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[3]{8+\frac{7}{n^{5}}+\frac{11}{n^{6}}}}{3+\frac{8}{n^{2}}-\frac{1}{n^{7}}} \\
& =\frac{\sqrt[3]{8+0+0}}{3+0-0} \\
& =\frac{2}{3}
\end{aligned}
$$

Since $0<L<\infty$ and $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges, we conclude that $\sum_{n=1}^{\infty} \frac{\sqrt[3]{8 n^{6}+7 n+11}}{3 n^{7}+8 n^{5}-1}$ converges .
(c) $\sum_{n=1}^{\infty} \frac{(2 n+1)!}{e^{n} n!(n+1)!}$

Solution. We use the Ratio Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(2(n+1)+1)!}{e^{n+1}(n+1)!(n+2)!} \cdot \frac{e^{n} n!(n+1)!}{(2 n+1)!} \\
& =\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n+1}} \cdot \frac{(2 n+3)!}{(2 n+1)!} \cdot \frac{n!(n+1)!}{(n+1)!(n+2)!} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+3)}{e(n+1)(n+2)} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(2+\frac{2}{n}\right)\left(2+\frac{3}{n}\right)}{e\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)} \\
& =\frac{4}{e} .
\end{aligned}
$$

Since $e<4$, we have $\rho>1$. So $\sum_{n=1}^{\infty} \frac{(2 n+1)!}{e^{n} n!(n+1)!}$ diverges .
(d) $\sum_{n=1}^{\infty} \frac{\cos (8 n)+3}{4^{n}}$

Solution. We use the DCT. Observe that $-1 \leqslant \cos (8 n) \leqslant 1$, so $2 \leqslant \cos (8 n)+3 \leqslant 4$. It follows that

$$
0<\frac{\cos (8 n)+3}{4^{n}}<\frac{4}{4^{n}}
$$

Furthermore, $\sum_{n=1}^{\infty} \frac{4}{4^{n}}$ converges as a geometric series with common ratio $r=\frac{1}{4}$ satisfying $|r|<1$.
Therefore, $\sum_{n=1}^{\infty} \frac{\cos (8 n)+3}{4^{n}}$ converges.
(e) $\sum_{n=1}^{\infty} \frac{\ln (n)}{\ln (\ln (n))}$

Solution. Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln (n)}{\ln (\ln (n))} & =\lim _{x \rightarrow \infty} \frac{\ln (x)}{\ln (\ln (x))} \\
& \stackrel{\mathrm{L}^{\prime} \mathrm{H}}{\overline{\frac{0}{0}}} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x \ln (x)}} \\
& =\lim _{x \rightarrow \infty} \ln (x) \\
& =\infty
\end{aligned}
$$

Since the general term of the series does not approach 0, the Term Divergence Test tells us that $\sum_{n=1}^{\infty} \frac{\ln (n)}{\ln (\ln (n))}$ diverges.
(f) $\sum_{n=1}^{\infty} 4^{n}\left(\frac{n-2}{n}\right)^{n^{2}}$

Solution. We use the Root Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left(4^{n}\left(\frac{n-2}{n}\right)^{n^{2}}\right)^{1 / n} \\
& =\lim _{n \rightarrow \infty} 4\left(\frac{n-2}{n}\right)^{n} \\
& =4 \lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}
\end{aligned}
$$

This limit is an indeterminate power 1^{∞}. We can start by writing the power in exponential form

$$
\lim _{n \rightarrow \infty}\left(1-\frac{2}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1-\frac{2}{n}\right)}
$$

We now compute the limit of the exponent using L'Hôpital's Rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1-\frac{2}{n}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{2}{x}\right)}{\frac{1}{x}} \\
& \stackrel{L^{\prime} \mathrm{H}}{=} \frac{\frac{2}{x^{2}} \cdot \frac{1}{1-\frac{2}{x}}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-\frac{2}{1-\frac{2}{x}} \\
& =-2 .
\end{aligned}
$$

Therefore

$$
\rho=4 \lim _{n \rightarrow \infty} e^{n\left(1-\frac{2}{n}\right)}=4 e^{-2}
$$

Since $e>2$, we have $e^{2}>4$ and therefore $\rho<1$. Hence, $\sum_{n=1}^{\infty} 4^{n}\left(\frac{n-2}{n}\right)^{n^{2}}$ converges absolutely .
(g) $\sum_{n=1}^{\infty}(-1)^{n} \frac{((2 n)!)^{2}}{(4 n)!}$

Solution. We use the Ratio Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{((2 n+2)!)^{2}}{(4 n+4)!} \cdot \frac{(4 n)!}{((2 n)!)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{(2 n+2)!}{(2 n)!}\right)^{2} \cdot \frac{(4 n)!}{(4 n+4)!} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)^{2}(2 n+1)^{2}}{(4 n+1)(4 n+2)(4 n+3)(4 n+4)} \cdot \frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(2+\frac{2}{n}\right)^{2}\left(2+\frac{1}{n}\right)^{2}}{\left(4+\frac{1}{n}\right)\left(4+\frac{2}{n}\right)\left(4+\frac{3}{n}\right)\left(4+\frac{4}{n}\right)} \\
& =\frac{2^{2} 2^{2}}{4^{4}} \\
& =\frac{1}{16}
\end{aligned}
$$

Since $\rho<1$, we conclude that $\sum_{n=1}^{\infty}(-1)^{n} \frac{((2 n)!)^{2}}{(4 n)!}$ converges absolutely.
(h) $\sum_{n=1}^{\infty} \frac{n^{n}}{3^{n}(n+2)!}$

Solution. We use the Ratio Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{n+1}}{3^{n+1}(n+3)!} \cdot \frac{3^{n}(n+2)!}{n^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)(n+1)^{n}}{3(n+3) n^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n+1}{3(n+3)}\left(1+\frac{1}{n}\right)^{n} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{3\left(1+\frac{3}{n}\right)} e^{n \ln \left(1+\frac{1}{n}\right)}
\end{aligned}
$$

We can compute the limit of the exponent using L'Hôpital's Rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{1}{n}\right) & =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}} \\
& \stackrel{\mathrm{~L}^{\prime} \mathrm{H}}{=} \frac{-\frac{1}{x^{2}} \cdot \frac{1}{1+\frac{1}{x}}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}} \\
& =1 .
\end{aligned}
$$

Therefore

$$
\rho=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{3\left(1+\frac{3}{n}\right)} e^{n \ln \left(1+\frac{1}{n}\right)}=\frac{1+0}{3(1+0)} e^{1}=\frac{e}{3}
$$

Since $e<3$, we have $\rho<1$ so $\sum_{n=1}^{\infty} \frac{n^{n}}{3^{n}(n+2)!}$ converges absolutely .
(i) $\sum_{n=1}^{\infty}\left(\frac{2 n+5 \sin (n)}{3 n}\right)^{n}$

Solution. We use the Root Test. We have

$$
\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{2 n+5 \sin (n)}{3 n}=\lim _{n \rightarrow \infty}\left(\frac{2}{3}+\frac{5 \sin (n)}{3 n}\right)
$$

We have $-1 \leqslant \sin (n) \leqslant 1$, so

$$
-\frac{5}{3 n} \leqslant \frac{5 \sin (n)}{3 n} \leqslant \frac{5}{3 n}
$$

Furthermore, $\lim _{n \rightarrow \infty}-\frac{5}{3 n}=\lim _{n \rightarrow \infty} \frac{5}{3 n}=0$. So by the Sandwich Theorem, we have $\lim _{n \rightarrow \infty} \frac{5 \sin (n)}{3 n}=0$ and

$$
\rho=\lim _{n \rightarrow \infty}\left(\frac{2}{3}+\frac{5 \sin (n)}{3 n}\right)=\frac{2}{3} .
$$

Since $\rho<1$, we conclude that $\sum_{n=1}^{\infty}\left(\frac{2 n+5 \sin (n)}{3 n}\right)^{n}$ converges absolutely .
2. Let a_{n} be the sequence defined recursively by

$$
a_{1}=7, \quad a_{n+1}=a_{n}\left(\frac{n}{n+3}\right)^{n} \text { for } n \geqslant 1
$$

Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. Make sure to clearly label and justify the use of any convergence test used.

Solution. The recursive relation gives us information about $\frac{a_{n+1}}{a_{n}}$, so the Ratio Test seems like a good option here. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{a_{n}\left(\frac{n}{n+3}\right)^{n}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+3}\right)^{n}
\end{aligned}
$$

This limit is an indeterminate power 1^{∞}. We can start by writing the power in exponential form

$$
\rho=\lim _{n \rightarrow \infty}\left(\frac{n}{n+3}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(\frac{n}{n+3}\right)}
$$

We now compute the limit of the exponent using L'Hôpital's Rule:

$$
\lim _{n \rightarrow \infty} n \ln \left(\frac{n}{n+3}\right)=\lim _{x \rightarrow \infty} \frac{\ln (x)-\ln (x+3)}{\frac{1}{x}}
$$

$$
\begin{aligned}
& \stackrel{\mathrm{L}^{\prime} \mathrm{H} \mathrm{H}}{\overline{\frac{0}{0}}} \frac{\frac{1}{x}-\frac{1}{x+3}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty}-x^{2} \frac{(x+3)-x}{x(x+3)} \\
& =\lim _{x \rightarrow \infty}-\frac{3 x}{x+3} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty}-\frac{3}{1+3 / x} \\
& =-3 .
\end{aligned}
$$

So

$$
\rho=\lim _{n \rightarrow \infty} e^{n \ln \left(\frac{n}{n+3}\right)}=e^{-3} .
$$

Since $\rho<1$, we conclude that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.

