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Math 152

Section 10.5: Absolute Convergence, Ratio & Root Tests - Worksheet Solutions

1. Determine if the series below converge or diverge. Make sure to clearly label and justify the use of any
convergence test used. Note: some of these problems require convergence tests from previous sections.
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Solution. We use the Ratio Test. We have
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Solution. We use the DCT. Observe that —1 < cos(8n) < 1, so 2 < cos(8n) + 3 < 4. It follows that
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Since the general term of the series does not approach 0, the Term Divergence Test tells us that
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Solution. We use the Root Test. We have
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This limit is an indeterminate power 1°°. We can start by writing the power in exponential form
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Solution. We use the Ratio Test. We have
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Solution. We use the Ratio Test. We have
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We can compute the limit of the exponent using L’Hopital’s Rule:
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Solution. We use the Root Test. We have
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2. Let a, be the sequence defined recursively by
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Determine whether the series Zan converges or diverges. Make sure to clearly label and justify the use
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Solution. The recursive relation gives us information about
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Since p < 1, we conclude that
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