

Conceptual introduction: recall that $\sum_{n=n_{0}}^{\infty} a_{n}$ converges absolutely when $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|$ converges.

We have seen that: (Absolute Convergence) \Rightarrow (Convergence). However, the converse is false: a series may converge, but not converge absolutely.

Definition: if $\sum_{n=n_{0}}^{\infty} a_{n}$ converges but does not converge absolutely, we say that it converges conditionally.

So $\sum_{n=n_{0}}^{\infty} a_{n}$ converges conditionally if $\sum_{n=n_{0}}^{\infty} a_{n}$ converges

- $\sum_{n=n_{0}}^{\infty}\left|a_{n}\right|$ diverges.

Summary of terminology:

$\sum_{n=n_{0}}^{\infty} a_{n}$	$\sum_{n=n_{0}}^{\infty}\left\|a_{n}\right\|$	Description of $\sum_{n=n_{0}}^{\infty} a_{n}$
Converges	Converges	Converges Absolutely
Converges	Diverges	Converges Conditionally
Diverges	Diverges	Diverges.

We have get to see examples of series that converge conditionally. Common examples are some alternating series.

Definition: an alternating series is a series of the form

$$
\begin{array}{rlr}
\sum_{n=1}^{\infty}(-1)^{n-1} a_{n} & =a_{1}-a_{2}+a_{3}-a_{4}+\cdots & \text { with } a_{n}>0 \\
\text { or } \quad \sum_{n=1}^{\infty}(-1)^{n} a_{n} & =-a_{1}+a_{2}-a_{3}+a_{4}-\cdots & \text { for all } n .
\end{array}
$$

So it is a series where the sign of terms alternates between positive and negative.

Examples: $\quad \sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+1-1+\cdots$

$$
\left.\begin{array}{l}
\sum_{n=2}^{\infty}(-1)^{n} n=2-3+4-5-6+\cdots \\
\sum_{n=0}^{\infty} \frac{\cos (n \pi)}{n+1}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
\end{array}\right\} \text { are alternating }
$$

But $\sum_{n=0}^{\infty} \frac{\cos (n)}{n+1}$ is not (signs do not alternate with a period of 2)

Alternating Series Test: let $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ be a sequence such that:
(i) $a_{n} \geqslant 0$
(ii) $\left\{a_{n}\right\}$ is decreasing: $a_{n+1} \leqslant a_{n}$ for all $n \geqslant n_{0}$.
(iii) $\lim _{n \rightarrow \infty} a_{n}=0$

Then the alternating series $\sum_{n=n_{0}}^{\infty}(-1)^{n} a_{n}, \sum_{n=n_{0}}^{\infty}(-1)^{n-1} a_{n}$ converge.

Examples: 1) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$: take $a_{n}=\frac{1}{n}$, then
(i) $\frac{1}{n} \geqslant 0$
(ii) $\frac{1}{n+1} \leq \frac{1}{n}$ and (iii) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

So by the AST, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges.
However, $\quad \sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges $(p$-series with $p=1$).
Therefore, $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges conditionally.
2) For which of these series can you apply the AST?
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\tan ^{-1}(n)}$
b) $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n 2^{n}}$
c) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{3}}$
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\tan ^{-1}(n)}$: $a_{n}=\frac{1}{\tan ^{-1}(n)}$ is positive, decreasing,
but $\lim _{n \rightarrow \infty} \frac{1}{\tan ^{-1}(n)}=\frac{1}{\pi / 2}=\frac{2}{\pi} \neq 0$, so Ass does not apply.
Term Divergence Test: $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\tan ^{-1}(n)} \neq 0$, so
$\sum^{\infty} \frac{(-1)^{n}}{}$ diverges. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\tan ^{-1}(n)}$ diverges.
b) $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}$ since $\cos (\pi n)=(-1)^{n}$.
$a_{n}=\frac{1}{n 2^{n}}$ is positive, decreasing (since reciprocal $n 2^{n}$ is increasing) and $\lim _{n \rightarrow \infty} \frac{1}{n 2^{n}}=0$. So the AST applies and $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n 2^{n}}$ converges.

Does it converge absolutely or conditionally?
$\sum_{n=1}^{\infty}\left|\frac{\cos (\pi n)}{n 2^{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{n 2^{n}} \quad D C T: 0 \leqslant \frac{1}{n 2^{n}} \leqslant \frac{1}{2^{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges (geometric series with common ratio $r=\frac{1}{2},|r|<1$).
So $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{n 2^{n}}$ converges absolutely.

Remark: we could have tested for absolute converge directly with the DCT without doing the AST first. We could have also used the Ratio or Root Tests.
c) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{3}}$ is not alternating, so AST does not apply. We can use the DCT to test for absolute convergence: $0 \leqslant\left|\frac{\sin (n)}{n^{3}}\right| \leqslant \frac{1}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ converges $(p$-series with $p=3>1$).

So $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{3}}$ converges absolutely.

Important remarks:

- The AST can never be used to show that a series diverges.
- Just because the AST does not apply does not mean that the series diverges.
- When the AST applies, we can conclude that the series. converges, but we do not know if the convergence is absolute or conditional without further analysis.
Ex: $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}} \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \quad$ AST applies to both. converges conditionally. converges absolutely.

Approximating the sum of an alternating series.
Consider an alternating series $S=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ with $\left\{a_{n}\right\}_{n}$ positive, decreasing and $\lim _{n \rightarrow \infty} a_{n}=0$.

The sequence of partial sums $\left\{S_{N}\right\}_{N}$ oscillates back and forth across the sum S with decreasing amplitude.

The error made when estimating S using S_{N} is at most:

$$
\left|s-s_{N}\right| \leqslant a_{N+1}
$$

Alternating Series Estimation Theorem
$S-S_{N}=\sum_{n=N+1}^{\infty}(-1)^{n-1} a_{n}$ is called the remainder R_{N}.

Upshot: if an alternating series meets the conditions of the AST, then a_{N+1} is the best estimate of the error $\left|S-S_{N}\right|$.

Examples: 1) The alternating series $\sum_{n=4}^{\infty} \frac{(-1)^{n}}{\sqrt{3 n}}$ converges (conditionally) by the AST + p-rest.
How many terms must be summed for the remainder to be less than 0.1 in magnitude?

We are looking for N such that $\left|S-S_{N}\right|<0.1$. We know that $\left|S-S_{N}\right| \leqslant a_{N+1}$, so it suffices to have $a_{N+1}<0.1$

$$
\Rightarrow \frac{1}{\sqrt{3(N+1)}}<10^{-1}
$$

$$
\Rightarrow \sqrt{3 N+3}>10 \Rightarrow 3 N+3>100 \Rightarrow 3 N>97 \Rightarrow N>\frac{97}{3} \simeq 32.33 \cdots
$$

So the smallest value of N for which the remainder is less than 0.1 is $N=33$.

$$
S_{33}=\sum_{n=4}^{33} \frac{(-1)^{n}}{\sqrt{3 n}} \text { has } 33-4+1=30 \text { terms. }
$$

2) How many terms of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ must be summed for the partial sum to approximate S with an error of less than 10^{-3} ?

We want $a_{N+1}<10^{-3} \Rightarrow \frac{1}{(N+1)!}<10^{-3}$
We cannot solve this algebraically,
so we solve numerically with a calculator/table of values.

N	$(N+1)!$	
0	1	x
1	2	x
2	6	x
3	24	x
4	110	x
5	720	x
6	5040	\checkmark

The smallest value of N that works is $N=6$. So the partial sum $S_{6}=\sum_{n=0}^{6} \frac{(-1)^{n}}{n!}$ has $6-0+1=7$ terms.

Practice: determine if the following series converge absolutely, converge conditionally or diverge.

1) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$
2) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n+1}$
3) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} 3^{n}}{(2 n+1)!}$
4) $\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}}$
5) $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$
6) AST: $a_{n}=\frac{1}{\ln (n)}$ is positive, decreasing (since \ln increasing) and $\lim _{n \rightarrow \infty} \frac{1}{\ln (n)}=0$.

So $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges.
Observe that $\ln (n) \leqslant n$ if $n \geqslant 2$
so $\left|\frac{(-1)^{n}}{\ln (n)}\right| \geqslant \frac{1}{n} \geqslant 0$, and $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges (p - series with $p=1$).
Therefore, $\quad \sum_{n=2}^{\infty}\left|\frac{(-1)^{n}}{\ln (n)}\right|$ diverges.
So $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges conditionally.
2) $\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\frac{1}{2}$, so $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n}{2 n+1}$ DNE and by the

Term Divergence Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2 n+1}$ diverges
3) Ratio Test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{((n+1)!)^{2} 3^{n+1}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{(n!)^{2} 3^{n}}=\lim _{n \rightarrow \infty} \frac{3(n+1)^{2}}{(2 n+2)(2 n+3)}=\frac{3}{4}
$$

Since $p<1, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}(n!)^{2} 3^{n}}{(2 n+1)!}$ converges absolutely.
4) $D C T$: $0 \leqslant\left|\frac{\cos (n)}{n^{2}}\right| \leqslant \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (p-series with $p=2,1$).

So $\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}}$ converges absolutely.
5) AST: $a_{n}=\sin \left(\frac{1}{n}\right)$ is positive, decreasing (because \sin is increasing on $\left(0, \frac{\pi}{2}\right)$) and $\lim _{n \rightarrow \infty} \sin \left(\frac{1}{n}\right)=\sin (0)=1$.
So $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$ converges.

To test for absolute convergence, we use the LCT with $b_{n}=\frac{1}{n}$.

$$
\cdot \lim _{n \rightarrow \infty} \frac{\left|(-1)^{n} \sin \left(\frac{1}{n}\right)\right|}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{u \rightarrow 0} \frac{\sin (u)}{u}=1 .
$$

- $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges $(p$-series with $p=1)$.

So $\sum_{n=2}^{\infty}\left|(-1)^{n} \sin \left(\frac{1}{n}\right)\right|$ diverges.
Therefore, $\sum_{n=2}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$ converges conditionally.

