2rnì	ng Goals	Condi	tional	Con	vergei	nce						
1	Learning Goal 10.6.1 Determine whether a s coverges or absolutely conve	series diverges, condit rges	ionally	Homework Problems 10.6: 1, 5, 6, 25, 27, 29, 31, 35, 39, 40, 41, 48, 59, 65, 66, 69, , 85, 88, 94 Questions 14, 15, and 16 in MyLab Assignment for §10.6								
	10.6.2 Estimate the remainde	er of an alternating ser	ies									

Conceptual introduction :recall that
$$\tilde{\Sigma}$$
, a, converges absolutely
when $\tilde{\Sigma}_{n=n}^{n} [a_n]$ converges.We have seen that :(Absolute Convergence) + (Convergence).
However, the converse is false a series may converge, but
not converge absolutely.Definition :if $\tilde{\Sigma}_{n=n}^{n} a_n$ converges but does not converge
absolutely, we say that it converges conditionally.So $\tilde{\Sigma}_{n=n}^{n} a_n$ converges conditionally if $\tilde{\Sigma}_{n=n_0}^{n} a_n$ converges
 $\tilde{\Sigma}_{n=n_0}^{n=n_0} a_n$ converges conditionally.So $\tilde{\Sigma}_{n=n_0}^{n} a_n$ converges conditionally if $\tilde{\Sigma}_{n=n_0}^{n} a_n$ converges.Summarg of terminology : $\tilde{\Sigma}_{n=n_0}^{n} a_n$ $\tilde{\Sigma}_{n=n_0}^{n} a_n$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Definition}: & \text{an} & \underline{\text{alternating series}} & \text{if a series of the form} \\ & \sum_{n=1}^{\infty} (-1)^n a_n := a_1 - a_2 + a_3 - a_4 + \cdots & \text{with } a_n > 0 \\ & \text{for all } n \end{array} \\ & \text{or } & \sum_{n=1}^{\infty} (-1)^n a_n := -a_1 + a_2 - a_3 + a_4 - \cdots & \text{for all } n \end{array} \\ & \text{for all } n \end{array} \\ & \text{So it is a series where the sign of terms alternates between } \\ & \text{positive and negative.} \end{array} \\ & \begin{array}{c} & \sum_{n=2}^{\infty} (-1)^n := -i+1-i+i-1+\cdots & \\ & \sum_{n=2}^{\infty} (-1)^n := 2-3+4-5-6+\cdots & \\ & \sum_{n=2}^{\infty} (-1)^n n := 2-3+4-5-6+\cdots & \\ & \begin{array}{c} & \sum_{n=2}^{\infty} (-1)^n := -i+1-i+1-i+\cdots & \\ & \sum_{n=2}^{\infty} (-1)^n n := 2-3+4-5-6+\cdots & \\ & \begin{array}{c} & are alternating & \\ & \sum_{n=2}^{\infty} (\cos(n\pi)) := -i - \frac{i}{2} + \frac{1}{3} - \frac{1}{4} + \cdots & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \text{But } & \sum_{n=2}^{\infty} (\cos(n\pi)) := -i - \frac{i}{2} + \frac{1}{3} - \frac{1}{4} + \cdots & \\ & \begin{array}{c} & \text{are alternating} & \\ & & \text{are alternating} & \\ & & & \end{array} \end{array} \\ & \begin{array}{c} & But & \sum_{n=2}^{\infty} (\cos(n\pi)) := -i - \frac{i}{2} + \frac{1}{3} - \frac{1}{4} + \cdots & \\ & & \end{array} \end{array} \\ & \begin{array}{c} & \text{But } & \sum_{n=2}^{\infty} (\cos(n\pi)) := -i - \frac{i}{2} + \frac{1}{3} - \frac{1}{4} + \cdots & \\ & & \end{array} \end{array} \\ & \begin{array}{c} & \text{Alternating Series } & \text{rest : let } \left\{a_n \int_{n=1}^{\infty} be & a & \text{sequence such that:} \\ & (i) & a_n \neq 0 & \\ & (ii) & \int_{n=3}^{\infty} a_n & = 0 & \\ & \end{array} \end{array} \\ & \begin{array}{c} & \text{Then } & \text{the alternating series } & \sum_{n=1}^{\infty} (-1)^n a_n , & \sum_{n=1}^{\infty} (-1)^{n-1} a_n & \text{converge.} \\ & \end{array} \\ & \begin{array}{c} & \text{Examples : 1} & \sum_{n=1}^{\infty} \frac{(-1)^n}{n} & \vdots & \text{take } a_n & = \frac{1}{n} \\ & (i) & \frac{1}{n} \neq 0 & \\ \end{array} \end{array}$$

(ii)
$$\frac{1}{n+1} \in \frac{1}{n}$$
 and (iii) $\lim_{n \to \infty} \frac{1}{n} = 0$.
So by the AST, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.
However, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-series with p=1).
Therefore, $\left[\sum_{n=1}^{\infty} \frac{(-1)^n}{n} + \sum_{n=1}^{\infty} \frac{1}{n} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} + \sum_{n=1}^{\infty}$

 $\frac{\sum_{n=1}^{\infty} \left| \frac{\cos(\pi n)}{n 2^n} \right| = \frac{\sum_{n=1}^{\infty} \frac{1}{n2^n}}{\frac{n2^n}{n2^n}} \quad DCT : 0 \leq \frac{1}{2^n} \leq \frac{1}{2^n} \text{ and } \frac{\sum_{n=1}^{\infty} \frac{1}{2^n}}{\frac{n^{n-1}}{2^n}} \quad \frac{n2^n}{2^n} \quad \frac{n2^n}{2^n} \leq \frac{1}{2^n} \text{ converges}}{\frac{1}{2^n} \left(\frac{1}{2^n} + \frac{1}{2^n}$ So $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n^{2n}}$ converges absolutely. Remark: we could have tested for absolute converge directly with the DCT without doing the AST first. We could have also used the Ratio or Root Tests. c) $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^3}$ is not alternating, so AST does not apply. We can use the DCT to test for absolute convergence: $o \leq \frac{\sin(n)}{n^3} \leq \frac{1}{n^3}$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges (p-series with p=3>1). $S_{n=1}^{\infty} \frac{\sin(n)}{n^3}$ converges absolutely. Important remarks: The AST can never be used to show that a series diverges. • Just because the AST does not apply does not mean that the series diverges. When the AST applies, we can conclude that the series. converges, but we do not know if the convergence is absolute or conditional without further analysis. Ex: $\frac{\sum}{n=0}^{-1} \frac{(-1)^n}{\sqrt{n+1}}$ $\frac{\sum}{n=0}^{-1} \frac{(-1)^n}{n!}$ AST applies to both. converges conditionally. converges absolutely.

Approximating the sum of an alternating series.
Contider an alternating series
$$S = \sum_{n=1}^{\infty} (1)^{n-1} a_n$$
 with $\frac{1}{2}a_n \int_{0}^{1} positive$,
decreasing and $\lim_{n\to\infty} a_n = 0$.

 $S_{n=1}^{n-1} a_{n-1}^{n-1} a_{n-1} = 0$.

 $S_{n=1}^{n-1} a_{n-1}^{n-1} a_{n-1} = 0$.

 $S_{n=1}^{n-1} a_{n-1}^{n-1} a_{n-1} = 0$.

The sequence of partial sums
 $\frac{1}{2} S_{n-1}^{n-1} a_{n-1}^{n-1} a_{n-1}^{n-1}$

$$\Rightarrow \sqrt{30\sqrt{3}} > 10 \Rightarrow 3\sqrt{3} > 100 \Rightarrow 3\sqrt{3} > 97 \Rightarrow \sqrt{9\frac{3}{3}} = 32.33$$
So the smallest value of N for which the remainder
is less than 0.1 is N = 33.

$$S_{23} = \frac{23}{n^{+6}} \frac{(-1)^n}{\sqrt{3n}} \text{ has } 33^{-6} + 1 = 30 \text{ terms}.$$
3) thos many terms of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ must be summed for
the partial sum to approximate S with an error of less
than 10^{-3}?
We want $\alpha_{NH} < 10^{-3} \Rightarrow \frac{1}{(N+1)!} < 10^{-4} \Rightarrow (N+1)! > 1000$
We cannot solve this algebraically, N (M+1)!
so we solve numerically with $\frac{3}{4} + \frac{3}{4} + \frac$

1) AST:
$$a_n = \frac{1}{\ln(n)}$$
 is positive, decreasing (since in increasing)
and $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \frac{1}{\ln(n)} = 0$.
So $\sum_{n=\pm}^{\infty} (-1)^n$ converges
 $n = \sum_{n \to \infty} \lim_{n \to \infty} \frac{1}{\ln(n)}$ converges
 $\sum_{n=\pm}^{\infty} (-1)^n = 0$, and $\sum_{n=\pm}^{\infty} \frac{1}{n}$ diverges (p-series with pri).
Therefore, $\sum_{n=\pm}^{\infty} (-1)^n = 1$ diverges.
So $\sum_{n=\pm}^{\infty} (-1)^n = 1$ diverges (p-series with pri).
Therefore, $\sum_{n=\pm}^{\infty} (-1)^n = 1$ diverges.
So $\sum_{n=\pm}^{\infty} (-1)^n = 1$ diverges conditionally.
 $\sum_{n=\pm}^{\infty} (-1)^n = 1$, so $\lim_{n\to\infty} (-1)^n = 1$ Due and by the
 $n = \infty$ $2n+1 = \frac{1}{n}$, so $\lim_{n=\pm} (-1)^n = 1$ diverges.
3) Ratio Tect:
 $p = \lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} ((n+1)!)^2 \frac{3^{n+1}}{(n+1)!} (n!)^2 \frac{3^n}{n+\infty} (2n+1)! = \lim_{n\to\infty} \frac{3(n+1)^2}{(2n+3)!} = \frac{3}{n+\infty} (2n+1)!$
Since $p < 1$, $\sum_{n=1}^{\infty} (-1)^n (n!)^2 \frac{3^n}{n+1}$ converges (p-series with pri).
4) DCT : $0 \le \left| \frac{\cos(n)}{n^2} \right| \le \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges (p-series with prior pr

		5)	AS	Т:		n =	sin	$\left(\frac{1}{n}\right)$)	ı S	posi	tive	, d	ecrea	uing	(becc	ux			
		Sin	I	8	incr	easi	ng	on	(0	た え))	and	li n·	 ™	ຮ່າງ (<u>1</u>)	- SI	n(o)	<u>د</u>),		
		So	ť	∑ (n = 2	(-') "	sin	$\left(\frac{1}{n}\right)$)	(onv	وبطوه											
	•	To	tes	ŧ.	þr	ab	solu	te	Conv	ergei	nce,	we	us	e tr	1e	LCT	wit	h b	n = 7	<u> </u>	
	•	lim n→ ∞)[- ,	י)"s	in (<u>+</u>))	= li n-	• ~	<u>sin</u>	(<u>+</u>)	=	lim v→o	ร่าก (บ น	<u>.)</u> _	۱.					
	•	ss ∑ n ∈	 2	_ C r	liver	وقد	(p - s	eries	wit	h f) = 1)	•								
		So	ž	- 2	(-י)	าร่าก	(<u>+</u>)) d	ivera	jes.											
		The	re.for	re,	∞ ∑ n=2	(· ·)	n sin	(<u>1</u>)	Conve	rges	Cond	lition	ally .							
														J							-
_																					
_																					
_																					
-																					