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Section 10.6: Alternating Series & Conditional Convergence - Worksheet

1. Determine if the series below converge absolutely, converge conditionally or diverge. Make sure to
clearly label and justify the use of any convergence test used. Note: some of these problems require
convergence tests from previous sections.
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2. Consider the series

∞∑
n=1
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.

(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.

(b) Find the smallest integer N for which the partial sum SN =

N∑
n=1
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3
√
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approximates the sum

of the series with an error of at most 0.1.

3. Consider the series

∞∑
n=0

(−1)n+1

23n−7 + 9
.

(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.

(b) Find the smallest integer N for which the partial sum SN =
N∑

n=0

(−1)n+1

23n−7 + 9
approximates the sum

of the series with an error of at most 10−3.

1


