Rutgers University Math 152

Section 10.6: Alternating Series & Conditional Convergence - Worksheet

1. Determine if the series below converge absolutely, converge conditionally or diverge. Make sure to clearly label and justify the use of any convergence test used. **Note:** some of these problems require convergence tests from previous sections.

(a)
$$\sum_{n=3}^{\infty} \frac{(-1)^n}{n \log_2(n)}$$
 (d) $\sum_{n=0}^{\infty} \frac{1}{3^n + \cos(n)}$ (g) $\sum_{n=0}^{\infty} \frac{1}{e^{\sqrt{n}}}$
(b) $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{n!}$ (e) $\sum_{n=2}^{\infty} \frac{\sec(\pi n)}{\sqrt{n}}$ (h) $\sum_{n=0}^{\infty} (-1)^n \frac{n}{2n+1}$
(c) $\sum_{n=0}^{\infty} \frac{n \arctan(n)}{\sqrt[3]{8n^6+1}}$ (f) $\sum_{n=2}^{\infty} (-1)^n \ln\left(\frac{n+1}{n}\right)$ (i) $\sum_{n=3}^{\infty} \cos\left(\frac{\pi}{n}\right)^{n^2}$

- 2. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{7n+4}}$.
 - (a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.
 - (b) Find the smallest integer N for which the partial sum $S_N = \sum_{n=1}^N \frac{(-1)^n}{\sqrt[3]{7n+4}}$ approximates the sum of the series with an error of at most 0.1.
- 3. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{3n-7}+9}$.
 - (a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.
 - (b) Find the smallest integer N for which the partial sum $S_N = \sum_{n=0}^N \frac{(-1)^{n+1}}{2^{3n-7}+9}$ approximates the sum of the series with an error of at most 10^{-3} .