Section 10.6: Alternating Series \& Conditional Convergence - Worksheet

1. Determine if the series below converge absolutely, converge conditionally or diverge. Make sure to clearly label and justify the use of any convergence test used. Note: some of these problems require convergence tests from previous sections.
(a) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \log _{2}(n)}$
(d) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+\cos (n)}$
(g) $\sum_{n=0}^{\infty} \frac{1}{e^{\sqrt{n}}}$
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}}{n!}$
(e) $\sum_{n=2}^{\infty} \frac{\sec (\pi n)}{\sqrt{n}}$
(h) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{2 n+1}$
(c) $\sum_{n=0}^{\infty} \frac{n \arctan (n)}{\sqrt[3]{8 n^{6}+1}}$
(f) $\sum_{n=2}^{\infty}(-1)^{n} \ln \left(\frac{n+1}{n}\right)$
(i) $\sum_{n=3}^{\infty} \cos \left(\frac{\pi}{n}\right)^{n^{2}}$
2. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{7 n+4}}$.
(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.
(b) Find the smallest integer N for which the partial sum $S_{N}=\sum_{n=1}^{N} \frac{(-1)^{n}}{\sqrt[3]{7 n+4}}$ approximates the sum of the series with an error of at most 0.1.
3. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{3 n-7}+9}$.
(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.
(b) Find the smallest integer N for which the partial sum $S_{N}=\sum_{n=0}^{N} \frac{(-1)^{n+1}}{2^{3 n-7}+9}$ approximates the sum of the series with an error of at most 10^{-3}.
