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Section 10.6: Alternating Series & Conditional Convergence - Worksheet Solution

1. Determine if the series below converge absolutely, converge conditionally or diverge. Make sure to
clearly label and justify the use of any convergence test used. Note: some of these problems require
convergence tests from previous sections.

(a)

∞∑
n=3

(−1)n

n log2(n)

Solution. We can prove the convergence of this series using the AST. The sequence an = 1
n log2(n)

is positive when n ⩾ 3, decreasing (since n log2(n) is increasing) and lim
n→∞

1
n log2(n)

= 0. So the

AST applies and

∞∑
n=3

(−1)n

n log2(n)
converges.

We need to determine if the convergence is absolute or conditional, that is, we need to determine
whether the series

∞∑
n=3

∣∣∣∣ (−1)n

n log2(n)

∣∣∣∣ = ∞∑
n=3

1

n log2(n)

converges or diverges. To this end, we can use the Integral Test. The function f(x) =
1

x log2(x)
is continuous, positive and decreasing (because x log2(x)

2 is increasing) on [3,∞). Therefore, the
Integral Test applies and we can test for convergence of the series by testing for convergence of the
corresponding improper integral.

To compute the integral, we use the substitution u = log2(x), which gives du = dx
ln(2)x . This gives∫ ∞

3

dx

x log2(x)
= lim

b→∞

∫ b

3

dx

x log2(x)

= lim
b→∞

∫ log2(b)

log2(3)

ln(2)du

u

= ln(2)

∫ ∞

log2(3)

du

u
.

This last integral is a type I p-integral with p = 1, so it diverges. Therefore,

∞∑
n=3

1

n log2(n)
diverges.

In conclusion,

∞∑
n=3

(−1)n

n log2(n)
converges conditionally .
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(b)

∞∑
n=1

(−1)n
2n

n!

Solution. We use the Ratio Test. We have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2n+1

(n+ 1)!
· n!
2n

= lim
n→∞

2

n+ 1

= 0.

Since ρ < 1, we conclude that

∞∑
n=1

(−1)n
2n

n!
converges absolutely .

(c)

∞∑
n=0

n arctan(n)
3
√
8n6 + 1

Solution. Note that this series has non-negative terms. We use the LCT with

∞∑
n=1

bn =

∞∑
n=1

n
3
√
n6

=

∞∑
n=1

1

n
, which diverges as a p-series with p = 1. We have

L = lim
n→∞

an
bn

= lim
n→∞

n arctan(n)
3√8n6+1

1
n

= lim
n→∞

n2 arctan(n)
3
√
8n6 + 1

·
1
n2

1
n2

= lim
n→∞

arctan(n)

3

√
8 + 1

n6

=
π
2
3
√
8

=
π

4
.

Since 0 < L < ∞ and

∞∑
n=1

bn =

∞∑
n=1

1

n
diverges, we deduce that

∞∑
n=0

n arctan(n)
3
√
8n6 + 1

diverges .

(d)

∞∑
n=0

1

3n + cos(n)

Solution. Note that this series has non-negative terms. We use the LCT with

∞∑
n=1

bn =

∞∑
n=0

1

3n
,

which converges as a geometric series with common ratio r = 1
3 , |r| < 1. We have

L = lim
n→∞

an
bn
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= lim
n→∞

1
3n+cos(n)

1
3n

= lim
n→∞

3n

3n + cos(n)
·

1
3n

1
3n

= lim
n→∞

1

1 + cos(n)
3n

.

Because −1 ⩽ cos(n) ⩽ 1, we have

− 1

3n
⩽

cos(n)

3n
⩽

1

3n

and lim
n→∞

− 1
3n = lim

n→∞
1
3n = 0. By the Sandwich Theorem, we obtain lim

n→∞
cos(n)
3n = 0 and

L = lim
n→∞

1

1 + cos(n)
3n

=
1

1 + 0
= 1.

Since 0 < L < ∞ and

∞∑
n=0

bn =

∞∑
n=0

1

3n
converges, we deduce that

∞∑
n=0

1

3n + cos(n)
converges absolutely .

(e)

∞∑
n=2

sec(πn)√
n

Solution. Note that sec(πn) = (−1)n for any integer n. So

∞∑
n=2

sec(πn)√
n

=

∞∑
n=2

(−1)n√
n

,

and the series is alternating. Let us use the AST. The sequence an = 1√
n
is positive, decreasing

(since
√
n is increasing) and lim

n→∞
1√
n
= 0. Therefore, the AST applies and

∞∑
n=2

sec(πn)√
n

converges.

We need to determine if the convergence is absolute or conditional, so we consider the series

∞∑
n=2

∣∣∣∣ sec(πn)√
n

∣∣∣∣ = ∞∑
n=2

1√
n
.

This series is a p-series with p = 1
2 ⩽ 1, so it diverges. In conclusion,

∞∑
n=2

sec(πn)√
n

converges conditionally .

(f)

∞∑
n=2

(−1)n ln

(
n+ 1

n

)
Solution. Let us use the AST with an = ln

(
n+1
n

)
. The sequence an has positive terms since

n+1
n > 1, so ln

(
n+1
n

)
> ln(1) = 0. The sequence an is decreasing since

d

dx
ln

(
x+ 1

x

)
=

d

dx
(ln(x+ 1)− ln(x)) =

1

x+ 1
− 1

x
= − 1

x(x+ 1)
< 0 for x > 0.
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Finally, observe that

lim
n→∞

ln

(
n+ 1

n

)
= lim

n→∞
ln

(
1 +

1

n

)
= ln(1 + 0) = ln(1) = 0.

Therefore, the AST applies and

∞∑
n=2

(−1)n ln

(
n+ 1

n

)
converges.

We need to determine if the convergence is absolute or conditional, so we consider the series

∞∑
n=2

∣∣∣∣(−1)n ln

(
n+ 1

n

)∣∣∣∣ = ∞∑
n=2

ln

(
n+ 1

n

)
=

∞∑
n=2

(ln(n+ 1)− ln(n)) .

This series looks telescoping, and inspecting the partial sums, we see that

SN =

N∑
n=2

(ln(n+ 1)− ln(n))

= (ln(3)− ln(2)) + (ln(4)− ln(3)) + · · ·+ (ln(N)− ln(N − 1)) + (ln(N + 1)− ln(N))

= ln(N + 1)− ln(2).

Therefore,
∞∑

n=2

(ln(n+ 1)− ln(n)) = lim
N→∞

SN = lim
N→∞

(ln(N + 1)− ln(2)) = ∞.

So

∞∑
n=2

(ln(n+ 1)− ln(n)) diverges, and

∞∑
n=2

(−1)n ln

(
n+ 1

n

)
converges conditionally .

(g)

∞∑
n=0

1

e
√
n

Solution. This series is a bit tricky because it is not geometric. Indeed, the exponent of e is
√
n,

and not n. The Root Test is also inconclusive since

lim
n→∞

(
1

e
√
n

)1/n

= lim
n→∞

1

e
√
n/n

= lim
n→∞

1

e1/
√
n
=

1

e0
= 1.

Still, we expect the series to converge because e
√
n grows faster than any power of n (even though

it grows slower than the exponential en). This hints that we might be able to prove convergence
by comparing with a convergent p-series.

So let us use the LCT with

∞∑
n=1

bn =

∞∑
n=1

1

n3/2
, which converges as a p-series with p = 3

2 > 1. We

have

L = lim
n→∞

an
bn

= lim
n→∞

1
e
√

n

1
n3/2

= lim
x→∞

x3/2

e
√
x
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L′H
=
∞
∞

3
2x

1/2

1
2x

−1/2e
√
x

= lim
x→∞

3x

e
√
x

L′H
=
∞
∞

3
1
2x

−1/2e
√
x

= lim
x→∞

6
√
x

e
√
x

L′H
=
∞
∞

3x−1/2

1
2x

−1/2e
√
x

= lim
x→∞

6

e
√
x

= 0.

Since L = 0 and

∞∑
n=1

bn =
∞∑

n=1

1

n3/2
converges, we conclude that

∞∑
n=0

1

e
√
n
converges absolutely .

(h)

∞∑
n=0

(−1)n
n

2n+ 1

Solution. This series is alternating, but the AST does not apply. Indeed, we have

lim
n→∞

n

2n+ 1
= lim

n→∞

1

2 + 1
n

=
1

2
.

It follows that lim
n→∞

(−1)n n
2n+1does not exists. Therefore, the Term Divergence Test tells us that

∞∑
n=0

(−1)n
n

2n+ 1
diverges .

(i)

∞∑
n=3

cos
(π
n

)n2

Solution. Given the exponent n2, the Root Test is tempting here, but it would turn out to be
inconclusive (try it). Let us try to directly compute the limit of the general term to see if the

Term Divergence Test would apply. The limit lim
n→∞

cos
(
π
n

)n2

is an indeterminate power 1∞. Let

us write it as

lim
n→∞

cos
(π
n

)n2

= lim
n→∞

en
2 ln(cos(π

n ))

and compute the limit of the exponent using L’Hôpital’s Rule. We have

lim
n→∞

n2 ln
(
cos

(π
n

))
= lim

x→∞

ln
(
cos

(
π
x

))
1
x2

L′H
=
0
0

lim
x→∞

π
x2 tan

(
π
x

)
− 2

x3

= lim
x→∞

−
π tan

(
π
x

)
2
x
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L′H
=
0
0

lim
x→∞

−
−π2

x2 sec
(
π
x

)2
− 2

x2

= lim
x→∞

−π2

2
sec

(π
x

)2

= −π2

2
sec (0)

2

= −π2

2
.

So

lim
n→∞

cos
(π
n

)n2

= lim
n→∞

en
2 ln(cos(π

n )) = e−π2/2.

Since this limit is not equal to zero, the Term Divergence Test tells us that

∞∑
n=3

cos
(π
n

)n2

diverges .

2. Consider the series

∞∑
n=1

(−1)n

3
√
7n+ 4

.

(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.

Solution. The sequence an = 1
3
√
7n+4

satisfies the following conditions.

�
1

3
√
7n+4

> 0 for any n ⩾ 1.

� The sequence an = 1
3
√
7n+4

is decreasing since 3
√
7n+ 4 is increasing.

� lim
n→∞

1
3
√
7n+4

= 0.

Therefore,

∞∑
n=1

(−1)n

3
√
7n+ 4

meets the conditions of the Alternating Series Estimation Theorem .

(b) Find the smallest integer N for which the partial sum SN =

N∑
n=1

(−1)n

3
√
7n+ 4

approximates the sum

of the series with an error of at most 0.1.

Solution. The Alternating Series Estimation Theorem tells us that the best estimate for the error
is |S − SN | ⩽ aN+1. Therefore, we will want aN+1 ⩽ 0.1. This gives

1
3
√
7(N + 1) + 4

⩽ 0.1

⇒ 3
√
7N + 11 ⩾ 10

⇒ 7N + 11 ⩾ 1000

⇒ 7N ⩾ 989

⇒ N ⩾
989

7
≃ 141.3.

Therefore, the smallest value of N giving us the desired error is N = 142 .
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3. Consider the series

∞∑
n=0

(−1)n+1

23n−7 + 9
.

(a) Show that this series meets the conditions of the Alternating Series Estimation Theorem.

Solution. The sequence an = 1
23n−7+9 satisfies the following conditions.

�
1

23n−7+9 > 0 for any n ⩾ 0.

� The sequence an = 1
23n−7+9 is decreasing since 23n−7 + 11 is increasing.

� lim
n→∞

1
23n−7+9 = 0.

Therefore,

∞∑
n=0

(−1)n+1

23n−7 + 9
meets the conditions of the Alternating Series Estimation Theorem .

(b) Find the smallest integer N for which the partial sum SN =

N∑
n=0

(−1)n+1

23n−7 + 9
approximates the sum

of the series with an error of at most 10−3.

Solution. The Alternating Series Estimation Theorem tells us that the best estimate for the error
is |S − SN | ⩽ aN+1. Therefore, we will want aN+1 ⩽ 10−3. This gives

1

23(N+1)−7 + 9
⩽ 10−3

⇒ 23N−4 + 9 ⩾ 1000

⇒ 23N−4 ⩾ 991

⇒ 3N − 4 ⩾ 10 (29 = 512, 210 = 1024)

⇒ N ⩾
14

3
≃ 4.7.

Therefore, the smallest value of N giving us the desired error is N = 5 .
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