10.7.1 Find the interval and radius of convergence for a power series	$10.7: 2,4,5,8,14,15,22,23,26,30,37,39,40$
10.7 .2 Find the interval of convergence and using Theorem 20	$10.7: 41,44,45,48$
10.7.3 Find the power series representation of a rational function using the power series representation of $1 /(1+\mathrm{x})$	$10.7: 50$
10.7.4 Find the power series representation of a new function by using the power series representation of other functions by either term by term differentiation or integration	$10.7: 53,54,56,60 ;$ Also: $10.10: 61$
10.7.5 Using some information on convergence at some values to find the convergence on other values.	$10.7: 62$

Conceptual introduction:
A polynomial is a function of x of the form

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d} x^{d}=\sum_{n=0}^{d} c_{n} x^{n}
$$

A power series (about $x=0$) is an infinite series of the form

$$
c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

A power series about $x=a$ is an infinite series of the form

$$
c_{0}+c_{1}(x-a)+g_{2}(x-a)^{2}+\cdots+c_{n}(x-a)^{n}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

The interval of convergence (IOC) of a power series is the interval consisting of all values of x for which the series converges. It is an interval centered at a, whose radius R is called the radius of convergence ($R \circ C$).

Examples: 1) $f(x)=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$.
Find the radius and interval of convergence of f.
$f(x)=\sum_{n=0}^{\infty} x^{n}$ is a geometric series with common ratio x. So f converges when $|x|<1 \Rightarrow-1<x<1$.

Sum of the series: $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ for $-1<x<1$.
2) $f(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{n 3^{n}}=\frac{-(x-1)}{3}+\frac{(x-1)^{2}}{2 \cdot 9}-\frac{(x-1)^{3}}{3 \cdot 27}+\cdots$

Find the radius and interval of convergence of f.

This time, f is not a geometric series. We can try use the Ratio Test.

$$
\begin{aligned}
p & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-1)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^{n}}{(-1)^{n}(x-1)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n|x-1|}{3(n+1)} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{|x-1|}{3\left(1+\frac{1}{n}\right)}=\frac{|x-1|}{3} .
\end{aligned}
$$

Series converges absolutely when

$$
\rho=\frac{|x-1|}{3}<1 \Rightarrow|x-1|<3 \Rightarrow-3<x-1<3 \Rightarrow-2<x<4
$$

Series diverges when $\rho=\frac{|x-1|}{3}>1$, i.e. $x<-2$ or $x>4$.

Test inconclusive when $p=\frac{|x-1|}{3}=1$, i.e $x=-2,4$.
So we must test $x=-2,4$ separately.

- At $x=-2: \sum_{n=1}^{\infty} \frac{(-1)^{n}(-2-1)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}(-3)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (p-series with $p=1$)
- At $x=4: \sum_{n=1}^{\infty} \frac{(-1)^{n}(4-1)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges by the AST since $\left\{\frac{1}{n}\right\}$ is decreasing, positive and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Conclusion:

$$
\begin{aligned}
I O C & =(-2,4] \\
R & =3
\end{aligned}
$$

Remark: what if we change f to:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{n^{2} 3^{n}} \quad \text { or } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n} n(x-1)^{n}}{3^{n}} \text { ? }
$$

Radius stays the same but behavior at endpoints changes.

- $\left.\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-1)^{n}}{n^{2} 3^{n}} \underset{x=4}{ } \begin{array}{l}x=-2 \\ \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}\end{array}\right\} \begin{aligned} & \text { both } \begin{array}{l}\text { converge (} p \text {-series. } p=2>1 \text {), } \\ \text { so } \\ \text { Ioc }=[-2,4]] .\end{array}\end{aligned}$
- $\left.\sum_{n=1}^{\infty} \frac{(-1)^{n} n(x-1)^{n}}{3^{n}} \xrightarrow{x=-2} \sum_{n=1}^{\infty} n \sum_{n=1}^{\infty}(-1)^{n} n\right\} \begin{aligned} & \text { both diverge (Term Divergence Tot) } \\ & \text { so Ioc=(-2,4). }\end{aligned}$

3) $f(x)=\sum_{n=0}^{\infty} n!(x+2)^{n}=1+(x+2)+2(x+2)^{2}+6(x+2)^{3}+24(x+2)^{4}+\ldots$

Find the radius and interval of convergence of f.

We use the Ratio Test.

$$
p=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x+2)^{n+1}}{n!(x+2)^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)|x+2|=\left\{\begin{array}{lll}
0 & \text { if } & x=-2 \\
\infty & \text { if } & x \neq-2
\end{array}\right.
$$

So f converges for $x=-2$ only.

$$
\begin{aligned}
& I O C=\{2\} \\
& R=0
\end{aligned}
$$

4) $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}=x+\frac{x^{2}}{4}+\frac{x^{3}}{27}+\cdots$

Find the radius and interval of convergence of f.

We use the Root Test.

$$
p=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{x^{n}}{n^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x|}{n}=0
$$

So f converges for any value of x.

$$
\begin{aligned}
I_{O C} & =(-\infty, \infty) \\
R & =\infty
\end{aligned}
$$

Important remarks:

- A power series always converges absolutely in the interior of the IOC.
- If $0<R<\infty$, anything can happen at the endpoints. Series may converge absolutely, converge conditionally or diverge \Rightarrow test case by case.
- Ratio / Root Tests are helpful to find Roc, but always inclusive at endpoints.

Example: if $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges at $x=2$ and diverges at $x=-5$, what can we say about convergence or divergence at $x=-1,7,-2$?

We know the radius R is at least 2 , at most 5 . $x=-1$: absolute convergence since $|x|<R$.
$x=7$: diverges since $|x|>R$.
$x=-2$: cannot conclude anything.

Operations on power series:

- Substitution: if $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely for $|x|<R$ then $\sum_{n=0}^{\infty} c_{n} f(x)^{n}$ converges absolutely for $|f(x)|<R$.

Example: Find a power series representation of $g(x)=\frac{3}{4+x^{2}}$.

We can write g as a power series using the power series $\quad \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad$ converges absolutely if $|x|<1$ $g(x)=\frac{3}{4+x^{2}}=\frac{3}{4} \cdot \frac{1}{1-\left(-\frac{x^{2}}{4}\right)}=\frac{3}{4} \sum_{n=0}^{\infty}\left(\frac{-x^{2}}{4}\right)^{n}=\frac{3}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{4^{n}}$, and this converges absolutely if $\left|-\frac{x^{2}}{4}\right|<1$, ie. $\left|x^{2}\right|<4$
i.e $\quad|x|<2$.

- Term-by-term differentiation and integration:

If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}
$$

$$
\int f(x) d x=\sum_{n=0}^{\infty} \frac{c_{n}(x-a)^{n+1}}{n+1}+C
$$

and both series have same Roc as $f R$. 4. IOC/behavior at endpoints may change.

Examples: 1) Find a power series representation of $\frac{1}{(1-x)^{2}}$ and give its Roc.
We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad R=1$
So $\frac{d}{d x}\left(\frac{1}{1-x}\right)=\sum_{n=0}^{\infty} \frac{d}{d x} x^{n} \quad$ (term-by-term differentiation)

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}, \quad R=1
$$

2) Find a power series representation of $\ln (1+x)$ and find its ROC and IOC.

We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \quad \text { for }|-x|<1 \Rightarrow R=1 . \\
& \Rightarrow \quad \int \frac{d x}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} \int x^{n} d x \quad \begin{array}{c}
(\text { term-by-term } \\
\text { integration }
\end{array} \\
& \quad \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+C \quad \text { with } R=1 .
\end{aligned}
$$

To find C, plug-in $x=0: \ln (1)=C$ so $C=0$.
Conclusion:

$$
\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots
$$

We already know $R=1$ since term-by-term integration does not change the ROC. To find the IOC, we must
test the endpoinds $x=-1,1$

- At $x=1$: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges by AST
- At $x=-1: \sum_{n=1}^{\infty}(-1)^{n-1} \frac{(-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{-1}{n}$ diverges $(p$-series, $p=1$)

So $\operatorname{IOC}=(-1,1]$.
3) Find a power series representation of $\tan ^{-1}(x)$ and find its ROC and IOC.

We know $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{1+x^{2}}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\end{array} \quad \text { for }\left|-x^{2}\right|<1 \Rightarrow R=1 . ~\left(\begin{array}{ll}
\text { term-by-term } \\
\Rightarrow \quad \int \frac{d x}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \int x^{2 n} & \text { with } R=1 .
\end{array}\right.
$$

To find C, plug-in $x=0$: $\tan ^{-1}(0)=C$ so $C=0$.
Conclusion:

$$
\tan ^{-1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \cdots
$$

We already know $R=1$. Test endpoints $x=-1,1$:
$\left.\begin{array}{rl}\text { - At } x=1: & \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \\ \text { - At } x=-1: & \sum_{n=0}^{\infty} \frac{-(-1)^{n}}{2+1}\end{array}\right\} \begin{array}{r}\text { both converge by AST } \\ \Rightarrow I O C=[-1,1]\end{array}$

- At $x=-1: \sum_{n=0}^{\infty} \frac{-(-1)^{n}}{2 n+1} \quad \Rightarrow I O C=[-1,1]$.

Practice:

1) Find the radius and interval of convergence of the following power series.
a) $\sum_{n=0}^{\infty} \frac{(x+3)^{2 n}}{4^{n} \sqrt{n}}$
b) $\sum_{n=0}^{\infty} \frac{x^{n}}{(2 n)!}$
c) $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{3^{n}\left(n^{2}+1\right)}$
2) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n}(2 n)!} x^{n}$
3) a) Find a power series representation of $\frac{1}{2-3 x}$ centered at $a=-1$ and give its interval of convergence.
b) Find a power series representation of $\ln (2-3 x)$ centered at $a=-1$ and give its interval of convergence.
4) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}=1+\frac{2}{2}+\frac{3}{4}+\frac{4}{8}+\cdots$

Solutions:

1) a) Root Test:

$$
p=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(x+3)^{2 n}}{4^{n} \sqrt{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x+3|^{2}}{4 n^{1 / 2 n}}=\frac{|x+3|^{2}}{4}
$$

The series converges when $\frac{|x+3|^{2}}{4}<1 \Rightarrow|x+3|^{2}<4$

$$
\Rightarrow|x+3|<2 \Rightarrow-5<x<-1
$$

So the radius of convergence is $R=2$
We need to test for convergence at the endpoints $x=-5,-1$.
At $x=-5: \sum_{n=0}^{\infty} \frac{(-5+3)^{2 n}}{4^{n} \sqrt{n}}=\sum_{n=0}^{\infty} \frac{(-2)^{2 n}}{4^{n} \sqrt{n}}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges (p-series $\underset{p=1 / 2}{ }$)
At $x=-1: \quad \sum_{n=0}^{\infty} \frac{(-1+3)^{2 n}}{4^{n} \sqrt{n}}=\sum_{n=0}^{\infty} \frac{2^{2 n}}{4^{n} \sqrt{n}}=\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}}$ diverges $(p-$ series,$p=1 / 2)$

So the IOC is $(-5,-1)$.
b) Ratio Test:

$$
p=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(2(n+1))!} \cdot \frac{(2 n)!}{x^{n}}\right|=\lim _{n \rightarrow \infty}|x| \frac{(2 n)!}{(2 n+2)!}=\lim _{n \rightarrow \infty} \frac{|x|}{(2 n+1)(2 n+2)}=0
$$

So the series converges absolutely for any x.
Therefore, $\quad R=\infty$, interval of convergence $=(-\infty, \infty)$
c) Root Test:

$$
p=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(x-2)^{n}}{3^{n}\left(n^{2}+1\right)}\right|}=\lim _{n \rightarrow \infty} \frac{|x+2|}{3\left(n^{2}+1\right)^{1 / n}}=\lim _{n \rightarrow \infty} \frac{|x+2|}{3 n^{2 / n}(1+1 / 2)^{1 / n}}=\frac{|x+2|}{3}
$$

So the series converges absolutely when $\frac{|x+2|}{3}<1$

$$
|x+2|<3
$$

$$
-5<x<1 . \quad \Rightarrow \quad R=3 .
$$

Test endpoints:
At $x=-5$: $\sum_{n=0}^{\infty} \frac{(-5+2)^{n}}{3^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}+1}$ converges absolutely
by the DCT since $0 \leqslant\left|\frac{(-1)^{n}}{n^{2}+1}\right| \leqslant \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (p-series with $p=2>1$)
At $x=1$: $\sum_{n=0}^{\infty} \frac{(1+2)^{n}}{3^{n}\left(n^{2}+1\right)}=\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ converges (same argument as before).
So the interval of convergence is $[-5,1]$.
2) Ratio Test:

$$
\begin{aligned}
& p=\lim _{n \rightarrow \infty}\left|\frac{((n+1)!)^{2} x^{n+1}}{2^{n+1}(2 n+2)!} \cdot \frac{2^{n}(2 n)!}{(n!)^{2} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}|x|}{2(2 n+1)(2 n+2)} \cdot \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2}|x|}{2\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)}=\frac{|x|}{8}
\end{aligned}
$$

So $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n}(2 n)!} x^{n} \quad$ converges absolutely when $\frac{|x|}{8}<1$, ie. $|x|<8$ diverges if $\frac{|x|}{8}>1$, ie. $|x|>8$.
So $R=8$.
3) a) $\frac{1}{2-3 x}=\frac{1}{5-3(x+1)}=\frac{1}{5} \cdot \frac{1}{1-\frac{3(x+1)}{5}}=\frac{1}{5} \sum_{n=0}^{\infty}\left(\frac{3(x+1)}{5}\right)^{n}=\sum_{n=0}^{\infty} \frac{3^{n}(x+1)^{n}}{5^{n+1}}$

Interval of convergence: $\left|\frac{3(x+1)}{5}\right|<1 \Rightarrow-\frac{5}{3}<x+1<\frac{5}{3}$

$$
-\frac{8}{3}<x<\frac{2}{3}
$$

$$
\Rightarrow\left(-\frac{8}{3}, \frac{2}{3}\right)
$$

b)

$$
\begin{aligned}
& \frac{1}{2-3 x}=\sum_{n=0}^{\infty} \frac{3^{n}(x+1)^{n}}{5^{n+1}} \\
& \int \frac{d x}{2-3 x}=\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n+1}} \int(x+1)^{n} d x \\
& -\frac{\ln (2-3 x)}{3}=\sum_{n=0}^{\infty} \frac{3^{n}(x+1)^{n+1}}{5^{n+1}(n+1)}+ \\
& \ln (2-3 x)=-\sum_{n=0}^{\infty} \frac{3^{n+1}(x+1)^{n+1}}{5^{n+1}(n+1)}+C
\end{aligned}
$$

Plug in $x=-1 \Rightarrow C=\ln (5)$. So

$$
\ln (2-3 x)=\ln (5)-\sum_{n=1}^{\infty} \frac{3^{n}(x+1)^{n}}{5^{n} n}
$$

Interval of convergence: $\left[-\frac{8}{3}, \frac{2}{3}\right)$
4) $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}=\sum_{n=1}^{\infty} n x^{n-1}$ with $x=\frac{1}{2}$.

Let $f(x)=\sum_{n=1}^{\infty} n x^{n-1}$. Then $\int f(x) d x=\sum_{n=1}^{\infty} n \int x^{n-1} d x$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} x^{n}+c \\
& =\frac{1}{1-x}+c
\end{aligned}
$$

So $f(x)=\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}$
Therefore $\sum_{n=1}^{\infty} \frac{n}{2^{n-1}}=f\left(\frac{1}{2}\right)=\frac{1}{\left(1-\frac{1}{2}\right)^{2}}=4$.

