Section 10.7

Power Series

Learning Goals

10. por	10.7.1 Find the interval and radius of convergence for a power series								10.7	10.7: 2,4,5,8,14,15,22,23,26,30,37,39,40								
10. 20	 10.7.2 Find the interval of convergence and using Theorem 20 10.7.3 Find the power series representation of a rational function using the power series representation of 1/(1+x) 								10.7	10.7: 41,44,45,48								
10. fur									10.7	10.7: 50								
10. by eit	.7.4 Find the power series representation of a new function using the power series representation of other functions by her term by term differentiation or integration							10.7	10.7: 53,54,56,60; Also: 10.10: 61									
10. val	10.7.5 Using some information on convergence at some values to find the convergence on other values.								10.7	10.7:62								
																	-	

Conceptual introduction: A <u>polynomial</u> is a function of x of the form $c_0 + c_1 \times + c_2 \times^2 + \cdots + c_d \times^d = \sum_{n=0}^{\infty} c_n \times^n.$ A power series (about x = 0) is an infinite series of the form $c_0 + c_1 \times + c_2 \times^2 + \cdots + c_n \times^n + \cdots = \sum_{n=1}^{\infty} c_n \times^n$ A power series about x= a is an infinite series of the form $c_{0} + c_{1}(x-a) + c_{2}(x-a)^{2} + \dots + c_{n}(x-a)^{n} + \dots = \sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ The interval of convergence (IDC) of a power series is the interval consisting of all values of x for which the series converges. It is an interval centered at a, whose radius R is called the <u>radius of convergence</u> (ROC). Examples : 1) $f(x) = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$ Find the radius and interval of convergence of f. $f(x) = \sum_{n=0}^{\infty} x^n$ is a geometric series with common ratio x. So f converges when $|x| < 1 \Rightarrow -1 < x < 1$. $\begin{array}{c|c} & \text{diverges} \\ \hline & & \text{l} \\ \hline & & \text{converges} \end{array} \end{array} \begin{array}{c} & \text{So} \\ \hline & & \text{IOC} = (-1,1) \\ \hline & & \text{R} = 1 \end{array}$ Sum of the series: $f(x) = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for -1 < x < 1.

2)
$$f(x) = \sum_{n=1}^{\infty} (-1)^n (x-1)^n = -(x-1)^n + (x-1)^n - (x-1)^n + (x-1$$

So f converges for any value of x.
TEC =
$$(-\infty, \infty)$$

R = ∞

Important remarks:
A power series always converges absolutely in the
interior of the TOC.
• If $0 < R < \infty$, anything can happen at the endpoints.
Series may converge absolutely, converge conditionally or
diverge = test case by case.
• Ratio / Root Tests are helpful to find Roc, but
always inclusive at endpoints.

Example : if $f(x) = \sum_{n=0}^{\infty} c_n x^n$ converges at $x = R$ and
diverges at $x = -5$, what can we say about convergence
or divergence at $x = -1$, 7 , -2 ?
We know the radius R is at least 2, at most 5.
 $x = -1$: absolute convergence since $|x| > R$.
 $x = -2$: cannot conclude anything.

Operations on power series : <u>Substitution</u>: if
 Cn xⁿ converges absolutely for IXI<R then $\sum_{n=0}^{\infty} c_n f(x)^n$ converges absolutely for |f(x)| < R. Example: Find a power series representation of $g(x) = \frac{3}{4 + x^2}$ We can write g as a power series using the power series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ converges absolutely if |x| < 1 $g(x) = \frac{3}{4+x^2} = \frac{3}{4} \cdot \frac{1}{1-\left(-\frac{x^2}{4}\right)} = \frac{3}{4} \cdot \frac{5^{\infty}}{1-\left(-\frac{x^2}{4}\right)^n} = \frac{3}{4} \cdot \frac{5^{\infty}}{1-0} \cdot \frac{(-1)^n \times 2^n}{4^n}, \text{ and this}$ converges absolutely if $\left|\frac{x^2}{4}\right| < 1$, i.e. $|x^2| < 4$ i.e. |x| < 2. Term - by - term differentiation and integration: If $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, then $f'(x) = \sum_{n=1}^{\infty} nc_n (x - a)^{n-1}$ n= o since the term would be o $\int f(x) dx = \sum_{n=0}^{\infty} C_n (x-\alpha)^{n+1} + C$ and both series have same Roc as f R. A TOC / behavior at endpoints may change.

Examples: 1) Find a power series representation of

$$\frac{1}{(1-x)^{2}} \quad \text{and give its Roc.}$$
We know $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}$ $R=1$
 $so \quad \frac{d}{dx} \left(\frac{1}{1-x}\right) = \sum_{n=0}^{\infty} \frac{d}{dx} \left(\frac{1}{1-x}\right)^{n}$ $R=1$
 $\frac{1}{(1-x)^{2}} = \sum_{n=1}^{\infty} nx^{n-1}$, $R=1$
2) Find a power series representation of $\ln(1+x)$ and find
its Roc and Toc.
We know $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}$ for $|x| < 1$
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-x)^{n} = \sum_{n=0}^{\infty} (-1)^{n} x^{n}$ for $|-x| < 1 = R=1$.
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} \int x^{n} dx$ (term - by -term
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} \int x^{n} dx$ (term - by -term
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} \int x^{n} dx$ (term - by -term
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} \int x^{n} dx$ (term - by -term
 $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n+1} + C$ with $R = 1$.
To find C, plag-in $x = 0$: $\ln(1) = C$ so $C = 0$.
Conclusion:
 $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n}}{n} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots$
We already know $R = 1$ since term by -term integration
does not change the Roc. To find the Toc, we must

tast the endpoinds
$$x = -1, 1$$

• At $x = 1$: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges by AST
• At $x = -1$: $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{-1}{n}$ diverges $(p \text{ series}, p = 1)$
So $TOC = (-1, 1]$.
3) Find a power series representation of $\tan^{-1}(x)$ and find
its Roc and TOC .
We know $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for $|x| < 1$
 $= \frac{1}{(+x^2)} = \sum_{n=0}^{\infty} (-1)^n \int x^{2n}$ for $|-x^{+}| < 1 \Rightarrow R = 1$.
 $= \int \frac{dx}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n \int x^{2n}$ (term - by term
integration)
tan⁻¹(x) = $\sum_{n=0}^{\infty} (-1)^n \int x^{2n}$ (term - by term
integration)
tan⁻¹(x) = $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$
We already know $R = 1$. Test endpoint $x = -1, 1$
 $At = x = -1$: $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \sum_{n=0}^{\infty} \frac{TOC = [-1,1]}{2n+1}$

Practice:
1) Find the radius and interval of convergence of the
following power series.
a)
$$\sum_{n=0}^{\infty} \frac{(x+3)^{2n}}{4^{2}\sqrt{n}}$$
 b) $\sum_{n=0}^{\infty} \frac{x^{n}}{(2n)!}$ c) $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{3^{2}(n^{2}+1)}$
a) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{(n^{1})^{2}}{2^{2}(n)!}$
a) a) Find a power series representation of $\frac{1}{2r+3n}$ centered
at $a = -1$ and give its interval of convergence.
b) Find a power series representation of $\ln(d^{2}-3n)$ centered
at $a = -1$ and give its interval of convergence.
b) Find a power series representation of $\ln(d^{2}-3n)$ centered
at $a = -1$ and give its interval of convergence.
b) Find a power series representation of $\ln(d^{2}-3n)$ centered
at $a = -1$ and give its interval of convergence.
4) Evaluate $\sum_{n=1}^{\infty} \frac{n}{2^{n+1}} = 1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \cdots$
Solutions:
i) a) Root Test:
 $p = \lim_{n \to \infty} \sqrt{\frac{1}{4^{n}\sqrt{n}}} = \lim_{n \to \infty} \frac{1\times 31^{n}}{4n^{3}n} = \frac{1\times 431^{n}}{4}$
The series converges when $\frac{1\times 31^{n}}{4} = \frac{1\times 431^{n}}{4} = \frac{1\times 431^{n}}{4} = \frac{1\times 431^{n}}{4}$
b) the radius of convergence is $\frac{R}{2} = 2$
We need to test for convergence at the endpoints $x = -5, -1$.
At $x = -5$: $\sum_{n=0}^{\infty} \frac{(-5x)^{2n}}{4^{n}\sqrt{n}} = \sum_{n=0}^{\infty} \frac{2^{n}}{4^{n}\sqrt{n}} = \sum_{n=0}^{\infty} \frac{1}{4^{n}}$ diverges (p-series prive)
At $x = -1$: $\sum_{n=0}^{\infty} \frac{(-1)^{2n}}{4^{n}\sqrt{n}} = \sum_{n=0}^{\infty} \frac{2^{n}}{4^{n}\sqrt{n}}$ diverges (p-series prive)

So the TOC is
$$(-5,-1)$$
.
b) Ratio Test:
 $p = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(x^{(n+1)})!} \cdot \frac{(2n)!}{x^n} \right| = \lim_{n \to \infty} |x| \frac{(2n)!}{(2n+2)!} = \lim_{n \to \infty} \frac{|x|}{(2n+2)!} = 0$
So the series converges absolutely for any x.
Therefore, $R = \infty$, interval af convergence $= (-\infty, \infty)$
c) Root Test:
 $p = \lim_{n \to \infty} \sqrt{\left[\frac{(x+2)^n}{3^n(n+1)}\right]} = \lim_{n \to \infty} \frac{|x+2|}{3(n^2+1)^{1/n}} = \lim_{n \to \infty} \frac{|x+2|}{3(n^2+1)^{1/n}} = \frac{|x+2|}{3}$
So the series converges absolutely when $\frac{|x+2|}{|x+2|} < 1$
 $R = 3$.
Test endpoints
At $x = -5$: $\sum_{n=0}^{\infty} \frac{(s+2)^n}{2^n(n^2+1)} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^2+1} = converges absolutely$
by the DCT since $0 \le \left[\frac{(-1)^n}{n^2+1}\right] \le \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges $(p = scries with p = 2 > 1)$
At $x = 1$: $\sum_{n=0}^{\infty} \frac{(1+2)^n}{2^n(n^2+1)} = \sum_{n=0}^{\infty} \frac{1}{n^2+1}$ converges $(s = argument)$
 $a = before$).
So the interval of convergence is $[-5,1]$.
A) Ratio Test:
 $p = \lim_{n \to \infty} \left| \frac{(n+1)!}{2^{n+1}} \right| = 1 \times 1$
 $n = \infty$ $\frac{(n+1)!}{2^{n+1}} |x| = 1 \times 1$
 $n = \lim_{n \to \infty} \frac{((n+1)!)!}{2^{n+1}} |x| = 1 \times 1$
 $n = \max \frac{((n+1)!!}{2^{n+1}} |x| = 1 \times 1$

