Section 10.7: Power Series - Worksheet

1. Find the radius and interval of convergence of the power series below. Specify for which values of x in the interval of convergence the series converges absolutely and for which it converges conditionally.
(a) $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{\sqrt[3]{n} 5^{n}}$.
(c) $\sum_{n=0}^{\infty} n 3^{n}(2 x+1)^{n}$.
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-4)^{2 n}}{36^{n} \sqrt{n}}$.
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-9)^{3 n}}{8^{n}(n+1)}$.
(d) $\sum_{n=0}^{\infty} \frac{n^{n}(x+2)^{n}}{6^{n}}$.
(f) $\sum_{n=0}^{\infty} \frac{(3 x+2)^{n}}{n^{2}+4}$.
2. Find the radius of convergence of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{2 n}$.
(b) $\sum_{n=1}^{\infty}\left(1-\frac{3}{n}\right)^{n^{2}}(x+5)^{n}$.
(c) $\sum_{n=0}^{\infty} \frac{n!}{n^{n}} x^{n}$.
3. Suppose that a power series converges absolutely at $x=5$, converges conditionally at $x=-3$ and diverges at $x=11$. What can you say, if anything, about the convergence or divergence of the power series at the following values of x ?
(a) $x=-4$.
(b) $x=2$.
(c) $x=15$.
(d) $x=7$.
4. Let $f(x)=\frac{3}{2+7 x}$. Use the power series representation of $\frac{1}{1-x}$ and power series operations to find a power series representation of $f(x)$ centered at $a=0$. What are the radius and interval of convergence of the resulting power series?
5. Consider the power series $f(x)=\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{3^{n}(n+1)}$.
(a) Find the radius and interval of convergence of f.
(b) Find a power series representation of $f^{\prime}(x)$ centered at $a=-1$. What are its radius and interval of convergence?
(c) Let $g(x)$ be the antiderivative of $f(x)$ such that $g(-1)=-8$. Find a power series representation of $g(x)$ centered at $a=-1$. What are its radius and interval of convergence?
6. (a) Use term-by-term differentiation to find a power series representation of $\frac{1}{(1-x)^{2}}$. What is its raidus of convergence?
(b) Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{5^{n}}$.
