Section 10.8
Taylor and Maclacerin Series

Learning Goals

10.8.1 Find the Nth degree Taylor polynomial for a function about a given center for a finite N	10.8: $1,4,8$ Also 10.9: 31,35
10.8.2 Find the Maclaurin series for a function	$10.8: 12,13,19,21,22$
10.8.3 Find the Taylor series for a function about a given center	$10.8: 25,27,28,31,41,42$
10.8.4 Find the first N terms of or the whole Maclaurin series for a function using either multiplication of another Maclaurin series by $\mathrm{x} \wedge \mathrm{n}$ or by multiplying or dividing two other Maclaurin series	10.8: 37,38,40. Also 10.9:31

Conceptual introduction: in the previous section, we have seen that certain functions can be written as sums of power series in certain intervals:

$$
\begin{aligned}
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad \text { for }-1<x<1 \\
& \ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n} \quad \text { for }-1<x \leq 1 \\
& \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} \quad \text { for }-1 \leq x \leq 1
\end{aligned}
$$

How can we do this in general?
Given a function $f(x)$, we seek coefficients c_{n} such that near $x=a$ we have:

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots \\
& \rightarrow \quad c_{0}=f(a) \\
& \text { of } \quad x=a \\
& f^{\prime}(x)=\sum_{n=1}^{\infty} c_{n} n(x-a)^{n-1}=c_{1}+2 g_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots \\
& x=a \quad c_{1}=f^{\prime}(a) \\
& f^{\prime \prime}(x)=\sum_{n=2}^{\infty} c_{n} n(n-1)(x-a)^{n-2}=2 c_{2}+6 c_{3}(x-a)+12 c_{4}(x-a)^{2}+\cdots \\
& \xrightarrow[x=a]{ } f^{\prime \prime}(a)=2 c_{2} \text { or } \quad c_{2}=\frac{f^{\prime \prime}(a)}{2} \\
& f^{(3)}(x)=\sum_{n=3}^{\infty} c_{n} n(n-1)(n-2)(x-a)^{n-3}=6 c_{3}+24 \varepsilon_{4}(x-a)+\cdots \\
& \longrightarrow f^{(3)}(a)=6 c_{3} \text { or } \quad c_{3}=\frac{f^{(3)}(a)}{6}
\end{aligned}
$$

Continuing, we find $c_{n}=\frac{f^{(n)}(a)}{n!}$

Definition: let f be a function with derivatives of all orders in an open interval containing a.

- The $N^{\text {th }}$ degree Taylor polynomial of f at $x=a$ is

$$
\begin{aligned}
T_{N}(x) & =\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N}
\end{aligned}
$$

- The Taylor series of f at $x=a$ is the power series

$$
\begin{aligned}
T(x)= & \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots
\end{aligned}
$$

Maclaurin polynomial/series: case where the center $a=0$.

Interpretation: $T_{N}(x)$ is the best $N^{\text {th }}$ degree polynomial approximation of f near $x=a$.

Examples: 1) Find the $3^{\text {rd }}$ degree Taylor polynomial of $f(x)=\sqrt{x}$ at $x=1$ and use it to approximate $\sqrt{1.4}$.

We calculate $c_{0}, c_{1}, c_{2}, c_{3}$.

n	$f^{(n)}(x)$	$c_{n}=\frac{f^{(n)}(1)}{n!}$
0	$x^{1 / 2}$	$\frac{1}{0!}=1$
1	$\frac{1}{2} x^{-1 / 2}$	$\frac{\frac{1}{2}}{1!}=\frac{1}{2}$
2	$-\frac{1}{4} x^{-3 / 2}$	$\frac{-\frac{1}{4}}{2!}=-\frac{1}{8}$
3	$\frac{3}{8} x^{-5 / 2}$	$\frac{-\frac{3}{8}}{6}=\frac{1}{16}$

So $\quad T_{3}(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$.

Approximation of $\sqrt{1.4}$:

$$
\sqrt{1.4}=f(1.4) \text { and } f(x) \approx T_{3}(x) \text { if } x \text { close to } 1 \text {. }
$$

So $\sqrt{1.4} \approx T_{3}(1.4)=1+\frac{1}{2}(1.4-1)-\frac{1}{8}(1.4-1)^{2}+\frac{1}{16}(1.4-1)^{3}$

$$
=1.184
$$

Actual value: $\sqrt{1.4}=1.18321 \cdots$
We will investigate issues of accuracy of approximation in the next section.
2) Find the Maclaurin series of $f(x)=e^{x}$ and its radius and interval of convergence.

We have $f^{(n)}(x)=e^{x}$
So $c_{n}=\frac{f^{(n)}(0)}{n!}=\frac{e^{0}}{n!}=\frac{1}{n!}$
Therefore $T(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
Ratio Test : $\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0$ so convergence foo all x.
So $R=\infty$, interval of convergence is $(-\infty, \infty)$
3) Find the $4^{\text {th }}$ degree Taylor polynomial and the Taylor series of $f(x)=\frac{1}{x}$ centered at $x=2$.

We calculate $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$

n	$f^{(n)}(x)$	$c_{n}=\frac{f^{(n)}(2)}{n!}$
0	x^{-1}	$\frac{1}{2}$
1	$-x^{-2}$	$-\frac{1}{4}$
2	$2 x^{-3}$	$\frac{1}{8}$
3	$-6 x^{-4}$	$-\frac{1}{16}$
4	$24 x^{-5}$	$\frac{1}{32}$

$$
\Rightarrow \quad T_{4}(x)=\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}+\frac{1}{32}(x-2)^{4}
$$

We notice the pattern $f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}}$ so $c_{n}=\frac{f^{(n)}(2)}{n!}=\frac{(-1)^{n}}{2^{n+1}}$
Therefore $T(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{2^{n+1}}$
Can we check that $T(x)=f(x)$ in this case?
$T(x)=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{2-x}{2}\right)^{n} \quad$ geometric series with common ratio $r=\frac{2-x}{2}$, so converges if $-1<\frac{2-x}{2}<1 \Rightarrow 0<x<4$

$$
=\frac{1}{2} \cdot \frac{1}{1-\frac{2-x}{2}}=\frac{1}{2-(2-x)}=\frac{1}{x}=f(x)
$$

It is not always the case that $T(x)=f(x)$ in the interval of convergence of $T(x)$ - see example at the end of notes.

But if we have a power series representation of f centered at $x=a \quad f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, then this power series must be the Taylor series of f at $x=a$ so we must have $\quad c_{n}=\frac{f^{(n)}(a)}{n!}$.

Examples: 1) Suppose that $f(x)=\sum_{n=0}^{\infty} \frac{2 n}{n^{2}+1}(x-5)^{n}$. Find $f^{(7)}(5)$.

We know that $\sum_{n=0}^{\infty} \frac{2 n}{n^{2}+1}(x-5)^{n}$ is the Taylor series of f. take $n=7$
So $\frac{f^{(7)}(5)}{7!}=$ coefficient of $(x-5)^{7}$

$$
\frac{f^{(7)}(5)}{7!}=\frac{2.7}{7^{2}+1} \Rightarrow f^{(7)}(5)=7!\frac{14}{50}=\frac{7056}{5}
$$

2) Suppose that $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{3^{n} n!}$. Find $f^{(4)}(0), f^{(5)}(0)$.

$$
\frac{f^{(4)}(0)}{4!}=\text { coefficient of } x^{4^{2 n}=4 \Rightarrow \text { take } n=2}
$$

$$
\frac{f^{(4)}(0)}{4!}=\frac{(-1)^{2}}{3^{2} 2!} \Rightarrow f^{(4)}(0)=\frac{4!}{3^{2} 2!}=\frac{4}{3}
$$

$$
\frac{f^{(5)}(0)}{5!}=\text { coefficient of } x^{5^{2 n=5} \Rightarrow \text { impossible }}
$$

$$
x^{s} \text { does not appear in the power series }
$$

$$
=0
$$

So $f^{(s)}(0)=0$.

Important Maclaurin Series to memorize.

$f(x)$	$T(x)$	Interval where $f=T$
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$	$(-1,1)$
$\ln (1+x)$	$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots$	$(-1,1]$
e^{x}	$\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots$	$(-\infty, \infty)$
$\cos (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots$	$(-\infty, \infty)$
$\sin (x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots$	$(-\infty, \infty)$
$\tan -1(x)$	$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots$	$[-1,1]$

For a computation of the Maclaurin series of $\cos (x), \sin (x)$, see end of notes.

We can use these reference Maclaurin series to compute other Maclaurin/Taylor series.

Examples: 1) Find the Maclaurin series of $f(x)=x e^{3 x^{2}}$.
Start with $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
Substitute $3 x^{2}: \quad e^{3 x^{2}}=\sum_{n=0}^{\infty} \frac{\left(3 x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{3^{n} x^{2 n}}{n!}$
Multiply by $x: \quad x e^{3 x^{2}}=x \sum_{n=0}^{\infty} \frac{3^{n} x^{2 n}}{n!}$

$$
=\sum_{n=0}^{\infty} \frac{3^{n} x^{2 n+1}}{n!}
$$

2) Find the Maclaurin series of $f(x)=\cos (2 x)+\frac{1}{1+x^{2}}$

$$
\begin{aligned}
& \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \Rightarrow \cos (2 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n}}{(2 n)!} \\
& \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
\end{aligned}
$$

Combine the two:

$$
\begin{aligned}
\cos (x)+\frac{1}{1+x^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{n} x^{2 n}}{(2 n)!}+\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
& =\sum_{n=0}^{\infty}\left(\frac{(-1)^{n} 4^{n} x^{2 n}}{(2 n)!}+(-1)^{n} x^{2 n}\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{4^{n}}{(2 n)!}+1\right) x^{2 n}
\end{aligned}
$$

3) Find the first three non-zero terms of the Maclaurin series of $f(x)=\ln (1+x) \sin (x)$.

$$
\begin{aligned}
& \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120} \cdots \\
& \ln (1+x) \sin (x)=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right)\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120} \cdots\right)
\end{aligned}
$$

distribute and collect terms by degree.

$$
=x^{2}-\frac{x^{3}}{4}+\frac{x^{4}}{6}+\cdots
$$

4) Find the first four terms of the Maclaurin series of $\cos (x)^{2}$ two ways:
a) multiplying Maclaurin series.
b) using a double angle formula.
a) $\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots$

$$
\begin{aligned}
\cos (x)^{2} & =\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots\right)\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots\right) \\
& =\left(1+\left(-\frac{1}{2}-\frac{1}{2}\right) x^{2}+\left(\frac{1}{24}+\frac{1}{24}+\frac{1}{4}\right) x^{4}+\left(\frac{1}{720}-\frac{1}{720}-\frac{1}{48}-\frac{1}{48}\right) x^{6}\right) \cdots \\
& =1-x^{2}+\frac{x^{4}}{3}-\frac{2 x^{6}}{45}+\cdots
\end{aligned}
$$

b) $\quad \cos (x)^{2}=\frac{1+\cos (2 x)}{2}=\frac{1}{2}+\frac{1}{2}\left(1-\frac{(2 x)^{2}}{2}+\frac{(2 x)^{4}}{24}-\frac{(2 x)^{6}}{720}+\cdots\right)$

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{2}-\frac{4 x^{2}}{4}+\frac{16 x^{4}}{48}-\frac{64 x^{6}}{1440}+\cdots \\
& =1-x^{2}+\frac{x^{4}}{3}-\frac{2 x^{6}}{45}+\cdots
\end{aligned}
$$

5) Find the Maclaurin series of $x^{2} \tan ^{-1}(x)-x^{3}$.

$$
\begin{aligned}
& \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& \Rightarrow x^{2} \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{2 n+1}=x^{3}-\frac{x^{5}}{3}+\frac{x^{7}}{5}-\frac{x^{9}}{7}+\cdots \\
& x^{2} \tan ^{-1}(x)-x^{3}=-\frac{x^{5}}{3}+\frac{x^{7}}{5}-\frac{x^{9}}{7}+\cdots \\
&=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+3}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2 n+1}}{2 n-1}
\end{aligned}
$$

Complements:

1) Example of a function for which the Maclaurin series does not converge to $f(x)$.

$$
f(x)=\left\{\begin{array}{cc}
e^{-1 / x^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

We have $f^{(n)}(0)=0$ for all n. So $T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=0$.
$T(x)$ converges on $(-\infty, \infty)$, but $T(x) \notin f(x)$.
2) Maclaurin series of $\cos (x)$

n	$f^{(n)}(x)$	$c_{n}=\frac{f^{(n)}(0)}{n!}$
0	$\cos (x)$	1
1	$-\sin (x)$	0
2	$-\cos (x)$	$-\frac{1}{2}$
3	$\sin (x)$	0
4	$\cos (x)$	$\frac{1}{24}$
5	$-\sin (x)$	0

$$
f^{(n)}(0)=\left\{\begin{array}{ccc}
0 & \text { if } & n \text { odd } \\
(-1)^{1 / 2} & \text { if } n \text { even }
\end{array}\right.
$$

So $\quad c_{n}=\left\{\begin{array}{lll}0 & \text { if } & n \text { odd } \\ \frac{(-1)^{n / 2}}{n!} & \text { if } n \text { even }\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow c_{2 n}=\frac{(-1)^{n}}{(2 n)!} \\
& T(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
\end{aligned}
$$

For $\sin (x)$, we can integrate term-by-term:

$$
\begin{aligned}
\cos (x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
\Rightarrow \sin (x)=\int \cos (x) d x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \int x^{2 n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \frac{x^{2 n+1}}{2 n+1}+c
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+c .
$$

Plugging-in $x=0$ gives $\quad C=0$.
So $\quad \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$

