Section 10.8: Taylor and Maclaurin Series - Worksheet

1. Find the Taylor polynomials for the following functions at the order and center indicated.
(a) $f(x)=2 \cos \left(\frac{\pi}{3}-5 x\right), T_{4}(x)$ at $a=0$.
(d) $f(x)=\ln (\cos (x)), T_{3}(x)$ at $a=\frac{\pi}{4}$.
(b) $f(x)=\sqrt[3]{4+2 x}, T_{3}(x)$ at $a=2$.
(e) $f(x)=\frac{6}{5-3 x}, T_{4}(x)$ at $a=1$.
(c) $f(x)=2^{3-x}, T_{4}(x)$ at $a=1$.
(f) $f(x)=\ln (5+x), T_{3}(x)$ at $a=-4$.
2. In 1.(b), you found the third degree Taylor polynomial of $f(x)=\sqrt[3]{4+2 x}$ centered at $a=2$. Use this Taylor polynomial to estimate $\sqrt[3]{8.6}$.
3. Consider the function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)}(x-4)^{2 n+1}$.
(a) Find the radius and interval of convergence of f.
(b) Find $f^{(7)}(4), f^{(8)}(4)$ and $f^{(9)}(4)$.
4. Use the reference Maclaurin series to calculate the Maclaurin series of the following functions.
(a) $f(x)=x^{7} \cos \left(4 x^{5}\right)$.
(b) $f(x)=e^{-x^{3}}-1+x^{3}$.
(c) $f(x)=\sin (2 x)-2 \tan ^{-1}(x)$.
