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Section 10.8: Taylor and Maclaurin Series - Worksheet Solutions

1. Find the Taylor polynomials for the following functions at the order and center indicated.

(a) f(x) = 2 cos
(
π
3 − 5x

)
, T4(x) at a = 0.

Solution. We have

f(x) = 2 cos
(π
3
− 5x

)
⇒ c0 = f(0) = 1,

f ′(x) = 10 sin
(π
3
− 5x

)
⇒ c1 = f ′(0) = 5

√
3,

f ′′(x) = −50 cos
(π
3
− 5x

)
⇒ c2 =

f ′′(0)

2!
= −25

2
,

f (3)(x) = −250 sin
(π
3
− 5x

)
⇒ c3 =

f (3)(0)

3!
= −125

√
3

6
,

f (4)(x) = 1250 cos
(π
3
− 5x

)
⇒ c4 =

f (4)(0)

4!
=

625

24
.

Thus

T4(x) = 1 + 5
√
3x− 25x2

2
− 125

√
3x3

6
+

625x4

24
.

(b) f(x) = 3
√
4 + 2x, T3(x) at a = 2.

Solution. We have

f(x) = 3
√
4 + 2x ⇒ c0 = f(2) = 2,

f ′(x) =
2

3
(4 + 2x)−2/3 ⇒ c1 = f ′(2) =

1

6
,

f ′′(x) = −8

9
(4 + 2x)−5/3 ⇒ c2 =

f ′′(2)

2!
= − 1

72
,

f (3)(x) =
80

27
(4 + 2x)−8/3 ⇒ c3 =

f (3)(2)

3!
=

5

2592
.

Thus

T3(x) = 2 +
1

6
(x− 2)− 1

72
(x− 2)2 +

5

2592
(x− 2)3 .
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(c) f(x) = 23−x, T4(x) at a = 1.

Solution. We have

f(x) = 23−x ⇒ c0 = f(1) = 4,

f ′(x) = − ln(2)23−x ⇒ c1 = f ′(1) = −4 ln(2),

f ′′(x) = ln(2)223−x ⇒ c2 =
f ′′(1)

2!
= 2 ln(2)2,

f (3)(x) = − ln(2)323−x ⇒ c3 =
f (3)(1)

3!
= −2 ln(2)3

3
,

f (4)(x) = ln(2)423−x ⇒ c4 =
f (4)(1)

4!
=

ln(2)4

6
.

Thus

T4(x) = 4− 4 ln(2)(x− 1) + 2 ln(2)2(x− 1)2 − 2 ln(2)3

3
(x− 1)3 +

ln(2)4

6
(x− 1)4 .

(d) f(x) = ln(cos(x)), T3(x) at a = π
4 .

Solution. We have

f(x) = ln(cos(x)) ⇒ c0 = f
(π
4

)
= − ln(2)

2
,

f ′(x) = −cos(x)

sin(x)
= − tan(x) ⇒ c1 = f ′

(π
4

)
= −1,

f ′′(x) = − sec(x)2 ⇒ c2 =
f ′′ (π

4

)
2!

= −1,

f (3)(x) = −2 sec(x)2 tan(x) ⇒ c3 =
f (3)

(
π
4

)
3!

= −2

3
.

Thus

T3(x) = − ln(2)

2
−

(
x− π

4

)
−

(
x− π

4

)2

− 2

3

(
x− π

4

)3

.

(e) f(x) = 6
5−3x , T4(x) at a = 1.

Solution. We can use the formula for the sum of a geometric series to find this Taylor polynomial.
We start by finding the Taylor series, and we then keep the terms of degrees 0 through 4 to obtain
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the Taylor polynomial. We have

6

5− 3x
=

6

5− 3(x− 1)− 3

=
6

2− 3(x− 1)

=
3

1− 3(x−1)
2

=

∞∑
n=0

3

(
3(x− 1)

2

)n

= 3 +
9(x− 1)

2
+

27(x− 1)2

4
+

81(x− 1)3

8
+

243(x− 1)4

16
+ · · · .

Thus

T4(x) = 3 +
9(x− 1)

2
+

27(x− 1)2

4
+

81(x− 1)3

8
+

243(x− 1)4

16
.

(f) f(x) = ln(5 + x), T3(x) at a = −4.

Solution. We have

f(x) = ln(5 + x) ⇒ c0 = f(−4) = 0,

f ′(x) =
1

5 + x
⇒ c1 = f ′(−4) = 1,

f ′′(x) = − 1

(5 + x)2
⇒ c2 =

f ′′(−4)

2!
= −1

2
,

f (3)(x) =
2

(5 + x)3
⇒ c3 =

f (3)(−4)

3!
=

1

3
.

Thus

T3(x) = (x+ 4)− (x+ 4)2

2
− (x+ 4)3

3
.

2. In 1.(b), you found the third degree Taylor polynomial of f(x) = 3
√
4 + 2x centered at a = 2. Use this

Taylor polynomial to estimate 3
√
8.6.

Solution. We first need to find the input x to plug into f(x) in order to get 3
√
8.6. We want f(x) =

3
√
4 + 2x = 3

√
8.6, so we will need 4 + 2x = 8.6, that is x = 2.3 Therefore, the estimate we get is

3
√
8.6 = f(2.3) ≃ T3(2.3) = 2 +

1

6
(2.3− 2)− 1

72
(2.3− 2)2 +

5

2592
(2.3− 2)3 ≃ 2.0488 .

3. Consider the function f(x) =

∞∑
n=0

(−1)n

9n(n+ 1)
(x− 4)2n+1.
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(a) Find the radius and interval of convergence of f .

Solution. We use the Ratio Test. We have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
= lim

n→∞

∣∣∣∣ (−1)n+1x2n+3

9n+1(n+ 2)
· 9n(n+ 1)

(−1)n(x− 4)2n+1

∣∣∣∣
= lim

n→∞

|x− 4|2(n+ 1)

9(n+ 2)
·

1
n
1
n

= lim
n→∞

|x− 4|2
(
1 + 1

n

)
9
(
1 + 2

n

)
=

|x− 4|2

9
.

The series converges absolutely when |x−4|2
9 < 1, that is 1 < x < 7, and diverges if x < 1 or x > 7.

We now test the endpoints.

At x = 1, we have

∞∑
n=0

(−1)n

9n(n+ 1)
(1− 4)2n+1 =

∞∑
n=0

(−1)n

9n(n+ 1)
(−3)2n+1 = −3

∞∑
n=0

(−1)n

n+ 1
.

At x = 7, we have

∞∑
n=0

(−1)n

9n(n+ 1)
(7− 4)2n+1 =

∞∑
n=0

(−1)n

9n(n+ 1)
32n+1 = 3

∞∑
n=0

(−1)n

n+ 1
.

Both series converge by the AST since an = 1
n+1 is positive, decreasing and converges to 0.

In conclusion, the radius of convergence is R = 3 and the interval of convergence is [2, 7] .

(b) Find f (7)(4), f (8)(4) and f (9)(4).

Solution. Since the given series must be the Taylor series of f at a = 4, the coefficient of (x− 4)7

in the series is
f (7)(4)

7!
. The term in (x− 4)7 is obtained in the series when 2n+ 1 = 7, that is for

n = 3. So looking at the resulting coefficient gives

f (7)(4)

7!
=

(−1)3

93(3 + 1)
.

So

f (7)(4) = − 7!

4 · 93
.

Similarly, the coefficient of (x− 4)8 in the series is
f (8)(4)

8!
. The term in (x− 4)8 is obtained in the

series when 2n + 1 = 8. Since this equation has no solution with n being an integer, we deduce
that there is no term in (x− 4)8 appearing in the series. Therefore

f (8)(4) = 0 .
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The coefficient of (x − 4)9 in the series is
f (9)(4)

9!
. The term in (x − 4)9 is obtained in the series

when 2n+ 1 = 9, that is for n = 4. So looking at the resulting coefficient gives

f (9)(4)

9!
=

(−1)4

94(4 + 1)
.

So

f (9)(4) =
9!

5 · 94
.

4. Use the reference Maclaurin series to calculate the Maclaurin series of the following functions.

(a) f(x) = x7 cos(4x5).

Solution. We know

cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!
.

So we get

x7 cos(4x5) = x7
∞∑

n=0

(−1)n(4x5)2n

(2n)!

= x7
∞∑

n=0

(−1)n42nx10n

(2n)!

=

∞∑
n=0

(−1)n42nx10n+7

(2n)!
.

(b) f(x) = e−x3 − 1 + x3.

Solution. From

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+ · · ·

we get

e−x3

=

∞∑
n=0

(−x3)n

n!
=

∞∑
n=0

(−1)nx3n

n!
= 1− x3 +

x6

2
− x9

6
+ · · · .

We then see that adding −1 + x3 to e−x3

will cancel out the first two terms of this Maclaurin
series, giving

e−x3

− 1 + x3 =

(
1− x3 +

x6

2
− x9

6
+ · · ·

)
− 1 + x3

=
x6

2
− x9

6
+ · · ·

=

∞∑
n=2

(−1)nx3n

n!
.
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(c) f(x) = sin(2x)− 2 tan−1(x)

Solution. We know that

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
+ · · · ,

so

sin(2x) =

∞∑
n=0

(−1)n(2x)2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n22n+1x2n+1

(2n+ 1)!
= 2x− 8x3

6
+

32x5

120
+ · · · .

On the other hand, we have

tan−1(x) =

∞∑
n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+

x5

5
+ · · · ,

so

2 tan−1(x) =

∞∑
n=0

2(−1)nx2n+1

2n+ 1
= 2x− 2x3

3
+

2x5

5
+ · · · .

When we subtract these two Maclaurin series, the terms 2x will cancel out. We can group together
the remaining terms of same degree to obtain

sin(2x)− 2 tan−1(x) =

(
2x− 8x3

6
+

32x5

120
+ · · ·

)
−
(
2x− 2x3

3
+

2x5

5
+ · · ·

)
= −

(
8

6
− 2

3

)
x3 +

(
32

120
− 2

5

)
x5 + · · ·

=

∞∑
n=1

(−1)n
(

22n+1

(2n+ 1)!
− 2

2n+ 1

)
x2n+1 .
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