Rutgers University
Math 152

Section 10.8: Taylor and Maclaurin Series - Worksheet Solutions

1. Find the Taylor polynomials for the following functions at the order and center indicated.
(a) $f(x)=2 \cos \left(\frac{\pi}{3}-5 x\right), T_{4}(x)$ at $a=0$.

Solution. We have

$$
\begin{aligned}
f(x)=2 \cos \left(\frac{\pi}{3}-5 x\right) & \Rightarrow c_{0}=f(0)=1, \\
f^{\prime}(x)=10 \sin \left(\frac{\pi}{3}-5 x\right) & \Rightarrow c_{1}=f^{\prime}(0)=5 \sqrt{3} \\
f^{\prime \prime}(x)=-50 \cos \left(\frac{\pi}{3}-5 x\right) & \Rightarrow c_{2}=\frac{f^{\prime \prime}(0)}{2!}=-\frac{25}{2}, \\
f^{(3)}(x)=-250 \sin \left(\frac{\pi}{3}-5 x\right) & \Rightarrow c_{3}=\frac{f^{(3)}(0)}{3!}=-\frac{125 \sqrt{3}}{6} \\
f^{(4)}(x)=1250 \cos \left(\frac{\pi}{3}-5 x\right) & \Rightarrow c_{4}=\frac{f^{(4)}(0)}{4!}=\frac{625}{24} .
\end{aligned}
$$

Thus

$$
T_{4}(x)=1+5 \sqrt{3} x-\frac{25 x^{2}}{2}-\frac{125 \sqrt{3} x^{3}}{6}+\frac{625 x^{4}}{24}
$$

(b) $f(x)=\sqrt[3]{4+2 x}, T_{3}(x)$ at $a=2$.

Solution. We have

$$
\begin{aligned}
f(x)=\sqrt[3]{4+2 x} & \Rightarrow c_{0}=f(2)=2 \\
f^{\prime}(x)=\frac{2}{3}(4+2 x)^{-2 / 3} & \Rightarrow c_{1}=f^{\prime}(2)=\frac{1}{6} \\
f^{\prime \prime}(x)=-\frac{8}{9}(4+2 x)^{-5 / 3} & \Rightarrow c_{2}=\frac{f^{\prime \prime}(2)}{2!}=-\frac{1}{72} \\
f^{(3)}(x)=\frac{80}{27}(4+2 x)^{-8 / 3} & \Rightarrow c_{3}=\frac{f^{(3)}(2)}{3!}=\frac{5}{2592} .
\end{aligned}
$$

Thus

$$
T_{3}(x)=2+\frac{1}{6}(x-2)-\frac{1}{72}(x-2)^{2}+\frac{5}{2592}(x-2)^{3} .
$$

(c) $f(x)=2^{3-x}, T_{4}(x)$ at $a=1$.

Solution. We have

$$
\begin{aligned}
f(x)=2^{3-x} & \Rightarrow c_{0}=f(1)=4, \\
f^{\prime}(x)=-\ln (2) 2^{3-x} & \Rightarrow c_{1}=f^{\prime}(1)=-4 \ln (2), \\
f^{\prime \prime}(x)=\ln (2)^{2} 2^{3-x} & \Rightarrow c_{2}=\frac{f^{\prime \prime}(1)}{2!}=2 \ln (2)^{2} \\
f^{(3)}(x)=-\ln (2)^{3} 2^{3-x} & \Rightarrow c_{3}=\frac{f^{(3)}(1)}{3!}=-\frac{2 \ln (2)^{3}}{3} \\
f^{(4)}(x)=\ln (2)^{4} 2^{3-x} & \Rightarrow c_{4}=\frac{f^{(4)}(1)}{4!}=\frac{\ln (2)^{4}}{6}
\end{aligned}
$$

Thus

$$
T_{4}(x)=4-4 \ln (2)(x-1)+2 \ln (2)^{2}(x-1)^{2}-\frac{2 \ln (2)^{3}}{3}(x-1)^{3}+\frac{\ln (2)^{4}}{6}(x-1)^{4} .
$$

(d) $f(x)=\ln (\cos (x)), T_{3}(x)$ at $a=\frac{\pi}{4}$.

Solution. We have

$$
\begin{aligned}
& f(x)=\ln (\cos (x)) \Rightarrow c_{0}=f\left(\frac{\pi}{4}\right)=-\frac{\ln (2)}{2}, \\
& f^{\prime}(x)=-\frac{\cos (x)}{\sin (x)}=-\tan (x) \Rightarrow c_{1}=f^{\prime}\left(\frac{\pi}{4}\right)=-1, \\
& f^{\prime \prime}(x)=-\sec (x)^{2} \Rightarrow c_{2}=\frac{f^{\prime \prime}\left(\frac{\pi}{4}\right)}{2!}=-1, \\
& f^{(3)}(x)=-2 \sec (x)^{2} \tan (x) \Rightarrow c_{3}=\frac{f^{(3)}\left(\frac{\pi}{4}\right)}{3!}=-\frac{2}{3} .
\end{aligned}
$$

Thus

$$
T_{3}(x)=-\frac{\ln (2)}{2}-\left(x-\frac{\pi}{4}\right)-\left(x-\frac{\pi}{4}\right)^{2}-\frac{2}{3}\left(x-\frac{\pi}{4}\right)^{3} .
$$

(e) $f(x)=\frac{6}{5-3 x}, T_{4}(x)$ at $a=1$.

Solution. We can use the formula for the sum of a geometric series to find this Taylor polynomial. We start by finding the Taylor series, and we then keep the terms of degrees 0 through 4 to obtain
the Taylor polynomial. We have

$$
\begin{aligned}
\frac{6}{5-3 x} & =\frac{6}{5-3(x-1)-3} \\
& =\frac{6}{2-3(x-1)} \\
& =\frac{3}{1-\frac{3(x-1)}{2}} \\
& =\sum_{n=0}^{\infty} 3\left(\frac{3(x-1)}{2}\right)^{n} \\
& =3+\frac{9(x-1)}{2}+\frac{27(x-1)^{2}}{4}+\frac{81(x-1)^{3}}{8}+\frac{243(x-1)^{4}}{16}+\cdots .
\end{aligned}
$$

Thus

$$
T_{4}(x)=3+\frac{9(x-1)}{2}+\frac{27(x-1)^{2}}{4}+\frac{81(x-1)^{3}}{8}+\frac{243(x-1)^{4}}{16}
$$

(f) $f(x)=\ln (5+x), T_{3}(x)$ at $a=-4$.

Solution. We have

$$
\begin{gathered}
f(x)=\ln (5+x) \Rightarrow c_{0}=f(-4)=0, \\
f^{\prime}(x)=\frac{1}{5+x} \Rightarrow c_{1}=f^{\prime}(-4)=1, \\
f^{\prime \prime}(x)=-\frac{1}{(5+x)^{2}} \Rightarrow c_{2}=\frac{f^{\prime \prime}(-4)}{2!}=-\frac{1}{2}, \\
f^{(3)}(x)=\frac{2}{(5+x)^{3}} \Rightarrow c_{3}=\frac{f^{(3)}(-4)}{3!}=\frac{1}{3} .
\end{gathered}
$$

Thus

$$
T_{3}(x)=(x+4)-\frac{(x+4)^{2}}{2}-\frac{(x+4)^{3}}{3} .
$$

2. In 1.(b), you found the third degree Taylor polynomial of $f(x)=\sqrt[3]{4+2 x}$ centered at $a=2$. Use this Taylor polynomial to estimate $\sqrt[3]{8.6}$.

Solution. We first need to find the input x to plug into $f(x)$ in order to get $\sqrt[3]{8.6}$. We want $f(x)=$ $\sqrt[3]{4+2 x}=\sqrt[3]{8.6}$, so we will need $4+2 x=8.6$, that is $x=2.3$ Therefore, the estimate we get is

$$
\sqrt[3]{8.6}=f(2.3) \simeq T_{3}(2.3)=2+\frac{1}{6}(2.3-2)-\frac{1}{72}(2.3-2)^{2}+\frac{5}{2592}(2.3-2)^{3} \simeq 2.0488
$$

3. Consider the function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)}(x-4)^{2 n+1}$.
(a) Find the radius and interval of convergence of f.

Solution. We use the Ratio Test. We have

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{9^{n+1}(n+2)} \cdot \frac{9^{n}(n+1)}{(-1)^{n}(x-4)^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x-4|^{2}(n+1)}{9(n+2)} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{|x-4|^{2}\left(1+\frac{1}{n}\right)}{9\left(1+\frac{2}{n}\right)} \\
& =\frac{|x-4|^{2}}{9}
\end{aligned}
$$

The series converges absolutely when $\frac{|x-4|^{2}}{9}<1$, that is $1<x<7$, and diverges if $x<1$ or $x>7$. We now test the endpoints.

At $x=1$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)}(1-4)^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)}(-3)^{2 n+1}=-3 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

At $x=7$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)}(7-4)^{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{9^{n}(n+1)} 3^{2 n+1}=3 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

Both series converge by the AST since $a_{n}=\frac{1}{n+1}$ is positive, decreasing and converges to 0 .
In conclusion, the radius of convergence is $R=3$ and the interval of convergence is $[2,7]$.
(b) Find $f^{(7)}(4), f^{(8)}(4)$ and $f^{(9)}(4)$.

Solution. Since the given series must be the Taylor series of f at $a=4$, the coefficient of $(x-4)^{7}$ in the series is $\frac{f^{(7)}(4)}{7!}$. The term in $(x-4)^{7}$ is obtained in the series when $2 n+1=7$, that is for $n=3$. So looking at the resulting coefficient gives

$$
\frac{f^{(7)}(4)}{7!}=\frac{(-1)^{3}}{9^{3}(3+1)}
$$

So

$$
f^{(7)}(4)=-\frac{7!}{4 \cdot 9^{3}} .
$$

Similarly, the coefficient of $(x-4)^{8}$ in the series is $\frac{f^{(8)}(4)}{8!}$. The term in $(x-4)^{8}$ is obtained in the series when $2 n+1=8$. Since this equation has no solution with n being an integer, we deduce that there is no term in $(x-4)^{8}$ appearing in the series. Therefore

$$
f^{(8)}(4)=0 \text {. }
$$

The coefficient of $(x-4)^{9}$ in the series is $\frac{f^{(9)}(4)}{9!}$. The term in $(x-4)^{9}$ is obtained in the series when $2 n+1=9$, that is for $n=4$. So looking at the resulting coefficient gives

$$
\frac{f^{(9)}(4)}{9!}=\frac{(-1)^{4}}{9^{4}(4+1)}
$$

So

$$
f^{(9)}(4)=\frac{9!}{5 \cdot 9^{4}} \text {. }
$$

4. Use the reference Maclaurin series to calculate the Maclaurin series of the following functions.
(a) $f(x)=x^{7} \cos \left(4 x^{5}\right)$.

Solution. We know

$$
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} .
$$

So we get

$$
\begin{aligned}
x^{7} \cos \left(4 x^{5}\right) & =x^{7} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(4 x^{5}\right)^{2 n}}{(2 n)!} \\
& =x^{7} \sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{10 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{10 n+7}}{(2 n)!} .
\end{aligned}
$$

(b) $f(x)=e^{-x^{3}}-1+x^{3}$.

Solution. From

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots
$$

we get

$$
e^{-x^{3}}=\sum_{n=0}^{\infty} \frac{\left(-x^{3}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n}}{n!}=1-x^{3}+\frac{x^{6}}{2}-\frac{x^{9}}{6}+\cdots .
$$

We then see that adding $-1+x^{3}$ to $e^{-x^{3}}$ will cancel out the first two terms of this Maclaurin series, giving

$$
\begin{aligned}
e^{-x^{3}}-1+x^{3} & =\left(1-x^{3}+\frac{x^{6}}{2}-\frac{x^{9}}{6}+\cdots\right)-1+x^{3} \\
& =\frac{x^{6}}{2}-\frac{x^{9}}{6}+\cdots \\
& =\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{3 n}}{n!} .
\end{aligned}
$$

(c) $f(x)=\sin (2 x)-2 \tan ^{-1}(x)$

Solution. We know that

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots
$$

so

$$
\sin (2 x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 x)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n+1} x^{2 n+1}}{(2 n+1)!}=2 x-\frac{8 x^{3}}{6}+\frac{32 x^{5}}{120}+\cdots
$$

On the other hand, we have

$$
\tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots
$$

so

$$
2 \tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{2(-1)^{n} x^{2 n+1}}{2 n+1}=2 x-\frac{2 x^{3}}{3}+\frac{2 x^{5}}{5}+\cdots
$$

When we subtract these two Maclaurin series, the terms $2 x$ will cancel out. We can group together the remaining terms of same degree to obtain

$$
\begin{aligned}
\sin (2 x)-2 \tan ^{-1}(x) & =\left(2 x-\frac{8 x^{3}}{6}+\frac{32 x^{5}}{120}+\cdots\right)-\left(2 x-\frac{2 x^{3}}{3}+\frac{2 x^{5}}{5}+\cdots\right) \\
& =-\left(\frac{8}{6}-\frac{2}{3}\right) x^{3}+\left(\frac{32}{120}-\frac{2}{5}\right) x^{5}+\cdots \\
& =\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2^{2 n+1}}{(2 n+1)!}-\frac{2}{2 n+1}\right) x^{2 n+1}
\end{aligned}
$$

