| Learning Goal | Homework Problems |
| :--- | :--- |
| 10.9.1 Find the Maclaurin series for a function by substituting | $10.9: 1,7,9,11,15,16,22,23,26$ |
| for x and other simple algebraic manipulation of other <br> Maclaurin series |  |
| 10.9.2 Find the Maclaurin series for a function using a <br> combination of two Maclaurin series | $10.9: 27$ |
| 10.9.3 Estimate error using either the Remainder estimation <br> Theorem or the alternating Series Estimation Theorem and <br> find the number of term to attain a given error. | $10.9: 45,46$ Also 10.10: 45,46 |

Conceptual introduction: in the previous section, we learned that the $N^{\text {th }}$ degree Taylor polynomial of a function $f$ at $x=a$ gives the best $N^{\text {th }}$ degree polynomial approximation of $f$ near $x=a$. In this section, we investigate how accurate this approximation is.

Recall that $T_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
The remainder is $\quad R_{N}(x)=f(x)-T_{N}(x)$.
$\left|R_{N}(x)\right|$ is the error made when approximating $f(x)$ with $T_{N}(x)$.

Remark: in most cases, $f(x)=T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$
So :

$$
f(x)=\underbrace{f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(N)}(a)}{N!}(x-a)^{N}+\frac{f^{(N+1)}(a)}{(N+1)!}(x-a)^{N+1}+\cdots}_{T_{N}(x)} R_{N}(x) \quad
$$

So $R_{N}(x)=\sum_{n=N+1}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$

Example: for $f(x)=e^{x}$, find $T_{2}(x)$ and $R_{2}(x)$.

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\underbrace{1+x+\frac{x^{2}}{2}}_{T_{2}(x)}+\underbrace{\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots}_{R_{2}(x)}
$$

So $T_{2}(x)=1+x+\frac{x^{2}}{2}$ and $R_{2}(x)=\sum_{n=3}^{\infty} \frac{x^{n}}{n!}=\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots$

Taylor's Theorem: if $f$ has derivatives of all orders on an open interval $I$ containing $a$, then for all $x$ in $I$, there exists $c$ between $a$ and $x$ such that:

$$
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!}(x-a)^{N+1}
$$

Remark: the case $N=0$ is simply the Mean Value Theorem from Calculus I: $f(x)-f(a)=f^{\prime}(c)(x-a)$ for some $c$ between $x$ and $a$.

Remainder Estimation Theorem:

$$
\left|R_{N}(x)\right| \leqslant \frac{M|x-a|^{N+1}}{(N+1)!}
$$

where $M>0$ is any number such that $\left|f^{(N+1)}(t)\right| \leqslant M$ for all $t$ between $x$ and $a$.

Examples: 1) Estimate the error made when using the approximation $e^{x} \approx 1+x+\frac{x^{2}}{2}$ for $\underbrace{|x|<0.5}_{\text {interval }(-0.5,0.5)}$.

To use the Remainder Estimation Theorem, we must find a possible value for $M$. We need $\left|f^{(3)}(t)\right| \leqslant M$ in $(-0,5,0.5)$. We have $f^{(3)}(t)=e^{t}$.
So $\left|f^{(3)}(t)\right|=e^{t} \leq \underbrace{e^{0.5}}$ on ( $-0.5,0.5$ )
we use this as $M$
So $\left|R_{2}(x)\right| \leqslant \frac{M|x|^{3}}{3!} \leqslant \frac{e^{0.5}(0.5)^{3}}{6} \simeq 0.034$.
Therefore, the error made is at most 0.034 .
2) $f(x)=\sqrt{x}$

Estimate the error made when using the $2^{\text {nd }}$ degree Taylor polynomial $T_{2}(x)$ at $x=1$ to approximate $f(x)$ for $\underbrace{|x-1|<0.1}_{\text {interval }(0.9,1.1)}$.

To use the Remainder Estimation Theorem, need a possible value of $M$. Want $\left|f^{(3)}(t)\right| \leqslant M$ for $t$ in $(0.9,1.1)$.

$$
\begin{array}{l|l}
f(x)=x^{1 / 2} & \quad \text { largest when }|t| \text { is smallest } \\
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} \\
f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2} \\
f^{(3)}(x)=\frac{3}{8} x^{-5 / 2} & \left|f^{(3)}(t)\right|=\frac{3}{8|t|^{5 / 2}} \leqslant \underbrace{}_{\begin{array}{l}
\frac{3}{8(0.9)^{5 / 2}} \\
\text { this is the MM } \\
\text { we can use }
\end{array}}
\end{array}
$$

So $\left|R_{2}(x)\right| \leqslant \frac{M|x-1|^{3}}{3!} \leqslant \frac{3}{8(0.9)^{512}} \cdot \frac{(0.1)^{3}}{6}=0.00008$.
Therefore, the error made is at most 0.00008 .
3) $f(x)=\cos (3 x), T(x)=$ Maclaurin series of $f$. How many terms of $T(x)$ must be summed to ensure that for $|x|<\frac{1}{9}$, $T(x)$ approximates $f(x)$ with an error of at most $10^{-4}$ ?

We are looking for $N$ such that $\left|R_{N}(x)\right| \leqslant 10^{-4}$ in the interval $\left(-\frac{1}{9}, \frac{1}{9}\right)$.
Let us compute the error $\left|R_{N}(x)\right| \leqslant \frac{M(x)^{N+1}}{(N+1)!}$.

$$
f(x)=\cos (3 x) \text { so } f^{(n)}(x)= \pm 3^{n} \cdot \begin{cases}\cos (3 x) & n \text { even } \\ \sin (3 x) & n \text { odd }\end{cases}
$$

In particular, $\left|f^{(n+1)}(t)\right| \leqslant 3^{n+1}$ in $\left(-\frac{1}{9}, \frac{1}{9}\right)$. take this for $M$
So $\left|R_{N}(x)\right| \leqslant \frac{M|x|^{N+1}}{(N+1)!} \leqslant \frac{3^{N+1}}{\prod_{|x|}^{(N+1)!} \leqslant \frac{1}{9}} \cdot \frac{1}{9^{N+1}}=\underbrace{\frac{1}{(N+1)!3^{N+1}}}_{\text {error }}$
We want error $\leqslant 10^{-4}$

$$
\begin{aligned}
& \frac{1}{(N+1)!3^{N+1}} \leq 10^{-4} \\
& (N+1)!3^{N+1} \geq 10^{4} \\
& \text { if } N \geq 4
\end{aligned} \quad \begin{array}{|c|c|c|}
N & (N+1)!3^{N+1} \\
\hline 0 & 3 & x \\
\hline & 18 & x \\
3 & 162 & x \\
4 & 2016 & x \\
29160 & 2 \\
\hline
\end{array}
$$

This holds if $N \geqslant 4$

So the Maclaurin polynomial giving an approximation with error at most $10^{-4}$ for $|x|<\frac{1}{9}$ is $T_{4}(x)=1-\frac{(3 x)^{2}}{2}+\frac{(3 x)^{4}}{24}$ : we sum 3 terms.
4) $f(x)=\frac{1}{1+2 x}, T(x)=$ Maclaurin series of $f$.

How many terms of $T(x)$ must be summed to ensure that for $|x|<0.05, T(x)$ approximates $f(x)$ with an error of at most 0.001 ?

We are looking for the smallest value of $N$ for which $\left|R_{N}(x)\right| \leqslant 0.001$ if $x$ is in the interval $(-0.05,0.05)$. $\tau$ we start by estimating the error.

Remainder Estimation Theorem: $\left|R_{N}(x)\right| \leqslant \frac{M\left(\left.x\right|^{N+1}\right.}{(N+1)!}$
Let us find $M$.

$$
\begin{aligned}
& f(x)=(1+2 x)^{-1} \\
& f^{\prime}(x)=-(1+2 x)^{-2} \cdot 2 \\
& f^{\prime \prime}(x)=2(1+2 x)^{-3} \cdot 2^{2} \\
& f^{\prime \prime \prime}(x)=-6(1+2 x)^{-4} \cdot 2^{3} \\
& f^{(n)}(x)=(-1)^{n} n!(1+2 x)^{-n-1} 2^{n} \\
& f^{(N+1)}(x)=\frac{(-1)^{N+1}(N+1)!2^{N+1}}{(1+2 x)^{N+2}}
\end{aligned}
$$

So on the interval $(-0.05,0.05)$ :

$$
\begin{aligned}
&\left|f^{(N+1)}(t)\right| \leqslant \frac{(N+1)!2^{N+1}}{(1+2(-0.05))^{N+2}}=\frac{(N+1)!2^{N+1}}{(0.9)^{N+2}} \\
&|x| \leqslant 0.05 \\
&\left|R_{N}(x)\right| \leqslant \frac{M \mid x)^{N+1}}{(N+1)!} \leqslant \frac{(N+1)!2^{N+1}}{(0.9)^{N+2}} \cdot \frac{(0.05)^{N+1}}{(N+1)!} \\
&=\frac{(2 \cdot 0.05)^{N+1}}{(0.9)^{N+2}}=\frac{(0.1)^{N+1}}{(0.9)^{N+2}}=\frac{10}{9^{N+2}}
\end{aligned}
$$

Now we want $\frac{10}{q^{N+2}} \leqslant 0.001 \Rightarrow q^{N+2} \geqslant \frac{10}{0.001}=10000$
So $N+2 \geqslant \log _{9}(10000)$

$$
N \geqslant \log _{9}(10000)-2 \simeq 4.2
$$

So the smalleot value of $N$ giving the desired error is $N=5$, which means we must sum 6 terms ( $N=0$ to 5 ).

